Evaluating the Impact of Climate Change on the Stream Flow in Soan River Basin (Pakistan)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Observed Climatic Data
2.2.2. Model Data
2.2.3. Spatial Data
2.3. Climate Change Analysis and Downscaling
2.4. Bias Correction
- The observed data period (1991–2010) was divided in to two groups: calibrated period (1991–2000) and validated period (2001–2010) for bias correction.
- For the calibration period, the correction factor for temperature and precipitation were calculated using historical data of the model and observed data.
- The linear scaling performance evaluation was estimated depending upon the evaluation of the 10th percentile, standard deviation, mean, and 90th percentile between two types of data (observed data, model data) formerly and later bias correction.
- The performance for the calibrated period was assessed after applying the bias corrected calibration period parameters to the validation period.
- The future forecasted model data of 2021–2095 was corrected monthly using the monthly correction factor.
2.5. SWAT Model for Hydrological Modelling
2.5.1. Calibration and Validation
2.5.2. Performance Evaluation
3. Results
3.1. Climatic Model Selection
3.2. Bias Correction
3.3. Assessment of Mean Monthly Future Meteorological Parameters at Climatic Stations
3.4. Water Balance/Stability in SWAT Model
3.5. Calibration and Validation of the SWAT Model
3.6. Prediction of Streamflow Variations
4. Discussion
5. Conclusions and Recommendations
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Moser, S.C. Communicating Climate Change: History, Challenges, Process and Future Directions. Wiley Interdiscip. Rev. Clim. Change 2010, 1, 31–53. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A Global Assessment of the Impact of Climate Change on Water Scarcity. Clim. Change 2016, 134, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Pörtner, H.-O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R. Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC Sixth Assess. Rep. 2022. Available online: https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf (accessed on 6 September 2022).
- Akbar, H.; Nilsalab, P.; Silalertruksa, T.; Gheewala, S.H. Comprehensive Review of Groundwater Scarcity, Stress and Sustainability Index-Based Assessment. Groundw. Sustain. Dev. 2022, 18, 100782. [Google Scholar] [CrossRef]
- Tansar, H.; Akbar, H.; Aslam, R.A. Flood Inundation Mapping and Hazard Assessment for Mitigation Analysis of Local Adaptation Measures in Upper Ping River Basin, Thailand. Arab. J. Geosci. 2021, 14, 2531. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global Pattern of Trends in Streamflow and Water Availability in a Changing Climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Urrutia, R.; Vuille, M. Climate Change Projections for the Tropical Andes Using a Regional Climate Model: Temperature and Precipitation Simulations for the End of the 21st Century. J. Geophys. Res. Atmos. 2009, 114, 1021. [Google Scholar] [CrossRef]
- Aziz, M.; Khan, M.; Anjum, N.; Sultan, M.; Shamshiri, R.R.; Ibrahim, S.M.; Balasundram, S.K.; Aleem, M. Scientific Irrigation Scheduling for Sustainable Production in Olive Groves. Agriculture 2022, 12, 564. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Sultan, M.; Shamshiri, R.R.; Rahman, M.M.; Aleem, M.; Balasundram, S.K. Present Status and Challenges of Fodder Production in Controlled Environments: A Review. Smart Agric. Technol. 2023, 3, 100080. [Google Scholar] [CrossRef]
- Mujtaba, A.; Nabi, G.; Masood, M.; Iqbal, M.; Asfahan, H.M.; Sultan, M.; Majeed, F.; Hensel, O.; Nasirahmadi, A. Impact of Cropping Pattern and Climatic Parameters in Lower Chenab Canal System—Case Study from Punjab Pakistan. Agriculture 2022, 12, 708. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Coulibaly, P. Hydrologic Impact of Climate Change in the Saguenay Watershed: Comparison of Downscaling Methods and Hydrologic Models. J. Hydrol. 2005, 307, 145–163. [Google Scholar] [CrossRef]
- Maurer, E.P. Uncertainty in Hydrologic Impacts of Climate Change in the Sierra Nevada, California, under Two Emissions Scenarios. Clim. Change 2007, 82, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Shahi, N.K.; Das, S.; Ghosh, S.; Maharana, P.; Rai, S. Projected Changes in the Mean and Intra-Seasonal Variability of the Indian Summer Monsoon in the RegCM CORDEX-CORE Simulations under Higher Warming Conditions. Clim. Dyn. 2021, 57, 1489–1506. [Google Scholar] [CrossRef]
- Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global Patterns in the Vulnerability of Ecosystems to Vegetation Shifts Due to Climate Change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [Google Scholar] [CrossRef]
- Arora, V.K. Streamflow Simulations for Continental-Scale River Basins in a Global Atmospheric General Circulation Model. Adv. Water Resour. 2001, 24, 775–791. [Google Scholar] [CrossRef]
- Zhang, X.C.; Nearing, M.A. Impact of Climate Change on Soil Erosion, Runoff, and Wheat Productivity in Central Oklahoma. CATENA 2005, 61, 185–195. [Google Scholar] [CrossRef]
- Hulme, M.; Hossell, J.E.; Parry, M.L. Future Climate Change and Land Use in the United Kingdom. Geogr. J. 1993, 159, 131–147. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; Yin, Y. Impacts of Land Use Change Scenarios on Storm-Runoff Generation in Xitiaoxi Basin, China. Quat. Int. 2009, 208, 121–128. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking Climate Change Modelling to Impacts Studies: Recent Advances in Downscaling Techniques for Hydrological Modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Bae, D.-H.; Jung, I.-W.; Lettenmaier, D.P. Hydrologic Uncertainties in Climate Change from IPCC AR4 GCM Simulations of the Chungju Basin, Korea. J. Hydrol. 2011, 401, 90–105. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Ren, X.; Fischer, T.; Xu, Y. Hydrological Impacts of Climate Change in the Yellow River Basin for the 21st Century Using Hydrological Model and Statistical Downscaling Model. Quat. Int. 2011, 244, 211–220. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part i: Model development1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Christensen, N.S.; Lettenmaier, D.P. A Multimodel Ensemble Approach to Assessment of Climate Change Impacts on the Hydrology and Water Resources of the Colorado River Basin. Hydrol. Earth Syst. Sci. 2007, 11, 1417–1434. [Google Scholar] [CrossRef] [Green Version]
- Graham, L.P.; Andréasson, J.; Carlsson, B. Assessing Climate Change Impacts on Hydrology from an Ensemble of Regional Climate Models, Model Scales and Linking Methods—A Case Study on the Lule River Basin. Clim. Change 2007, 81, 293–307. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H.; Jung, I.W. Assessing the Uncertainties of Hydrologic Model Selection in Climate Change Impact Studies. Hydrol. Process. 2011, 25, 2814–2826. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the Impact of Climate Change on Water Resources in Iran. Water Resour. Res. 2009, 45, 7615. [Google Scholar] [CrossRef] [Green Version]
- Babur, M.; Babel, M.; Shrestha, S.; Kawasaki, A.; Tripathi, N. Assessment of Climate Change Impact on Reservoir Inflows Using Multi Climate-Models under RCPs—The Case of Mangla Dam in Pakistan. Water 2016, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Akbar, H.; Gheewala, S.H. Impact of Climate and Land Use Changes on Flowrate in the Kunhar River Basin, Pakistan, for the Period (1992–2014). Arab. J. Geosci. 2021, 14, 707. [Google Scholar] [CrossRef]
- Garee, K.; Chen, X.; Bao, A.; Wang, Y.; Meng, F. Hydrological Modeling of the Upper Indus Basin: A Case Study from a High-Altitude Glacierized Catchment Hunza. Water 2017, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Jehanzeb, A. Evaluation of Flooding Hazards of Soan River in Rawalpindi Area. Master’s Thesis, University of Engineering and Technology, Lahore, Pakistan, 2004. [Google Scholar]
- Hussain, F.; Nabi, G.; Wu, R.-S. Spatiotemporal Rainfall Distribution of Soan River Basin, Pothwar Region, Pakistan. Adv. Meteorol. 2021, 2021, 6656732. [Google Scholar] [CrossRef]
- Department of Energy. Earth System Grid Federation. Available online: https://esgf-node.llnl.gov/projects/esgf-llnl/ (accessed on 7 August 2022).
- FAO/UNESCO. Soil Map of the World; Unesco: Paris, France, 1974. [Google Scholar]
- Bannwarth, M.A.; Hugenschmidt, C.; Sangchan, W.; Lamers, M.; Ingwersen, J.; Ziegler, A.D.; Streck, T. Simulation of Stream Flow Components in a Mountainous Catchment in Northern Thailand with SWAT, Using the ANSELM Calibration Approach. Hydrol. Process. 2015, 29, 1340–1352. [Google Scholar] [CrossRef]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing Bias Correction Methods in Downscaling Meteorological Variables for a Hydrologic Impact Study in an Arid Area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.P.; Zeleke, K.; Hafeez, M. Streamflow Modeling in a Fluctuant Climate Using SWAT: Yass River Catchment in South Eastern Australia. Environ. Earth Sci. 2014, 71, 5241–5254. [Google Scholar] [CrossRef]
- Ahmed, E.; Al Janabi, F.; Yang, W.; Ali, A.; Saddique, N.; Krebs, P. Comparison of Flow Simulations with Sub-Daily and Daily GPM IMERG Products over a Transboundary Chenab River Catchment. J. Water Clim. Chang. 2022, 13, 1204–1224. [Google Scholar] [CrossRef]
- Ahmed, E.; Al Janabi, F.; Zhang, J.; Yang, W.; Saddique, N.; Krebs, P. Hydrologic Assessment of TRMM and GPM-Based Precipitation Products in Transboundary River Catchment (Chenab River, Pakistan). Water 2020, 12, 1902. [Google Scholar] [CrossRef]
- Memarian, H.; Balasundram, S.K.; Abbaspour, K.C.; Talib, J.B.; Boon Sung, C.T.; Sood, A.M. SWAT-Based Hydrological Modelling of Tropical Land-Use Scenarios. Hydrol. Sci. J. 2014, 59, 1808–1829. [Google Scholar] [CrossRef]
- Chiang, L.-C.; Yuan, Y.; Mehaffey, M.; Jackson, M.; Chaubey, I. Assessing SWAT’s Performance in the Kaskaskia River Watershed as Influenced by the Number of Calibration Stations Used. Hydrol. Process. 2014, 28, 676–687. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Cracknell, A.P. Assessment of Three Long-Term Gridded Climate Products for Hydro-Climatic Simulations in Tropical River Basins. Water 2017, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Qiu, H.; Yang, D.; Cao, M.; Song, J.; Wu, J.; Huang, C.; Gao, Y. Evaluation of the Applicability of Climate Forecast System Reanalysis Weather Data for Hydrologic Simulation: A Case Study in the Bahe River Basin of the Qinling Mountains, China. J. Geogr. Sci. 2017, 27, 546–564. [Google Scholar] [CrossRef] [Green Version]
- Licciardello, F.; Toscano, A.; Cirelli, G.L.; Consoli, S.; Barbagallo, S. Evaluation of Sediment Deposition in a Mediterranean Reservoir: Comparison of Long Term Bathymetric Measurements and SWAT Estimations. L. Degrad. Dev. 2017, 28, 566–578. [Google Scholar] [CrossRef]
- Su, B.; Zeng, X.; Zhai, J.; Wang, Y.; Li, X. Projected Precipitation and Streamflow under SRES and RCP Emission Scenarios in the Songhuajiang River Basin, China. Quat. Int. 2015, 380–381, 95–105. [Google Scholar] [CrossRef]
- Butts, M.B.; Payne, J.T.; Kristensen, M.; Madsen, H. An Evaluation of the Impact of Model Structure on Hydrological Modelling Uncertainty for Streamflow Simulation. J. Hydrol. 2004, 298, 242–266. [Google Scholar] [CrossRef]
- Ahmad, Z.; Hafeez, M.; Ahmad, I. Hydrology of Mountainous Areas in the Upper Indus Basin, Northern Pakistan with the Perspective of Climate Change. Environ. Monit. Assess. 2012, 184, 5255–5274. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Kim, S.J. Potential Impacts of Climate Change on the Reliability of Water and Hydropower Supply from a Multipurpose Dam in South Korea. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 1273–1288. [Google Scholar] [CrossRef]
- Rahman, K.; Maringanti, C.; Beniston, M.; Widmer, F.; Abbaspour, K.; Lehmann, A. Streamflow Modeling in a Highly Managed Mountainous Glacier Watershed Using SWAT: The Upper Rhone River Watershed Case in Switzerland. Water Resour. Manag. 2013, 27, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Ikram, F.; Afzaal, M.; Bukhari, S.A.A.; Ahmed, B. Past and Future Trends in Frequency of Heavy Rainfall Events over Pakistan. Pak. J. Meteorol. Vol 2016, 12, 57–78. [Google Scholar]
- Saddique, N.; Usman, M.; Bernhofer, C. Simulating the Impact of Climate Change on the Hydrological Regimes of a Sparsely Gauged Mountainous Basin, Northern Pakistan. Water 2019, 11, 2141. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.; Babel, M.S. Evaluation of SDSM Developed by Annual and Monthly Sub-Models for Downscaling Temperature and Precipitation in the Jhelum Basin, Pakistan and India. Theor. Appl. Climatol. 2013, 113, 27–44. [Google Scholar] [CrossRef]
- Ali, S.; Li, D.; Congbin, F.; Khan, F. Twenty First Century Climatic and Hydrological Changes over Upper Indus Basin of Himalayan Region of Pakistan. Environ. Res. Lett. 2015, 10, 14007. [Google Scholar] [CrossRef]
- Deb, D.; Butcher, J.; Srinivasan, R. Projected Hydrologic Changes Under Mid-21st Century Climatic Conditions in a Sub-Arctic Watershed. Water Resour. Manag. 2015, 29, 1467–1487. [Google Scholar] [CrossRef]
- Teshager, A.D.; Gassman, P.W.; Secchi, S.; Schoof, J.T.; Misgna, G. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Environ. Manag. 2016, 57, 894–911. [Google Scholar] [CrossRef] [PubMed]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool User’s Manual. Texas Water Resour. Inst. Coll. Stn. Texas 2002, 412. [Google Scholar]
- Guo, Y.; Fang, G.; Xu, Y.-P.; Tian, X.; Xie, J. Identifying How Future Climate and Land Use/Cover Changes Impact Streamflow in Xinanjiang Basin, East China. Sci. Total Environ. 2020, 710, 136275. [Google Scholar] [CrossRef]
- van Dam, J.C. Impacts of Climate Change and Climate Variability on Hydrological Regimes; Cambridge University Press: Cambridge, UK, 2003; ISBN 9780521543316. [Google Scholar]
- Hattermann, F.F.; Weiland, M.; Huang, S.; Krysanova, V.; Kundzewicz, Z.W. Model-Supported Impact Assessment for the Water Sector in Central Germany Under Climate Change—A Case Study. Water Resour. Manag. 2011, 25, 3113–3134. [Google Scholar] [CrossRef]
- van Dijk, A.I.J.M.; Beck, H.E.; Crosbie, R.S.; de Jeu, R.A.M.; Liu, Y.Y.; Podger, G.M.; Timbal, B.; Viney, N.R. The Millennium Drought in Southeast Australia (2001–2009): Natural and Human Causes and Implications for Water Resources, Ecosystems, Economy, and Society. Water Resour. Res. 2013, 49, 1040–1057. [Google Scholar] [CrossRef]
- Lu, D.; Ye, M.; Meyer, P.D.; Curtis, G.P.; Shi, X.; Niu, X.-F.; Yabusaki, S.B. Effects of Error Covariance Structure on Estimation of Model Averaging Weights and Predictive Performance. Water Resour. Res. 2013, 49, 6029–6047. [Google Scholar] [CrossRef]
- Wagener, T. Evaluation of Catchment Models. Hydrol. Process. 2003, 17, 3375–3378. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- van Werkhoven, K.; Wagener, T.; Reed, P.; Tang, Y. Sensitivity-Guided Reduction of Parametric Dimensionality for Multi-Objective Calibration of Watershed Models. Adv. Water Resour. 2009, 32, 1154–1169. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Laux, P.; Arnault, J.; Lawin, A.E.; Kunstmann, H. Conceptual Hydrological Model Calibration Using Multi-Objective Optimization Techniques over the Transboundary Komadugu-Yobe Basin, Lake Chad Area, West Africa. J. Hydrol. Reg. Stud. 2020, 27, 100655. [Google Scholar] [CrossRef]
- Hakala, K.; Addor, N.; Seibert, J. Hydrological Modeling to Evaluate Climate Model Simulations and Their Bias Correction. J. Hydrometeorol. 2018, 19, 1321–1337. [Google Scholar] [CrossRef]
- Bosshard, T.; Carambia, M.; Goergen, K.; Kotlarski, S.; Krahe, P.; Zappa, M.; Schär, C. Quantifying Uncertainty Sources in an Ensemble of Hydrological Climate-Impact Projections. Water Resour. Res. 2013, 49, 1523–1536. [Google Scholar] [CrossRef]
- Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M.; et al. The CNRM-CM5.1 Global Climate Model: Description and Basic Evaluation. Clim. Dyn. 2013, 40, 2091–2121. [Google Scholar] [CrossRef]
GCMs | Stations | R2 Value |
---|---|---|
Rawalpindi | 0.52 | |
CNRM-CM5 | Islamabad | 0.47 |
Murree | 0.35 | |
Rawalpindi | 0.34 | |
ACCESS 1.0 | Islamabad | 0.43 |
Murree | 0.31 | |
Rawalpindi | 0.27 | |
CCSM4 | Islamabad | 0.22 |
Murree | 0.29 | |
Rawalpindi | 0.35 | |
CSIRO | Islamabad | 0.14 |
Murree | 0.33 | |
Rawalpindi | 0.15 | |
MPI-ESM-LR | Islamabad | 0.28 |
Murree | 0.04 |
Sr. No | Parameters | Description | Range | Optimum Value |
---|---|---|---|---|
1 | SOL-AWC | Soil available capacity (mm/mm) | 0–1 | 0.17 |
2 | SOL-K | Saturated hydraulic conductivity (mm/h) | 0–2000 | 4.27 |
3 | GW-DELAY | Ground water delay (days) | 0–500 | 31 |
4 | GW-QMIN | Aqusifer required for return flow to occur (mm) | 0–5000 | 1000 |
5 | RCHRG-DP | Deep aquifer percolation fraction (–) | 0–1 | 0.05 |
6 | GW-REVAP | Ground Water rewap coefficient (-) | 0.02–0.2 | 0.02 |
7 | REVAPMN | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0–500 | 500 |
8 | ALPHABF | Base flow alpha factor (–) | 0–1 | 0.048 |
9 | CH-N2 | Mannings n value for the main channel (–) | 0.01–0.3 | 0.014 |
10 | CH-K2 | Effective hydraulic conductivity in the main channel (mm/h) | 0.001–500 | 0.001 |
11 | ESCO | Soil evaporation compensation factor (–) | 0–1 | 0 |
12 | EPCO | Plant uptake compensation factor (–) | 0–1 | 0.97 |
Flow | Components of the Water Balance | Symbology | Calculated Values (mm) | Total Flow(mm) |
---|---|---|---|---|
Inflow | Precipitation | PRECIP | 2404.8 | 2404.8 |
Water Yield | WYLD | 1424 | ||
Outflow | Deep Aquifer Recharge | DA-RCHG | 802.7 | |
Evapotranspiration | ET | 170 | 2396.7 | |
Losses | 8.1 |
Coefficients | Calibration Period (2006–2009) | Validation Period (2010–2013) |
---|---|---|
R2 | 0.8125 | 0.835 |
PBIAS | −0.8794 | −0.9263 |
NSE | 0.7876 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, M.; Ahmed, E.; Peng, G.; Xu, R.; Sultan, M.; Khan, F.U.; Aleem, M. Evaluating the Impact of Climate Change on the Stream Flow in Soan River Basin (Pakistan). Water 2022, 14, 3695. https://doi.org/10.3390/w14223695
Ismail M, Ahmed E, Peng G, Xu R, Sultan M, Khan FU, Aleem M. Evaluating the Impact of Climate Change on the Stream Flow in Soan River Basin (Pakistan). Water. 2022; 14(22):3695. https://doi.org/10.3390/w14223695
Chicago/Turabian StyleIsmail, Muhammad, Ehtesham Ahmed, Gao Peng, Ruirui Xu, Muhammad Sultan, Farhat Ullah Khan, and Muhammad Aleem. 2022. "Evaluating the Impact of Climate Change on the Stream Flow in Soan River Basin (Pakistan)" Water 14, no. 22: 3695. https://doi.org/10.3390/w14223695
APA StyleIsmail, M., Ahmed, E., Peng, G., Xu, R., Sultan, M., Khan, F. U., & Aleem, M. (2022). Evaluating the Impact of Climate Change on the Stream Flow in Soan River Basin (Pakistan). Water, 14(22), 3695. https://doi.org/10.3390/w14223695