Dams Pose a Critical Threat to Rivers in Brazil’s Cerrado Hotspot
Abstract
:1. Introduction
2. Materials and Methods
- UHE_op =
- number of operational UHEs,
- PCH_op =
- number of operational PCHs,
- UHE_pl =
- number of planned UHEs,
- PCH_pl =
- number of planned UHEs,
- WR_pct =
- Weight corresponding to the percentage of remaining Cerrado in the watersheds: 1.0 (if 0–20%), 1.5 (if 21–40%), 2.0 (if 41–60%), 2.5 (if 61–80%), or 3.0 (if 81–100%).
3. Results
3.1. Proximity of Dams to Cerrado Priority Conservation Areas
3.2. Influence of UHEs and PCHs on Remaining Native Vegetation
3.3. Environmental Saturation Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; D’Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; et al. Damming the rivers of the Amazon basin. Nature 2017, 546, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latrubesse, E.M.; Arima, E.; Ferreira, M.E.; Nogueira, S.H.; Wittmann, F.; Dias, M.S.; Dagosta, F.C.P.; Bayer, M. Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conserv. Sci. Pract. 2019, 1, e77. [Google Scholar] [CrossRef] [Green Version]
- Ministério de Minas e Energia—MME. Plano Nacional de Energia 2030. 2022. Available online: https://biblioteca.aneel.gov.br/ (accessed on 17 September 2022).
- Agência Nacional de Energia Elétrica—ANEEL. Banco de Informações de Geração da Agência Nacional de Energia Elétrica; ANEEL: Brasília, Brazil, 2022. Available online: https://dados.gov.br/dataset/siga-sistema-de-informacoes-de-geracao-da-aneel (accessed on 17 September 2022).
- Ometto, J.P.; Cimbleris, A.C.; dos Santos, M.A.; Rosa, L.P.; Abe, D.; Tundisi, J.G.; Stech, J.L.; Barros, N.; Roland, F. Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome. Energy Policy 2013, 58, 109–116. [Google Scholar] [CrossRef]
- Peluso, L.M.; Mateus, L.; Penha, J.; Bailly, D.; Cassemiro, F.; Suárez, Y.; Fantin-Cruz, I.; Kashiwaqui, E.; Lemes, P. Climate change negative effects on the Neotropical fishery resources may be exacerbated by hydroelectric dams. Sci. Total Environ. 2022, 828, 154485. [Google Scholar] [CrossRef]
- Castello, L.; Macedo, M.N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Chang. Biol. 2015, 22, 990–1007. [Google Scholar] [CrossRef] [PubMed]
- Val, A.; Fearnside, P.M.; Almeida-Val, V. Environmental disturbances and fishes in the Amazon. J. Fish Biol. 2016, 89, 192–193. [Google Scholar] [CrossRef] [PubMed]
- Freitas, C.E.; Mereles, M.D.A.; Pereira, D.V.; Siqueira-Souza, F.; Hurd, L.; Kahn, J.; Morais, G.; Sousa, R.G.C. Death by a thousand cuts: Small local dams can produce large regional impacts in the Brazilian Legal Amazon. Environ. Sci. Policy 2022, 136, 447–452. [Google Scholar] [CrossRef]
- Benchimol, M.; Peres, C.A. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia. PLoS ONE 2015, 10, e0129818. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.; Aragão, L.E.O.C.; Barlow, J.; Barreto, P.; Berenguer, E.; Bustamante, M.; Gardner, T.A.; Lees, A.C.; Lima, A.; Louzada, J.; et al. Brazil’s environmental leadership at risk. Science 2014, 346, 706–707. [Google Scholar] [CrossRef]
- Almeida, R.M.; Nóbrega, G.N.; Junger, P.C.; Figueiredo, A.V.; Andrade, A.S.; de Moura, C.G.B.; Tonetta, D.; Oliveira, E.S.J.; Araújo, F.; Rust, F.; et al. High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir. Front. Microbiol. 2016, 7, 717. [Google Scholar] [CrossRef]
- Deemer, B.R.; Harrison, J.A.; Li, S.; Beaulieu, J.J.; DelSontro, T.; Barros, N.; Bezerra Neto, J.F.; Powers, S.M.; dos Santos, M.A.; Vonk, J.A. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. BioScience 2016, 66, 949–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timpe, K.; Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 2017, 3, e1700611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevaux, J.C.; Martins, D.P.; Meurer, M. Changes in a large regulated tropical river: The Paraná River downstream from the Porto Primavera Dam, Brazil. Geomorphology 2009, 113, 230–238. [Google Scholar] [CrossRef]
- Fontes, L.C.; Latrubesse, E.M.; Holanda, F.S.; Aquino, S. Major hydrological changes and bank e rosion in the lower São Francisco River, Brazil, as a consequence of dams. In RCEM 2009 River Coastal and Estuarine Morphodynamics; Garcia, C., Latrubesse, E.M., Perillo, E.G., Eds.; Taylor Francis Group: Amsterdam, The Netherlands, 2010; Volume 1, pp. 131–136. [Google Scholar]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Canadian Journal of Fishers and Aquatic 1989, 106, 110–127. [Google Scholar]
- Agostinho, A.; Pelicice, F.; Gomes, L. Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Braz. J. Biol. 2008, 68, 1119–1132. [Google Scholar] [CrossRef] [Green Version]
- Stevaux, J.C.; Corradini, F.A.; Aquino, S. Connectivity processes and riparian vegetation of the upper Paraná River, Brazil. J. South Am. Earth Sci. 2013, 46, 113–121. [Google Scholar] [CrossRef]
- Assahira, C.; Piedade, M.T.F.; Trumbore, S.E.; Wittmann, F.; Cintra, B.B.L.; Batista, E.S.; de Resende, A.F.; Schöngart, J. Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. For. Ecol. Manag. 2017, 396, 113–123. [Google Scholar] [CrossRef]
- Barthem, R.; Ribeiro, M.C.L.D.B.; Jr, M.P. Life strategies of some long-distance migratory catfish in relation to hydroelectric dams in the Amazon Basin. Biol. Conserv. 1991, 55, 339–345. [Google Scholar] [CrossRef]
- Duponchelle, F.; Pouilly, M.; Pécheyran, C.; Hauser, M.; Renno, J.-F.; Panfili, J.; Darnaude, A.M.; García-Vasquez, A.; Carvajal-Vallejos, F.; García-Dávila, C.; et al. Trans-Amazonian natal homing in giant catfish. J. Appl. Ecol. 2016, 53, 1511–1520. [Google Scholar] [CrossRef] [Green Version]
- Lees, A.C.; Peres, C.A.; Fearnside, P.M.; Schneider, M.; Zuanon, J.A.S. Hydropower and the future of Amazonian biodiversity. Biodivers. Conserv. 2016, 25, 451–466. [Google Scholar] [CrossRef]
- Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128–129. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Latrubesse, E.M. The hydro-geomorphologic complexity of the lower Amazon River floodplain and hydrological connectivity assessed by remote sensing and field control. Remote Sens. Environ. 2017, 198, 321–332. [Google Scholar] [CrossRef]
- Dayrell, J.S.; Magnusson, W.E.; Bobrowiec, P.E.D.; Lima, A.P. Impacts of an Amazonian hydroelectric dam on frog assemblages. PLoS ONE 2021, 16, e0244580. [Google Scholar] [CrossRef] [PubMed]
- Bohada-Murillo, M.; Castaño-Villa, G.J.; Fontúrbel, F.E. Effects of Dams on Vertebrate Diversity: A Global Analysis. Diversity 2021, 13, 528. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; D’Horta, F.M.; Ribas, C.C.; Wittmann, F.; Zuanon, J.; Park, E.; Dunne, T.; Arima, E.Y.; Baker, P.A. Vulnerability of the biota in riverine and seasonally flooded habitats to damming of Amazonian rivers. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 31, 1136–1149. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente—MMA. Caderno Setorial de Recursos Hídricos: Geração de Energia Hidrelétrica; MMA: Brasília, Brazil, 2006.
- Fernandes, G.W.; Pedroni, F.; Sanchez, M.; Scariot, A.; Aguiar, L.M.S.; Ferreira, G.B.; Machado, R.; Ferreira, M.E.; Diniz, S.; Pinheiro, R.; et al. Cerrado: Em Busca de Soluções Sustentáveis; Vertente: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Rodrigues, A.A.; Macedo, M.N.; Silvério, D.V.; Maracahipes, L.; Coe, M.T.; Brando, P.M.; Shimbo, J.Z.; Rajão, R.; Soares-Filho, B.; Bustamante, M.M.C. Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Glob. Chang. Biol. 2022, 28, 6807–6822. [Google Scholar] [CrossRef] [PubMed]
- Alencar, A.; Shimbo, J.Z.; Lenti, F.; Marques, C.B.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Ribeiro, J.P.F.M.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote. Sens. 2020, 12, 924. [Google Scholar] [CrossRef] [Green Version]
- Bettiol, G.; Ferreira, M.; Motta, L.; Cremon; Sano, E. Conformity of the NASADEM_HGT and ALOS AW3D30 DEM with the Altitude from the Brazilian Geodetic Reference Stations: A Case Study from Brazilian Cerrado. Sensors 2021, 21, 2935. [Google Scholar] [CrossRef]
- Pereira, C.C.; Fernandes, G.W. Cerrado conservation is key to the water crisis. Science 2022, 377, 270. [Google Scholar] [CrossRef]
- Rattis, L.; Brando, P.M.; Macedo, M.N.; Spera, S.A.; Castanho, A.D.A.; Marques, E.Q.; Costa, N.Q.; Silverio, D.V.; Coe, M.T. Climatic limit for agriculture in Brazil. Nat. Clim. Chang. 2021, 11, 1098–1104. [Google Scholar] [CrossRef]
- Agência Nacional de Águas e Saneamento Básico—ANA. Portal HidroWeb - ferramenta integrante do Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH). ANA: Brasília, Brazil, 2022. Available online: https://www.snirh.gov.br/hidroweb/mapa (accessed on 17 September 2022).
- Instituto Brasileiro de Geografia e Estatística—IBGE. Biomas e Sistema Costeiro-Marinho do Brasil: Compatível com a Escala 1:250,000; IBGE: Rio de Janeiro, Brazil, 2022. Available online: www.ibge.gov.br (accessed on 17 September 2022).
- Sistema de Informações Georreferenciadas do Setor Elétrico—SIGEL/ANEEL. Portal de Geoprocessamento da ANEEL: Brasília, Brazil, 2022. Available online: https://sigel.aneel.gov.br/portal/home (accessed on 17 September 2022).
- Pacheco, A.A.; Neves, A.C.O.; Fernandes, G.W. Uneven conservation efforts compromise Brazil to meet the Target 11 of Convention on Biological Diversity. Perspect. Ecol. Conserv. 2018, 16, 43–48. [Google Scholar] [CrossRef]
- WWF-Brasil. Áreas Prioritárias para Conservação da Biodiversidade no Cerrado e Pantanal; WWF-Brasil: Brasília, Brazil, 2022; Available online: https://bityli.com/jCmPsIYZK (accessed on 18 September 2022).
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived from Spaceborne Elevation Data. Eos Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.; Rudorff, B.F.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote. Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Pelicice, F.M.; Pompeu, P.S.; A Agostinho, A. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish Fish. 2014, 16, 697–715. [Google Scholar] [CrossRef]
- He, F.; Thieme, M.; Zarfl, C.; Grill, G.; Lehner, B.; Hogan, Z.; Tockner, K.; Jähnig, S.C. Impacts of loss of free-flowing rivers on global freshwater megafauna. Biol. Conserv. 2021, 263, 109335. [Google Scholar] [CrossRef]
- North, M.A. A method for implementing a statistically significant number of data classes in the Jenks algorithm. In Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 14–16 August 2009; Volume 1, pp. 35–38. [Google Scholar]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. In International Yearbook of Cartography; Bertelsmann: Gütersloh, Germany, 1967; Volume 7, pp. 186–190. [Google Scholar]
- Castro, S.S.; Queiroz Neto, J.P. Soil erosion in Brazil from coffee to the present-day soybean production. In Geomorphology of Natural Hazards and Human Exacerbated Disasters in Latin America; Latrubesse, E.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 195–221. [Google Scholar]
- Cunha, S.B. Geomorfologia Fluvial. In Geomorfologia: Uma Atualização de BASES e conceitos, 2nd ed.; Guerra, A.J.T., Cunha, S.B., Eds.; Rio de Janeiro: Bertrand Brasil, Brazil, 1995; pp. 211–252. [Google Scholar]
- Latrubesse, E.M.; Amsler, M.; de Morais, R.; Aquino, S. The geomorphologic response of a large pristine alluvial river to tremendous deforestation in the South American tropics: The case of the Araguaia River. Geomorphology 2009, 113, 239–252. [Google Scholar] [CrossRef]
- Agostinho, A.A.; Gomes, L.C.; Pelicice, F.M. Ecologia e Manejo dos Recursos Pesqueiros em Reservatórios do Brasil; Editora da Universidade Estadual de Maringá: Maringá, Brazil, 2007. [Google Scholar]
- Bonetto, A.A.; Wais, J.R.; Castello, H.P. The increasing damming of the Paraná basin and its effects on the lower reaches. Regul. Rivers: Res. Manag. 1989, 4, 333–346. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística—IBGE. Censo Demográfico; IBGE: Brasília, Brazil, 2010.
- Instituto Brasileiro de Geografia e Estatística—IBGE. Estimativas da População; IBGE: Brasília, Brazil, 2021.
- Instituto Brasileiro de Geografia e Estatística—IBGE. Produto Interno Bruto dos Municípios: 2002–2019; IBGE: Brasília, Brazil, 2020.
- Villar, P.C.; Ribeiro, W.C.; Sant’Anna, F.M. Transboundary governance in the La Plata River basin: Status and prospects. Water Int. 2018, 43, 978–995. [Google Scholar] [CrossRef] [Green Version]
- Espíndola, I.B.; Ribeiro, W.C. Transboundary waters, conflicts and international cooperation-examples of the La Plata basin. Water Int. 2020, 45, 329–346. [Google Scholar] [CrossRef]
- Espíndola, I.B.; de Leite, M.L.T.A.; Ribeiro, W.C. South American Transboundary Waters: The Management of the Guarani Aquifer System and the La Plata Basin Towards the Future. In The Palgrave Handbook of Climate Resilient Societies; Springer International Publishing: Cham, Switzerland, 2021; pp. 251–285. [Google Scholar] [CrossRef]
- Secretaria do Planejamento e Meio Ambiente do Tocantins—SEPLAN-TO. Anuário Estatístico do Estado do Tocantins; DPI: Palmas, Brazil, 2009. Available online: https://www.to.gov.br/seplan/edicao-2009/6y7ozaciw0qe (accessed on 18 September 2022).
- Costa, M.H.; Botta, A.; Cardille, J. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 2003, 283, 206–217. [Google Scholar] [CrossRef]
- Aquino, S.; Latrubesse, E.M.; Bayer, M. Assessment of wash load transport in the Araguaia River (Aruanã gauge station), Central Brazil. Lat. Am. J. Sedimentol. Basin Anal. 2009, 16, 119–128. [Google Scholar]
- Coe, M.T.; Latrubesse, E.M.; Ferreira, M.E.; Amsler, M.L. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 2011, 105, 119–131. [Google Scholar] [CrossRef]
- Lininger, K.B.; Latrubesse, E.M. Flooding hydrology and peak discharge attenuation along the middle Araguaia River in central Brazil. CATENA 2016, 143, 90–101. [Google Scholar] [CrossRef]
River | Planned | Operational | Hydrographic Region (ANA) |
---|---|---|---|
Tocantins | 4 | 6 | Tocantins-Araguaia |
Grande | 0 | 6 | Paraná |
Araguari | 0 | 3 | Paraná |
Corumbá | 0 | 2 | Paraná |
Pará | - | 2 | Paraná |
Verde | 3 | 2 | Paraná |
Parnaíba | 7 | 1 | Parnaíba |
São Francisco | 3 | 1 | São Francisco |
das Mortes | 5 | - | Tocantins-Araguaia |
Sucuriú | 4 | - | Paraná |
Priority Class | PCHs | UHEs | ||
---|---|---|---|---|
Operational | Planned | Operational | Planned | |
Extremely high | 17 | 106 | 6 | 28 |
Very high | 3 | 64 | 6 | 17 |
High | 2 | 27 | 10 | 10 |
River Basin | DSI | UHEs | PCHs | Native Vegetation (%) | Watershed | ||
---|---|---|---|---|---|---|---|
Operational | Planned | Operational | Planned | ||||
Juruena | Very High | 0 | 10 | 5 | 24 | 68.74 | Amazonas |
Low Paranaíba | Very High | 3 | 6 | 1 | 30 | 21.24 | Paraná |
São Lourenço | Very High | 3 | 0 | 5 | 16 | 49.35 | Paraná |
Maranhão/Tocantins | High | 3 | 1 | 0 | 11 | 70.66 | Tocantins |
Corumbá | High | 2 | 0 | 2 | 18 | 32.17 | Paraná |
Paranã | High | 0 | 6 | 3 | 11 | 64.08 | Paraná |
das Velhas | High | 1 | 4 | 1 | 15 | 42.44 | São Francisco |
São João | High | 3 | 0 | 0 | 13 | 23.15 | Paraná |
High Tocantins | High | 2 | 2 | 1 | 9 | 59.81 | Tocantins |
Land Use | 2000 | 2020 | Gain/Loss | |||
---|---|---|---|---|---|---|
UHE | PCH | UHE | PCH | UHE | PCH | |
Agriculture | 76.50 | 155.95 | 186.25 | 267.62 | 109.75 | 111.67 |
Urban Area | 52.14 | 19.46 | 59.14 | 25.30 | 7.00 | 5.85 |
Others | 22.47 | 5.61 | 37.65 | 9.87 | 15.17 | 4.26 |
Pasture | 1195.66 | 727.49 | 1041.64 | 724.23 | −154.01 | −3.27 |
Native Cerrado | 1235.10 | 1531.66 | 1060.29 | 1349.82 | −174.81 | −181.84 |
Water | 310.45 | 30.24 | 506.85 | 93.57 | 196.41 | 63.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.E.; Nogueira, S.H.d.M.; Latrubesse, E.M.; Macedo, M.N.; Callisto, M.; Bezerra Neto, J.F.; Fernandes, G.W. Dams Pose a Critical Threat to Rivers in Brazil’s Cerrado Hotspot. Water 2022, 14, 3762. https://doi.org/10.3390/w14223762
Ferreira ME, Nogueira SHdM, Latrubesse EM, Macedo MN, Callisto M, Bezerra Neto JF, Fernandes GW. Dams Pose a Critical Threat to Rivers in Brazil’s Cerrado Hotspot. Water. 2022; 14(22):3762. https://doi.org/10.3390/w14223762
Chicago/Turabian StyleFerreira, Manuel Eduardo, Sérgio Henrique de Moura Nogueira, Edgardo Manuel Latrubesse, Marcia Nunes Macedo, Marcos Callisto, José Fernandes Bezerra Neto, and Geraldo Wilson Fernandes. 2022. "Dams Pose a Critical Threat to Rivers in Brazil’s Cerrado Hotspot" Water 14, no. 22: 3762. https://doi.org/10.3390/w14223762
APA StyleFerreira, M. E., Nogueira, S. H. d. M., Latrubesse, E. M., Macedo, M. N., Callisto, M., Bezerra Neto, J. F., & Fernandes, G. W. (2022). Dams Pose a Critical Threat to Rivers in Brazil’s Cerrado Hotspot. Water, 14(22), 3762. https://doi.org/10.3390/w14223762