Purification of Sewage Wastewater though Sand Column Filter for Lessening of Heavy Metals Accumulation in Lettuce, Carrot, and Cauliflower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Preparation of Sand-Based Column
2.3. Growth and Yield Traits
2.4. Determination of Heavy Metals
2.4.1. Chemical Preparation
2.4.2. Pre-Treatment of Sewage Wastewater before and after Filtration
2.4.3. Digestion of Plant Samples for Heavy Metal Extraction
2.4.4. Extraction of Heavy Metals from Plant and Water Samples
2.5. Statistical Analysis
3. Results
3.1. Sewage Wastewater Characteristics before and after Filtration Used in the Experiment
3.2. Heavy Metal Content in Unfiltered and Filtered Sewage Wastewater Samples
3.3. Growth and Yield of Spinach, Carrot, and Cauliflower
3.4. Heavy Metal Buildup in Leaves
3.5. Heavy Metal Concentrations in Roots
3.6. Heavy Metal Concentrations in Curds of Cauliflower
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleick, P.H. Global Freshwater Resources: Soft-Path Solutions for the 21st Century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, K.; Singh, D.; Shyam, S.; Sharma, Y.K. Phytotoxic Effects of Chromium and Tannery Effluent on Growth and Metabolism of Phaseolus mungo Roxb. J. Environ. Biol. 2009, 30, 227–234. [Google Scholar]
- Khalil, S.; Kakar, M.K. Agricultural Use of Untreated Urban Waste Water in Pakistan. Asian J. Agric. Rural. Dev. 2011, 1, 21–26. [Google Scholar]
- Khan, K.; Lu, Y.; Khan, H.; Ishtiaq, M.; Khan, S.; Waqas, M.; Wei, L.; Wang, T. Heavy Metals in Agricultural Soils and Crops and their Health Risks in Swat District, Northern Pakistan. Food Chem. Toxicol. 2013, 58, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, G.; Ghafoor, A.; Qadir, M.; Owens, G.; Aziz, M.A.; Zia, M.H. Disposal and Use of Sewage on Agricultural Lands in Pakistan: A Review. Pedosphere 2010, 1, 23–34. [Google Scholar] [CrossRef]
- Gosh, A.K.; Bhatt, M.A.; Agrawal, H.P. Effect of Long-Term Application of Treated Sewage Water on Heavy Metal Accumulation in Vegetables Grown in Northern India. Environ. Monit. Assess. 2012, 2, 1025–1036. [Google Scholar] [CrossRef]
- Harati, M. Study on Heavy Metal Accumulation in Different Parts of Corn Irrigated by Sewage in South of Tehran. Master’s Thesis, Tehran University, Tehran, Iran, 2003. [Google Scholar]
- Gul, A.S.; Naveed, F.; Ali, M.; Ahmad, R.; Saqib, M. Effect of Different Wastewater Irrigation Regimes on Growth of Mulberry (Morus macroura Miq.). Erwerbs-Obstbau 2021, 63, 331–337. [Google Scholar] [CrossRef]
- Chalkoo, S.; Inam, A.; Iqbal, S.; Sahay, S. Growth and Photosynthetic Response of Capsicum Annuum L. under Phosphorus Fertilization with Waste Water. Open Peer Rev. Policy Status 2013, 2, 1–24. [Google Scholar]
- Ullah, H.; Khan, I.; Ullah, I. Impact of Sewage Contaminated Water on Soil, Vegetables and Underground Water of Peri-Urban Peshawar, Pakistan. Environ. Monit. Assess. 2011, 184, 6411–6421. [Google Scholar] [CrossRef]
- Muchuweti, M.; Birkett, J.W.; Chinyanga, E.; Zvauya, R.; Scrimshaw, M.D.; Lester, J.N. Heavy Metal Content of Vegetables Irrigated with Mixture of Waste Water and Sewage Sludge in Zimbabwe: Implications for Human Health. Agric. Ecosyst. Environ. 2006, 1, 41–48. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Drinking Water Quality, Health Criteria and Supporting Information; 94/9960-Mastercom/Wiener Verlag-800: Canberra, Australia, 1996. [Google Scholar]
- Banerjee, D.; Kuila, P.; Ganguli, A.; Das, D.; Mukherjee, S.; Ray, L. Heavy Metal Contamination in Vegetables Collected from Market Sites of Kolkata, India. Electron. J. Environ. Agric. Food Chem. 2011, 10, 2160–2165. [Google Scholar]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F. Risk Assessment of Heavy Metal Toxicity through Contaminated Vegetables from Waste Water Irrigated Area of Varanasi, India. Trop. Ecol. 2010, 51, 375–387. [Google Scholar]
- Patra, A.K.; Wagh, S.S.; Jain, A.K.; Hegde, A.G. Assessment of Daily Intake of Trace Elements by Kakrapar Adult Population through Ingestion Pathway. Environ. Monitor. Assess. 2010, 169, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Utami, S.N.H.; Hidayati, K.; Attaqy, R. The Influence of Treated Waste Water and Manure on Iron Uptake and Growth of Caisim in Entisol. J. Res. Manag. 2012, 3, 37–43. [Google Scholar]
- Abedi-Koupai, J.; Eslamian, S.; Khaleghi, M. Investigation on the Performance of Sand Filter Incorporating Tire Chips as Cover in Subsurface Drainage System. In Proceedings of the International Conference on Transport, Environment and Civil Engineering, Kuala Lumpur, Malaysia, 25–26 August 2012. [Google Scholar]
- Bali, M.; Tlili, H. Removal of Heavy Metals from Wastewater Using Infiltration-Percolation Process and Adsorption on Activated Carbon. Int. J. Environ. Sci. Technol. 2019, 16, 249–258. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydraulic and Pollutant Removal Performance of Fine Media Storm Water Filtration Systems. Environ. Sci. Technol. 2008, 42, 2535–2541. [Google Scholar] [CrossRef]
- Naz, S.; Anjum, M.A.; Ejaz, S.; Ali, S.; Saddiq, B.; Sardar, H.; Haider, S.T.A. Sewage Wastewater Reclamation with Sand Column Filter and Reduction of Heavy Metal Accumulation in Tomato and Okra. Environ. Sci. Pollut. Res. 2021, 28, 45962–45970. [Google Scholar] [CrossRef]
- Singh, J. Determination of DTPA Extractable Heavy Metals from Sewage Irrigated Fields and Plants. J. Integr. Sci. Technol. 2013, 1, 36–40. [Google Scholar]
- Steel, R.; Torrie, J.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book Co.: New York, NY, USA, 1996; p. 666. [Google Scholar]
- Naz, S.; Anjum, M.A.; Haider, S.T.A. Effect of Different Irrigation Sources on Growth, Yield and Heavy Metals Accumulation in Tomato and Okra. J. Hortic. Sci. Technol. 2019, 2, 10–19. [Google Scholar] [CrossRef]
- Tauqeer, H.M.; Turan, V.; Iqbal, M. Production of Safer Vegetables from Heavy Metals Contaminated Soils: The Current Situation, Concerns Associated with Human Health and Novel Management Strategies; Springer: Cham, Switzerland, 2022; pp. 301–312. [Google Scholar]
- Ahmed, S.; Mahdi, M.M.; Nurnabi, M.; Alam, M.Z.; Choudhury, T.R. Health Risk Assessment for Heavy Metal Accumulation in Leafy Vegetables Grownon Tannery Effluent Contaminated Soil. Toxicol. Rep. 2022, 9, 346–355. [Google Scholar] [CrossRef]
- Ngugi, M.M.; Gitari, H.I.; Muui, C.W.; Gweyi-Onyango, J.P. Growth Tolerance, Concentration, and Uptake of Heavy Metals as Ameliorated by Silicon Application in Vegetables. Int. J. Phytoremediation 2022, 24, 1543–1556. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Inam, A.; Inam, A.; Tak, H.I. Stimulation of Growth, Physiology and Yield of Capsicum Annuum L. Cv. Pusa jawala by Integration of Nitrogenous Fertilizer and Wastewater. Int. J. Environ. Sci. 2013, 3, 1726–1736. [Google Scholar]
- Boamponsem, G.A.; Kumi, M.; Debrah, I. Heavy Metals Accumulation in Cabbage, Lettuce and Carrot Irrigated with Wastewater from Nagodi Mining Site in Ghana. Int. J. Sci. Technol. Res. 2012, 1, 124–129. [Google Scholar]
- Şentürk, İ.; Eyceyurt Divarcı, N.S.; Öztürk, M. Phytoremediation of Nickel and Chromium-Containing Industrial Wastewaters by Water Lettuce (Pistia stratiotes). Int. J. Phytoremediation 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Safari, E.; Baghdadi, M.; Janmohammadi, M. Enhanced Adsorption of Heavy Metals in Groundwater Using Sand Columns Enriched with Graphene Oxide: Lab-Scale Experiments and Process Modeling. J. Water Process Eng. 2021, 40, 101961. [Google Scholar] [CrossRef]
- Anjum, M.A.; Hussain, S.; Arshad, P.; Hassan, A. Irrigation Water of Different Sources Affects Fruit Quality Attributes and Heavy Metals Contents of Un-Grafted and Commercial Mango Cultivars. J. Environ. Manag. 2021, 281, 111895. [Google Scholar] [CrossRef]
- Reddy, K.R.; Xie, T.; Dastgheibi, S. Removal of Heavy Metals from Urban Stormwater Using Different Filter Materials. J. Chem. Environ. Eng. 2014, 2, 282–292. [Google Scholar] [CrossRef]
- Naz, S.; Anjum, M.A.; Akhtar, S. Monitoring of Growth, Yield, Biomass and Heavy Metals Accumulation in Spinach Grown under Different Irrigation Sources. Int. J. Agric. Biol. 2016, 18, 689–697. [Google Scholar] [CrossRef]
- Saini, G.; Kalra, S.; Kaur, U. The Purification of Wastewater on a Small Scale by Using Plants and Sand Filter. Appl. Water Sci. 2021, 11, 68. [Google Scholar] [CrossRef]
- Verma, S.; Daverey, A.; Sharma, A. Slow Sand Filtration for Water and Wastewater Treatment—A Review. Environ. Technol. Rev. 2017, 1, 47–58. [Google Scholar] [CrossRef]
- Omer, A.M.; Dey, R.; Eltaweil, A.S.; Abd El-Monaem, E.M.; Ziora, Z.M. Insights into Recent Advances of Chitosan-Based Adsorbents for Sustainable Removal of Heavy Metals and Anions. Arab. J. Chem. 2022, 15, 103543. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Yang, A.; Zhu, Q.; Sun, H.; Sun, P.; Yao, B.; Zang, Y.; Du, X.; Dong, L. Xanthate-Modified Magnetic Fe3O4@ SiO2-Based Polyvinyl Alcohol/Chitosan Composite Material for Efficient Removal of Heavy Metal Ions from Water. Polymers 2022, 14, 1107. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Shan, C.; Liu, Y.; Sun, H.; Yao, B.; Gong, G.; Jin, X.; Wang, S. Characterization and Mechanistic Study of Heavy Metal Adsorption by Facile Synthesized Magnetic Xanthate-Modified Chitosan/Polyacrylic Acid Hydrogels. Int. J. Environ. Res. Public Health 2022, 19, 11123. [Google Scholar] [CrossRef] [PubMed]
Sewage Wastewater | pH | EC (dSm−1) | HCO3 | RSC | Ca + Mg (meq L−1) | Sulfate (meq L−1) | Na (meqL−1) | Cl (meqL−1) |
---|---|---|---|---|---|---|---|---|
Unfiltered | 7.3 | 0.183 | 13 | 4.4 | 9.6 | 1.09 | 8.79 | 5.02 |
Filtered | 7.5 | 0.391 | 10 | 3.5 | 7.5 | 0.79 | 6.91 | 4.5 |
Sewage Wastewater | Pb+2 | Ni+2 | Cu+2 | Cd+2 | Fe+2 | Cr+2 | TDS | Hardness |
---|---|---|---|---|---|---|---|---|
Unfiltered | 2.48 a | 1.96 a | 3.26 a | 1.26 a | 8.76 a | 0.46 a | 200 | 700 |
Filtered | 1.71 b | 1.35 b | 2.58 b | 0.83 b | 6.30 b | 0.32 b | 160 | 570 |
* WHO/FAO | 5.0 | 0.2 | 0.2 | 0.2 | 5.0 | 0.1 | 70 | 500 |
Sewage Wastewater | Spinach | Cauliflower | Carrot | ||||||
---|---|---|---|---|---|---|---|---|---|
Year I | Year II | Mean | Year I | Year II | Mean | Year I | Year II | Mean | |
Number of leaves per plant | |||||||||
Unfiltered sewage wastewater | 36.43 a | 37.36 a | 36.90 a | 30.66 a | 32.33 a | 31.50 a | 10.00 a | 9.33 a | 9.66 a |
Filtered sewage wastewater | 29.76 a | 33.20 a | 31.48 b | 30.66 a | 27.00 a | 28.83 a | 6.97 a | 6.93 a | 6.95 b |
Mean | 33.10 a | 35.28 a | 30.66 a | 29.66 a | 8.48 a | 8.13 a | |||
Fresh weight of leaves per plant (g) | |||||||||
Unfiltered sewage wastewater | 179.34 a | 183.99 a | 181.66 a | 420.33 a | 439.33 a | 429.83 a | 56.86 a | 44.66 a | 50.76 a |
Filtered sewage wastewater | 147.00 a | 164.72 a | 155.86 b | 409.17 a | 397.07 a | 403.12 b | 32.52 a | 34.33 a | 33.43 b |
Mean | 163.17 a | 174.35 a | 414.75 a | 418.20 a | 44.69 a | 39.50 a | |||
Dry weight of leaves per plant (g) | |||||||||
Unfiltered sewage wastewater | 14.55 a | 14.94 a | 14.74 a | 67.67 a | 70.73 a | 69.20 a | 6.20 a | 5.96 a | 6.08 a |
Filtered sewage wastewater | 11.94 a | 13.39 a | 12.66 b | 65.87 a | 63.92 a | 64.90 a | 4.63 a | 4.86 a | 4.75 b |
Mean | 13.25 a | 14.16 a | 66.77 a | 67.33 a | 5.41 a | 5.41 a | |||
Fresh weight of roots per plant (g) | |||||||||
Unfiltered sewage wastewater | 4.30 a | 4.83 a | 4.56 a | 62.66 a | 62.50 a | 62.58 a | 101.93 a | 106.67 a | 104.30 a |
Filtered sewage wastewater | 2.76 a | 2.33 a | 2.55 b | 54.00 a | 52.33 a | 53.16 b | 95.97 a | 100.67 a | 98.32 b |
Mean | 3.53 a | 3.58 a | 58.33 a | 57.41 a | 98.95 a | 103.67 a | |||
Dry weight of roots per plant (g) | |||||||||
Unfiltered sewage wastewater | 0.86 a | 0.96 a | 0.91 a | 16.23 a | 16.16 a | 16.20 a | 9.96 a | 10.50 a | 10.23 a |
Filtered sewage wastewater | 0.55 a | 0.46 a | 0.51 b | 11.86 a | 12.40 a | 12.13 b | 9.03 a | 9.30 a | 9.16 b |
Mean | 0.70 a | 0.72 a | 14.05 a | 14.28 a | 9.50 a | 9.90 a | |||
Biomass on fresh weight basis (g) | |||||||||
Unfiltered sewage wastewater | 183.64 a | 188.82 a | 186.23 a | 1343.6 a | 1351.4 a | 1347.5 a | 158.80 a | 151.33 a | 155.07 a |
Filtered sewage wastewater | 149.77 a | 167.05 a | 158.41 b | 1290.2 a | 1270.6 a | 1280.4 b | 128.49 a | 135.00 a | 131.75 b |
Mean | 166.71 a | 177.94 a | 1316.9 a | 1311.0 a | 143.65 a | 143.17 a | |||
Biomass on dry weight basis (g) | |||||||||
Unfiltered sewage wastewater | 15.41 a | 15.90 a | 15.66 a | 274.36 a | 279.08 a | 276.72 a | 16.16 a | 16.46 a | 16.31 a |
Filtered sewage wastewater | 12.50 a | 13.85 a | 13.17 b | 264.84 a | 262.18 a | 263.51 b | 13.66 a | 14.16 a | 13.91 b |
Mean | 13.95 a | 14.88 a | 269.60 a | 270.63 a | 14.91 a | 15.31 a |
Sewage Wastewater | Cauliflower | ||
---|---|---|---|
Year I | Year II | Mean | |
Curd diameter (cm) | |||
Unfiltered sewage wastewater | 36.02 a | 36.46 a | 36.24 a |
Filtered sewage wastewater | 31.30 a | 31.63 a | 31.46 b |
Mean | 33.66 a | 34.05 a | |
Curd fresh weight (g) | |||
Unfiltered sewage wastewater | 750.57 a | 753.23 a | 751.90 a |
Filtered sewage wastewater | 737.53 a | 739.53 a | 738.53 b |
Mean | 744.05 a | 746.38 a | |
Curd dry weight (g) | |||
Unfiltered sewage wastewater | 182.38 a | 183.82 a | 183.10 a |
Filtered sewage wastewater | 178.63 a | 178.62 a | 178.62 b |
Mean | 180.51 a | 181.22 a | |
Fresh weight of stem (g) | |||
Unfiltered sewage wastewater | 110.00 a | 96.33 a | 103.17 a |
Filtered sewage wastewater | 89.50 a | 81.67 a | 85.58 b |
Mean | 99.75 a | 89.00 a | |
Carrot | |||
Root length (cm) | |||
Unfiltered sewage wastewater | 26.53 a | 29.00 a | 27.76 a |
Filtered sewage wastewater | 25.23 a | 22.00 a | 23.61 b |
Mean | 25.88 a | 25.50 a | |
Root diameter (cm) | |||
Unfiltered sewage wastewater | 12.41 a | 12.93 a | 12.67 a |
Filtered sewage wastewater | 11.06 a | 10.11 a | 10.59 b |
Mean | 11.74 a | 11.52 a |
Sewage Wastewater | Spinach Leaves | Cauliflower Leaves | Carrot Leaves | ||||||
---|---|---|---|---|---|---|---|---|---|
Year I | Year II | Mean | Year I | Year II | Mean | Year I | Year II | Mean | |
Pb+2 content | |||||||||
Unfiltered sewage wastewater | 4.466 a | 4.700 a | 4.583 a | 12.700 a | 12.867 a | 12.783 a | 6.400 a | 6.833 a | 6.616 a |
Filtered sewage wastewater | 3.233 a | 3.800 a | 3.516 b | 9.400 a | 9.333 a | 9.367 b | 4.666 a | 4.833 a | 4.750 b |
Mean | 3.850 a | 4.250 a | 11.050 a | 11.100 a | 5.533 a | 5.833 a | |||
Ni+2 content | |||||||||
Unfiltered sewage wastewater | 13.100 a | 13.300 a | 13.200 a | 13.667 a | 14.000 a | 13.833 a | 12.467 a | 13.100 a | 12.783 a |
Filtered sewage wastewater | 10.767 a | 11.400 a | 11.083 b | 10.667 a | 10.867 a | 10.767 b | 9.867 a | 9.933 a | 9.900 b |
Mean | 11.933 a | 12.350 a | 12.167 a | 12.433 a | 11.167 a | 11.517 a | |||
Cu+2 content | |||||||||
Unfiltered sewage wastewater | 13.800 a | 14.067 a | 13.933 a | 15.800 a | 15.633 a | 15.717 a | 11.200 a | 11.900 a | 11.550 a |
Filtered sewage wastewater | 10.933 a | 11.200 a | 11.067 b | 12.633 a | 12.700 a | 12.667 b | 9.700 a | 9.867 a | 9.783 b |
Mean | 12.367 a | 12.633 a | 14.167 a | 14.217 a | 10.450 a | 10.883 a | |||
Cd+2 content | |||||||||
Unfiltered sewage wastewater | 0.400 a | 0.533 a | 0.466 a | 0.433 a | 0.466 a | 0.450 a | 0.333 a | 0.466 a | 0.400 a |
Filtered sewage wastewater | 0.090 a | 0.133 a | 0.111 a | 0.334 a | 0.334 a | 0.333 a | 0.250 a | 0.266 a | 0.258 a |
Mean | 0.245 a | 0.333 a | 0.383 a | 0.440 a | 0.291 a | 0.366 a | |||
Fe+2 content | |||||||||
Unfiltered sewage wastewater | 294.70 a | 295.73 a | 295.22 a | 356.53 a | 360.03 a | 358.28 a | 181.00 a | 190.83 a | 185.92 a |
Filtered sewage wastewater | 238.50 a | 246.87 a | 242.68 b | 314.30 a | 317.80 a | 316.05 b | 146.80 a | 149.77 a | 148.28 b |
Mean | 266.60 a | 271.30 a | 335.42 a | 338.92 a | 163.90 a | 170.30 a | |||
Cr content | |||||||||
Unfiltered sewage wastewater | 0.090 a | 0.126 a | 0.108 a | 2.433 a | 2.433 a | 2.433 a | 0.633 a | 0.766 a | 0.700 a |
Filtered sewage wastewater | 0.056 a | 0.103 a | 0.079 a | 2.233 a | 2.266 a | 2.249 a | 0.466 a | 0.566 a | 0.516 a |
Mean | 0.073 a | 0.114 a | 2.250 a | 2.433 a | 0.550 a | 0.666 a |
Sewage Wastewater | Spinach Roots | Cauliflower Roots | Carrot Roots | ||||||
---|---|---|---|---|---|---|---|---|---|
Year I | Year II | Mean | Year I | Year II | Mean | Year I | Year II | Mean | |
Pb+2 content | |||||||||
Unfiltered sewage wastewater | 3.100 a | 3.166 a | 3.133 a | 6.800 a | 6.766 a | 6.783 a | 8.600 a | 8.866 a | 8.733 a |
Filtered sewage wastewater | 2.666 a | 2.800 a | 2.733 b | 4.100 a | 4.266 a | 4.183 b | 6.800 a | 7.166 a | 6.983 b |
Mean | 2.883 a | 2.983 a | 5.450 a | 5.516 a | 7.700 a | 8.016 a | |||
Ni+2 content | |||||||||
Unfiltered sewage wastewater | 11.133 a | 12.200 a | 11.667 a | 12.033 a | 11.733 a | 11.883 a | 15.800 a | 16.067 a | 15.933 a |
Filtered sewage wastewater | 9.660 a | 10.133 a | 9.867 b | 9.167 a | 9.367 a | 9.267 b | 13.633 a | 14.500 a | 14.067 b |
Mean | 10.367 a | 11.167 a | 10.600 a | 10.550 a | 14.717 a | 15.283 a | |||
Cu+2 content | |||||||||
Unfiltered sewage wastewater | 13.033 a | 13.800 a | 13.417 a | 15.467 a | 15.633 a | 15.550 a | 12.800 a | 13.800 a | 13.300 a |
Filtered sewage wastewater | 9.267 a | 9.400 a | 9.333 b | 10.600 a | 11.100 a | 10.850 b | 9.967 a | 10.300 a | 10.133 b |
Mean | 11.150 a | 11.600 a | 13.033 a | 13.367 a | 11.383 a | 12.050 a | |||
Cd+2 content | |||||||||
Unfiltered sewage wastewater | 0.300 a | 0.400 a | 0.350 a | 0.163 a | 0.133 a | 0.148 a | 0.600 a | 1.2667 a | 0.933 a |
Filtered sewage wastewater | 0.090 a | 0.166 a | 0.128 a | 0.056 a | 0.023 a | 0.040 a | 0.466 a | 0.633 a | 0.550 a |
Mean | 0.195 a | 0.283 a | 0.110 a | 0.078 a | 0.533 a | 0.950 a | |||
Fe+2 content | |||||||||
Unfiltered sewage wastewater | 258.33 a | 261.40 a | 259.87 a | 259.27 a | 261.73 a | 260.50 a | 226.53 a | 231.30 a | 228.92 a |
Filtered sewage wastewater | 224.50 a | 233.73 a | 229.12 b | 315.47 a | 219.23 a | 217.35 b | 196.20 a | 199.37 a | 197.78 b |
Mean | 241.42 a | 247.57 a | 237.37 a | 240.48 a | 211.37 a | 215.33 a | |||
Cr+2 content | |||||||||
Unfiltered sewage wastewater | 2.000 a | 2.100 a | 2.050 a | 2.167 a | 2.166 a | 2.166 a | 1.200 a | 1.300 a | 1.250 a |
Filtered sewage wastewater | 1.433 a | 1.700 a | 1.566 a | 1.400 a | 1.600 a | 1.500 a | 0.833 a | 0.900 a | 0.866 a |
Mean | 1.716 a | 1.900 a | 1.783 a | 1.883 a | 1.016 a | 1.100 a |
Sewage Wastewater | Cauliflower Curds | ||
---|---|---|---|
Year I | Year II | Mean | |
Pb+2 content | |||
Unfiltered sewage wastewater | 2.466 a | 2.800 a | 2.633 a |
Filtered sewage wastewater | 3.233 a | 3.700 a | 3.466 b |
Mean | 2.850 a | 3.250 a | |
Ni+2 content | |||
Unfiltered sewage wastewater | 11.500 a | 11.767 a | 11.633 a |
Filtered sewage wastewater | 9.300 a | 9.733 a | 9.156 b |
Mean | 10.400 a | 10.750 a | |
Cu+2 content | |||
Unfiltered sewage wastewater | 12.267 a | 11.867 a | 12.067 a |
Filtered sewage wastewater | 9.033 a | 9.333 a | 9.183 b |
Mean | 10.650 a | 10.600 a | |
Cd+2 content | |||
Unfiltered sewage wastewater | 0.060 a | 0.196 a | 0.128 a |
Filtered sewage wastewater | 0.023 a | 0.030 a | 0.027 a |
Mean | 0.0417 a | 0.113 a | |
Fe+2 content | |||
Unfiltered sewage wastewater | 172.83 a | 181.60 a | 177.22 a |
Filtered sewage wastewater | 136.20 a | 138.43 a | 137.32 b |
Mean | 154.52 a | 160.02 a | |
Cr+2 content | |||
Unfiltered sewage wastewater | 1.500 a | 1.833 a | 1.666 a |
Filtered sewage wastewater | 0.800 a | 1.100 a | 0.950 a |
Mean | 1.150 a | 1.466 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naz, S.; Anjum, M.A.; Sadiq, B.; Ahmad, R.; Altaf, M.A.; El-Sheikh, M.A.; Shakoor, A. Purification of Sewage Wastewater though Sand Column Filter for Lessening of Heavy Metals Accumulation in Lettuce, Carrot, and Cauliflower. Water 2022, 14, 3770. https://doi.org/10.3390/w14223770
Naz S, Anjum MA, Sadiq B, Ahmad R, Altaf MA, El-Sheikh MA, Shakoor A. Purification of Sewage Wastewater though Sand Column Filter for Lessening of Heavy Metals Accumulation in Lettuce, Carrot, and Cauliflower. Water. 2022; 14(22):3770. https://doi.org/10.3390/w14223770
Chicago/Turabian StyleNaz, Safina, Muhammad Akbar Anjum, Bushra Sadiq, Riaz Ahmad, Muhammad Ahsan Altaf, Mohamed A. El-Sheikh, and Awais Shakoor. 2022. "Purification of Sewage Wastewater though Sand Column Filter for Lessening of Heavy Metals Accumulation in Lettuce, Carrot, and Cauliflower" Water 14, no. 22: 3770. https://doi.org/10.3390/w14223770
APA StyleNaz, S., Anjum, M. A., Sadiq, B., Ahmad, R., Altaf, M. A., El-Sheikh, M. A., & Shakoor, A. (2022). Purification of Sewage Wastewater though Sand Column Filter for Lessening of Heavy Metals Accumulation in Lettuce, Carrot, and Cauliflower. Water, 14(22), 3770. https://doi.org/10.3390/w14223770