Protecting Salt Vulnerable Areas Using an Enhanced Roadside Drainage System (ERDS)
Abstract
:1. Introduction
2. Methodology
2.1. Influence of Road Salt on Aquatic Life
2.2. Field Site Monitoring
2.3. ERDS Model for Two Case Studies
2.4. Calibration of PCSWMM for the First Case Study
3. Results and Discussion
3.1. ERDS Perfoemance for Pristine Headwater Streams
3.2. ERDS design for Moderately Impacted Streams
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahabchane, C.; Trépanier, M.; Langevin, A. Street-segment-based salt and abrasive prediction for winter maintenance using machine learning and GIS. Trans. GIS 2019, 23, 48–69. [Google Scholar] [CrossRef] [Green Version]
- Betts, A.R.; Gharabaghi, B.; McBean, E.A. Salt vulnerability assessment methodology for urban streams. J. Hydrol. 2014, 517, 877–888. [Google Scholar] [CrossRef]
- Betts, A.; Gharabaghi, B.; McBean, E.; Levison, J.; Parker, B. Salt vulnerability assessment methodology for municipal supply wells. J. Hydrol. 2015, 531, 523–533. [Google Scholar] [CrossRef]
- Perera, N.; Gharabaghi, B.; Noehammer, P. Stream chloride monitoring program of City of Toronto: Implications of road salt application. Water Qual. Res. J. 2009, 44, 132–140. [Google Scholar] [CrossRef]
- Perera, N.; Gharabaghi, B.; Noehammer, P.; Kilgour, B. Road salt application in Highland Creek watershed, Toronto, Ontario-chloride mass balance. Water Qual. Res. J. 2010, 45, 451–461. [Google Scholar] [CrossRef]
- Fadhelab, S.; Rico, M.A.; Hana, D. Groundwater chloride response in the Highland Creek watershed due to road salt application: A re-assessment after 20 years. J. Hydrol. 2013, 479, 159–168. [Google Scholar] [CrossRef]
- Environment Canada. Five-year Review of Progress: Code of Practice for the Environmental Management of Road Salts; Environment Canada: Ottawa, ON, Canada, 2012.
- Breining, G. We’re Pouring Millions of Tons of Salt on Roads Each Winter. Here’s Why That’s a Problem. 2017. Available online: https://www.minnpost.com/politics-policy/2017/11/we-re-pouring-millions-tons-salt-roads-each-winter-here-s-why-s-problem/ (accessed on 19 November 2022).
- Bagenstose, K. Heavy Road Salt Use in Winter Is a Growing Problem. USA TODAY Network. Available online: https://www.usatoday.com/story/news/nation/2019/12/24/winter-weather-road-salt-use-problems/2741286001/ (accessed on 19 November 2022).
- Tabrizi, S.E.; Xiao, K.; Thé, J.V.G.; Saad, M.; Farghaly, H.; Yang, S.X.; Gharabaghi, B. Hourly road pavement surface temperature forecasting using deep learning models. J. Hydrol. 2021, 603, 126877. [Google Scholar] [CrossRef]
- Kilgour, B.W.; Gharabaghi, B.; Perera, N. Ecological benefit of the road salt code of practice. Water Qual. Res. J. Can. 2013, 49, 43–52. [Google Scholar] [CrossRef]
- Hossain, K.; Fu, L.; Hosseini, F.; Muresan, M.; Donnelly, T.; Kabir, S. Optimum winter road maintenance: Effect of pavement types on snow melting performance of road salts. Can. J. Civ. Eng. 2016, 43, 802–811. [Google Scholar] [CrossRef]
- Salek, M.; Levison, J.; Parker, B.; Gharabaghi, B. CAD-DRASTIC: Chloride application density combined with DRASTIC for assessing groundwater vulnerability to road salt application. Hydrogeol. J. 2018, 26, 2379–2393. [Google Scholar] [CrossRef]
- Valleau, R.E.; Celis-Salgado, M.P.; Arnott, S.E.; Paterson, A.M.; Smol, J.P. Assessing the Effect of Salinization (NaCl) on the Survival and Reproduction of Two Ubiquitous Cladocera Species (Bosmina longirostris and Chydorus brevilabris). Water Air Soil Pollut. 2022, 233, 135. [Google Scholar] [CrossRef]
- CCME. Canadian Water Quality Guidelines for the Protection of Aquatic Life—Chloride. In Canadian Environmental Quality Guidelines, 1999; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2011; Available online: https://sustainabletechnologies.ca/app/uploads/2014/05/CWQG_chlorides.pdf (accessed on 19 November 2022).
- Environment Canada. Risk Management Strategy for Road Salts. 2010. Available online: https://www.canada.ca/en/environment-climate-change/services/pollutants/road-salts/technical-documents.html (accessed on 19 November 2022).
- Finney, K.; Gharabaghi, B.; McBean, E.; Rudra, R.; Macmillan, G. Compost biofilters for highway stormwater runoff treatment. Water Qual. Res. J. 2010, 45, 391–402. Available online: https://iwaponline.com/wqrj/article/45/4/391/39744/Compost-Biofilters-For-Highway-Stormwater-Runoff (accessed on 19 November 2022). [CrossRef]
- Finney, K.; Gharabaghi, B. Using the PCSWMM 2010 SRTC tool to design a compost biofilter for highway stormwater runoff treatment. J. Water Manag. Model. 2011. Available online: https://www.chijournal.org/R241-09 (accessed on 19 November 2022).
- Fu, L.; Usman, T.; Miranda-Moreno, L.; Perchanok, M.; McClintock, H. How Much Is the Safety and Mobility Benefit of Winter Road Maintenance. In Proceedings of the 2012 Conference of the Transportation Association of Canada, Fredericton, NB, Canada, 14–17 October 2012. [Google Scholar]
- Trenouth, W.R.; Gharabaghi, B.; Perera, N. Road salt application planning tool for winter de-icing operations. J. Hydrol. 2015, 524, 401–410. [Google Scholar] [CrossRef]
- Trenouth, W.R.; Gharabaghi, B.; Farghaly, H. Enhanced roadside drainage system for environmentally sensitive areas. J. Sci. Total Environ. 2018, 610–611, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Dan, H.-C.; Tan, J.-W.; Du, Y.-F.; Cai, J.-M. Simulation and optimization of road deicing salt usage based on Water-Ice-Salt Model. J. Cold Reg. Sci. Technol. 2020, 169, 102917. [Google Scholar] [CrossRef]
- Cruz, Y.D.; Rossi, M.L.; Goldsmith, S.T. Impacts of Road Deicing Application on Sodium and Chloride Concentrations in Philadelphia Region Drinking Water. GeoHealth 2022, 6, e2021GH000538. [Google Scholar] [CrossRef] [PubMed]
- Ministry of the Environment (MOE). Stormwater Management Planning and Design Manual; Queen’s Printer for Ontario: Toronto, ON, Canada, 2003. Available online: https://www.ontario.ca/document/stormwater-management-planning-and-design-manual-0 (accessed on 19 November 2022).
- Credit Valley Conservation Authority (CVC); Toronto and Region Conservation Authority (TRCA). Low Impact Development Stormwater Management Planning and Design Guide (LID SWM Guide); Credit Valley Conservation: Mississauga, ON, Canada, 2010; Available online: https://cvc.ca/wp-content/uploads/2014/04/LID-SWM-Guide-v1.0_2010_1_no-appendices.pdf (accessed on 19 November 2022).
- Ministry of the Environment, Conservation and Parks (MECP). Low Impact Development Stormwater Management Guidance Manual. 2022. Available online: https://ero.ontario.ca/notice/019-4971 (accessed on 19 November 2022).
- Huber, W.C. Contaminant transport in surface water. In Handbook of Hydrology; McGraw Hill: New York, NY, USA, 1993. [Google Scholar]
- Perera, N. Stormwater Runoff Quantity and Quality Aspects of Winter De-Icing Operations in Urban Watersheds. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2010; 164p. Available online: https://www.proquest.com/docview/861759268?accountid=11233&parentSessionId=EpQzdcqhxOIYIG5%2BB3PbVAupcdO2uG46oxe8sM4OvrA%3D (accessed on 19 November 2022).
- Rossman, L.A.; Huber, W. Storm Water Management Model Reference Manual Volume III—Water Quality; U.S. Environmental Protection Agency Office of Research and Development: Washington, DC, USA, 2016.
- James, W.; Rossman, L.A.; James, W.R.C. User’s Guide to SWMM5, 13th ed.; CHI Catalog R242; CHI: Guelph, ON, Canada, 2010. [Google Scholar]
- Ministry of Transportation (MTO). MTO Drainage Management Manual; Drainage and Hydrology Section, Transportation Engineering Branch, Quality and Standards Division, Ministry of Transportation: Toronto, ON, Canada, 1997. Available online: https://www.renaud.ca/public/Environmental-Regulations/MTO%20Drainage%20Management%20Manual.pdf (accessed on 19 November 2022).
- Ontario Provincial Standard Specifications (OPSS). Material Specification for Aggregates—Base, Subbase, Select Subgrade, and Backfill Material. 2013. Available online: https://www.toronto.ca/wp-content/uploads/2017/11/91ba-ecs-specs-roadspecs-TS_1010_Sep2017.pdf (accessed on 19 November 2022).
Indices | Coefficient | Event 1 24–28 January 2020 | Event 2 10–15 January 2020 | Event 3 9–15 February 2019 |
---|---|---|---|---|
Flow rate | R2 (%) | 72.70 | 74.61 | 83.0 |
RMSE (L/s) | 0.15 | 0.16 | 0.11 | |
MAE (L/s) | 0.13 | 0.12 | 0.09 | |
PBIAS (%) | 4 | 12 | 1 | |
Chloride concentration | R2 (%) | 65.31 | 73.38 | 74.22 |
RMSE (mg/L) | 432.73 | 71.5 | 122.48 | |
MAE (mg/L) | 260.1 | 48.92 | 59.08 | |
PBIAS (%) | 36 | 43 | 27 |
Highway Length | ERDS Size | Orifice Diameter | |
---|---|---|---|
2 Lanes | 2 km | 1 m width, 1 m depth | 2 Inches (0.0508 m) |
2 Lanes | 4 km | 1 m width, 1 m depth | 2 Inches (0.0508 m) |
2 Lanes | 5 km | 1 m width, 1 m depth | 2 Inches (0.0508 m) |
5 Lanes | 2 km | 1 m width, 1 m depth | 2 Inches (0.0508 m) |
5 Lanes | 4 km | 1 m width, 1 m depth | 2 Inches (0.0508 m) |
5 Lanes | 5 km | 1 m width, 1 m depth | 2 Inches (0.0508 m) |
12 Lanes | 2 km | 1 m width, 1 m depth | 2 Inches (0.0508 m) |
12 Lanes | 4 km | 1 m width, 1 m depth | 3 Inches (0.0762 m) |
12 Lanes | 5 km | 1 m width, 1 m depth | 3 Inches (0.0762 m) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabrizi, S.E.; Pringle, J.; Moosavi, Z.; Amouzadeh, A.; Farghaly, H.; Trenouth, W.R.; Gharabaghi, B. Protecting Salt Vulnerable Areas Using an Enhanced Roadside Drainage System (ERDS). Water 2022, 14, 3773. https://doi.org/10.3390/w14223773
Tabrizi SE, Pringle J, Moosavi Z, Amouzadeh A, Farghaly H, Trenouth WR, Gharabaghi B. Protecting Salt Vulnerable Areas Using an Enhanced Roadside Drainage System (ERDS). Water. 2022; 14(22):3773. https://doi.org/10.3390/w14223773
Chicago/Turabian StyleTabrizi, Sepideh E., Jessica Pringle, Zahra Moosavi, Arman Amouzadeh, Hani Farghaly, William R. Trenouth, and Bahram Gharabaghi. 2022. "Protecting Salt Vulnerable Areas Using an Enhanced Roadside Drainage System (ERDS)" Water 14, no. 22: 3773. https://doi.org/10.3390/w14223773
APA StyleTabrizi, S. E., Pringle, J., Moosavi, Z., Amouzadeh, A., Farghaly, H., Trenouth, W. R., & Gharabaghi, B. (2022). Protecting Salt Vulnerable Areas Using an Enhanced Roadside Drainage System (ERDS). Water, 14(22), 3773. https://doi.org/10.3390/w14223773