Meteorological and Water Quality Factors Associated with Microbial Diversity in Coastal Water from Intensified Oyster Production Areas of Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oyster Production Area and Water Sample Collection
2.2. Environmental Parameters
2.3. Determination of Total Coliforms, Fecal Coliforms, and E. coli
2.4. Determination of V. parahaemolyticus
2.5. Identification of V. cholerae
2.6. Isolation and Serotyping of Salmonella spp.
2.7. Statistical Analysis
3. Results
3.1. Meteorological Data
3.2. Water Chemistry Data
3.3. Occurrence of Total Coliforms, Fecal Coliforms, and E. coli
3.4. Occurrence of V. parahaemolyticus and V. cholerae
3.5. Prevalence of Salmonella and Their Serovars
3.6. Multivariable Mixed-Effects Negative Binomial Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture. Sustainability for Action. Available online: https://www.fao.org/3/ca9229en/ca9229en.pdf (accessed on 3 October 2022).
- Department of Fisheries (DOF). Statistics of Marine Shellfish Culture Survey 2021. Fisheries Statistics Group. Available online: https://www4.fisheries.go.th/local/index.php/main/view_qr_group/1408/7518 (accessed on 3 October 2022).
- Zeglin, L.H. Stream microbial diversity in response to environmental changes: Review and synthesis of existing research. Front. Microbiol. 2015, 6, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinnadurai, S.; Campos, C.J.; Geethalakshmi, V.; Sharma, J.; Kripa, V.; Mohamed, K.S. Microbiological quality of shellfish harvesting areas in the Ashtamudi and Vembanad estuaries (India): Environmental influences and compliance with international standards. Mar. Pollut. Bull. 2020, 156, 111255. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Luo, Q.; Zhao, S.; Zhao, P.; Yang, X.; Huang, Q.; Su, J. Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment. Environ. Pollut. 2022, 313, 120185. [Google Scholar] [CrossRef] [PubMed]
- Ndraha, N.; Wong, H.; Hsiao, H. Managing the risk of Vibrio parahaemolyticus infections associated with oyster consumption: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1187–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeamsripong, S.; Chuanchuen, R.; Atwill, E. Assessment of bacterial accumulation and environmental factors in sentinel oysters and estuarine water quality from the Phang Nga estuary area in Thailand. Int. J. Environ. Res. Public Health. 2018, 15, 1970. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Cheng, J.; Sharma, D.; Bitzikos, O.; Gustafson, R.; Fyfe, M.; Team, T.O.I. Outbreak of Vibrio parahaemolyticus associated with consumption of raw oysters in Canada, 2015. Foodborne Pathog. Dis. 2018, 15, 554–559. [Google Scholar] [CrossRef]
- Brands, D.A.; Inman, A.E.; Gerba, C.P.; Mare, C.J.; Billington, S.J.; Saif, L.A.; Levine, J.F.; Joens, L.A. Prevalence of Salmonella spp. in oysters in the United States. Appl. Environ. Microbiol. 2005, 71, 893–897. [Google Scholar] [CrossRef] [Green Version]
- Baker-Austin, C.; Oliver, J.D.; Alam, M.; Ali, A.; Waldor, M.K.; Qadri, F.; Martinez-Urtaza, J. Vibrio spp. infections. Nat. Rev. Dis. Primers 2018, 4, 1–19. [Google Scholar] [CrossRef]
- Liao, Y.; Li, Y.; Wu, S.; Mou, J.; Xu, Z.; Cui, R.; Klena, J.D.; Shi, X.; Lu, Y.; Qiu, Y.; et al. Risk factors for Vibrio parahaemolyticus infection in a southern coastal region of China. Foodborne Pathog. Dis. 2015, 12, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Yadav, J.P.; Das, S.C.; Dhaka, P.; Vijay, D.; Kumar, M.; Mukhopadhyay, A.K.; Chowdhury, G.; Chauhan, P.; Singh, R.; Dhama, K.; et al. Molecular characterization and antimicrobial resistance profile of Clostridium perfringens type A isolates from humans, animals, fish and their environment. Anaerobe 2017, 47, 120–124. [Google Scholar] [CrossRef]
- Iwamoto, M.; Ayers, T.; Mahon, B.E.; Swerdlow, D.L. Epidemiology of seafood-associated infections in the United States. Clin. Microbiol. Rev. 2010, 23, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Leung, H.M.; Sung, K.C.; Peng, X.L.; Cheung, K.C.; Au, C.K.; Yung, K.K.L.; Li, W.C. Evaluating seasonal variations of fecal coliform colonization in Magallana hongkongensis and Crassostrea rhizophorae: A preliminary study of oyster quality grown in Hong Kong aquacultural farms. Mar. Pollut. Bull. 2022, 178, 113583. [Google Scholar] [CrossRef]
- Islam, M.M.; Hofstra, N.; Islam, M. The impact of environmental variables on faecal indicator bacteria in the Betna river basin, Bangladesh. Environ. Processes. 2017, 4, 319–332. [Google Scholar] [CrossRef]
- Wolska, L.; Kowalewski, M.; Potrykus, M.; Redko, V.; Rybak, B. Difficulties in the modeling of E. coli spreading from various sources in a coastal marine area. Molecules 2022, 27, 4353. [Google Scholar] [CrossRef]
- Derolez, V.; Soudant, D.; Fiandrino, A.; Cesmat, L.; Serais, O. Impact of weather conditions on Escherichia coli accumulation in oysters of the Thau lagoon (the Mediterranean, France). J. Appl. Microbiol. 2013, 114, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Fu, S.; Yang, Q.; Hao, J.; Zhou, C.; Liu, Y. The impact of water intrusion on pathogenic vibrio species to inland brackish waters of China. Int. J. Environ. Res. Public Health 2020, 17, 6781. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Z. Modeling and predicting fecal coliform bacteria levels in oyster harvest waters along Louisiana Gulf coast. Ecology 2019, 101, 212–220. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Oyster culture by Leda Garrido-Handog. Available online: https://www.fao.org/3/ab737e/AB737E03.htm#ch3 (accessed on 20 October 2022).
- Food and Drug Administration. BAM Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria#conventional (accessed on 18 January 2021).
- Food and Drug Administration. BAM Chapter 9: Vibrio. Available online: https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm070830.htm (accessed on 3 January 2021).
- Food and Drug Administration. BAM Chapter 5: Salmonella. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-5-salmonella (accessed on 3 January 2021).
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- Grimont, P.A.D.; Weill, F.X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; Institut Pasteur: Paris, France, 2007. [Google Scholar]
- Notification of the National Environmental Board No.27, B.E.2564 (2021), Issued under the Enhancement and Conservation of National Environmental Quality Act B.E.2535 (1992): The Seawater Standard. Available online: http://web.krisdika.go.th/data/document/ext809/809866_0001.pdf (accessed on 3 January 2022).
- Campos, C.J.A.; Cachola, R.A. Fecal coliforms in bivalve harvesting areas of the Alvor lagoon (southern Portugal): Influence of seasonal variability and urban development. Environ. Monit. Assess. 2007, 133, 31–41. [Google Scholar] [CrossRef]
- Johnson, C.N.; Flowers, A.R.; Noriea III, N.F.; Zimmerman, A.; Bowers, J.; DePaola, A.; Grimes, D.J. Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico. Appl. Environ. Microbiol. 2010, 76, 7076–7084. [Google Scholar] [CrossRef] [Green Version]
- Urquhart, E.; Zaitchik, B.; Guikema, S.; Haley, B.; Taviani, E.; Chen, A.; Brown, M.F.; Huq, A.; Colwell, R.R. Use of environmental paramaters to model pathogenic Vibrios in Chesapeake Bay. J. Environ. Inform. 2015, 26, 1–13. [Google Scholar]
- Lopez-Joven, C.; Rolland, J.L.; Haffner, P.; Caro, A.; Roques, C.; Carré, C.; Travers, M.A.; Abadie, E.; Laabir, M.; Bonnet, D.; et al. Oyster farming, temperature, and plankton influence the dynamics of pathogenic Vibrios in the Thau Lagoon. Front. Microbiol. 2018, 24, 2530. [Google Scholar] [CrossRef] [PubMed]
- Kongprajug, A.; Chyerochana, N.; Rattanakul, S.; Denpetkul, T.; Sangkaew, W.; Somnark, P.; Sirikanchana, K. Integrated analyses of fecal indicator bacteria, microbial source tracking markers, and pathogens for Southeast Asian beach water quality assessment. Water Res. 2021, 203, 117479. [Google Scholar] [CrossRef] [PubMed]
- Makkaew, P.; Kongprajug, A.; Chyerochana, N.; Sresung, M.; Precha, N.; Mongkolsuk, S.; Sirikanchana, K. Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters. Int. J. Hyg. Environ. Health 2021, 238, 113859. [Google Scholar] [CrossRef] [PubMed]
- Thushari, G.G.N.; Chavanich, S.; Yakupitiyage, A. Coastal debris analysis in beaches of Chonburi province, eastern of Thailand as implications for coastal conservation. Mar. Pollut. Bull. 2017, 116, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.J.; Kershaw, S.; Lee, R.J.; Morgan, O.C.; Hargin, K. Rainfall and river flows are predictors for beta-glucuronidase positive Escherichia coli accumulation in mussels and Pacific oysters from the Dart Estuary (England). J. Water Health 2011, 9, 368–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, J.K.; McIntyre, D.; Noble, R.T. Characterizing fecal contamination in stormwater runoff in coastal North Carolina, USA. Water Res. 2010, 44, 4186–4194. [Google Scholar] [CrossRef]
- King, W.L.; Jenkins, C.; Seymour, J.R.; Labbate, M. Oyster disease in a changing environment: Decrypting the link between pathogen, microbiome and environment. Mar. Environ. Res. 2019, 143, 124–140. [Google Scholar] [CrossRef]
- Baez, A.; Shiloach, J. Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase. Microb. Cell Fact. 2013, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.H.T.; Yanagawa, H.; Nguyen, K.T.; Hara-Kudo, Y.; Taniguchi, T.; Hayashidani, H. Prevalence of Vibrio parahaemolyticus in seafood and water environment in the Mekong Delta, Vietnam. J. Vet. Med. Sci. 2018, 80, 1737–1742. [Google Scholar] [CrossRef] [Green Version]
- Odeyemi, O.A. Incidence and prevalence of Vibrio parahaemolyticus in seafood: A systematic review and meta-analysis. Springerplus 2016, 5, 464. [Google Scholar] [CrossRef] [Green Version]
- Almuhaideb, E.; Chintapenta, L.K.; Abbott, A.; Parveen, S.; Ozbay, G. Assessment of Vibrio parahaemolyticus levels in oysters (Crassostrea virginica) and seawater in Delaware Bay in relation to environmental conditions and the prevalence of molecular markers to identify pathogenic Vibrio parahaemolyticus strains. PLoS ONE 2020, 15, e0242229. [Google Scholar] [CrossRef]
- Sack, D.A.; Sack, R.B.; Nair, G.B.; Siddique, A.K. Cholera. Lancet 2004, 363, 223–233. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, H.J.; Myung, G.E.; Choi, E.J.; Kim, I.A.; Jeong, Y.I.; Park, G.J.; Soh, S.M. Distribution of pathogenic Vibrio species in the coastal seawater of South Korea (2017-2018). Osong Public Health Res. Perspect. 2019, 10, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, J.C.; Gerding, M.J.; Jones, S.H.; Whistler, C.A. Comparison of the pathogenic potentials of environmental and clinical Vibrio parahaemolyticus strains indicates a role for temperature regulation in virulence. Appl. Environ. Microbiol. 2010, 76, 7459–7465. [Google Scholar] [CrossRef] [Green Version]
- Urquhart, E.A.; Jones, S.H.; Yu, J.W.; Schuster, B.M.; Marcinkiewicz, A.L.; Whistler, C.A.; Cooper, V.S. Environmental conditions associated with elevated Vibrio parahaemolyticus concentrations in Great Bay Estuary, New Hampshire. PLoS ONE 2016, 11, e0155018. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Choi, Y.G.; Eom, J.W.; Oh, T.J.; Lee, K.S.; Kim, S.H.; Lee, E.T.; Park, M.S.; Oh, H.B.; Lee, B.K. An outbreak of Salmonella enterica serovar Othmarschen at a funeral service in Guri-si, South Korea. Jpn. J. Infect. Dis. 2007, 60, 412–413. [Google Scholar]
- Jha, B.; Kim, C.M.; Kim, D.M.; Chung, J.H.; Yoon, N.R.; Jha, P.; Kim, S.W.; Jang, S.J.; Kim, S.G.; Chung, J.K. First report of iliacus abscess caused by Salmonella enterica serovar Othmarschen. J. Infect. Chemother. 2016, 22, 117–119. [Google Scholar] [CrossRef]
- Simental, L.; Martinez-Urtaza, J. Climate patterns governing the presence and permanence of Salmonellae in coastal areas of Bahia de Todos Santos, Mexico. Appl. Environ. Microbiol. 2008, 74, 5918–5924. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Surendran, P.K.; Thampuran, N. Distribution and genotypic characterization of Salmonella serovars isolated from tropical seafood of Cochin, India. J. Appl. Microbiol. 2009, 106, 515–524. [Google Scholar] [CrossRef]
- Milton, A.A.P.; Agarwal, R.K.; Priya, G.B.; Athira, C.K.; Saminathan, M.; Reddy, A.; Aravind, M.; Kumar, A. Occurrence, antimicrobial susceptibility patterns and genotypic relatedness of Salmonella spp. isolates from captive wildlife, their caretakers, feed and water in India. Epidemiol. Infect. 2018, 146, 1543–1549. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Multi-country outbreak of Salmonella Braenderup ST22, presumed to be linked to imported melons. EFSA J. 2021, 18, EN-6807. [Google Scholar]
- Centers for Disease Control and Prevention. Multistate outbreak of Salmonella Braenderup Infections Linked to Rose Acre Farms Shell Eggs (Final Update). Available online: https://www.cdc.gov/salmonella/braenderup-04-18/index.html (accessed on 3 October 2022).
- Fonteneau, L.; Jourdan Da Silva, N.; Fabre, L.; Ashton, P.; Torpdahl, M.; Müller, L.; Bouchrif, B.; El Boulani, A.; Valkanou, E.; Mattheus, W.; et al. Multinational outbreak of travel-related Salmonella Chester infections in Europe, summers 2014 and 2015. Euro Surveill. 2017, 22, 30463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, Y.; Watanabe, Y.; Kitazawa, K.; Ando, N.; Hirai, S.; Yokoyama, E. Emergence of Salmonella enterica subsp. enterica serovar Chester in a rural area of Japan. J. Vet. Med. Sci. 2020, 82, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.; Tecle, S.; Adcock, B.; Kellis, M.; Weiss, J.; Saupe, A.; Sorenson, A.; Klos, R.; Blankenship, J.; Blessington, T.; et al. Multistate outbreak of Salmonella Paratyphi B variant L(+) tartrate(+) and Salmonella Weltevreden infections linked to imported frozen raw tuna: USA, March–July 2015. Epidemiol. Infect. 2018, 146, 1461–1467. [Google Scholar] [CrossRef]
Province | Average (±SD) | ||||
---|---|---|---|---|---|
Current Wind Speed (m/s) | Maximum Wind Gust (m/s) | Average Wind Speed (m/s) | Air Temperature (°C) | Relative Humidity (%) | |
Surat Thani (n = 60) | 6.3 (4.2) | 8.5 (4.9) | 4.3 (1.7) | 31.6 (2.5) | 66.8 (11.1) |
Chanthaburi (n = 60) | 6.7 (4.0) | 10.5 (3.5) | 5.1 (3.6) | 30.4 (1.9) | 73.2 (16.8) |
Trat (n = 60) | 3.1 (1.2) | 4.6 (1.7) | 3.4 (1.4) | 32.3 (2.6) | 70.4 (8.9) |
Phetchaburi (n = 60) | 3.9 (2.2) | 7.2 (3.0) | 1.4 (0.4) | 29.2 (2.0) | 77.5 (8.1) |
Chonburi (n = 63) | 5.1 (1.9) | 6.0 (1.9) | 4.3 (1.7) | 29.4 (1.1) | 76.6 (4.2) |
Phang Nga (n = 60) | 3.7 (3.1) | 6.3 (4.3) | 1.4 (0.8) | 32.3 (1.8) | 69.3 (7.0) |
Overall average (n = 363) | 4.8 (3.2) | 7.2 (3.9) | 3.5 (2.8) | 30.8 (2.4) | 72.3 (10.8) |
Province | Average (±SD) | |||
---|---|---|---|---|
Precipitation (mm) | Highest Temperature (°C) | Lowest Temperature (°C) | Relative Humidity (%) | |
Surat Thani (n = 60) | 1.4 (1.4) | 32.2 (0.1) | 23.9 (0.5) | 80.5 (3.5) |
Chanthaburi (n = 60) | 9.6 (10.1) | 32.5 (0.9) | 26.1 (0.6) | 75.2 (5.5) |
Trat (n = 60) | NA | 35.6 (0.1) | 23.0 (0.5) | 77.5 (3.5) |
Phetchaburi (n = 60) | 18.3 (8.2) | 32.2 (0.2) | 24.9 (0.1) | 89.5 (2.5) |
Chonburi (n = 63) | NA | 33.2 (0.7) | 22.6 (2.6) | 74.0 (7.1) |
Phang Nga (n = 60) | NA | 33.2 (0.1) | 24.7 (0.4) | 60.0 (1.5) |
Overall average (n = 363) | 4.9 (8.7) | 33.1 (1.3) | 24.2 (1.6) | 78.8 (6.7) |
Province | Average (±SD) | |||
---|---|---|---|---|
Conductivity (mS/cm) | DO 1 (mg/L) | Salinity (ppt) | pH | |
Surat Thani (n = 60) | 39.2 (8.1) | 8.6 (2.2) | 26.8 (6.5) | 7.9 (0.4) |
Chanthaburi (n = 60) | 31.4 (12.3) | 6.6 (2.0) | 17.8 (9.9) | 7.3 (0.2) |
Trat (n = 60) | 41.1 (4.1) | 7.7 (0.5) | 32.2 (4.2) | 7.8 (0.1) |
Phetchaburi (n = 60) | 33.7 (13.4) | 5.5 (0.5) | 22.5 (9.6) | 7.8 (0.2) |
Chonburi (n = 63) | 39.0 (16.3) | 5.0 (0.8) | 24.7 (12.1) | 7.6 (0.4) |
Phang Nga (n = 60) | 42.1 (5.2) | 7.7 (1.0) | 28.4 (3.6) | 7.5 (0.2) |
Overall average (n = 363) | 37.4 (12.2) | 6.8 (1.9) | 25.4 (9.4) | 7.7 (0.3) |
Province | No. of Positive (%) | |||||
---|---|---|---|---|---|---|
Total Coliforms | Fecal Coliforms | E. coli | Salmonella | V. parahaemolyticus | V. cholerae | |
Surat Thani (n = 60) | 58 (96.7) | 38 (63.3) | 2 (3.3) | 0 (0) | 42 (70.0) | 2 (3.3) |
Chanthaburi (n = 60) | 57 (95.0) | 38 (63.3) | 29 (48.3) | 1 (1.7) | 42 (70.0) | 20 (33.3) |
Trat (n = 60) | 59 (98.3) | 14 (23.3) | 5 (8.3) | 0 (0) | 56 (93.3) | 1 (1.7) |
Phetchaburi (n = 60) | 58 (96.7) | 37 (61.7) | 22 (36.7) | 0 (0) | 30 (50.0) | 10 (16.7) |
Chonburi (n = 63) | 59 (93.7) | 58 (92.1) | 21 (33.3) | 8 (12.7) | 45 (71.4) | 6 (9.5) |
Phang Nga (n = 60) | 60 (100.0) | 35 (58.3) | 4 (6.7) | 0 (0) | 57 (95.0) | 2 (3.3) |
Overall average (n = 363) | 351 (96.7) | 220 (60.6) | 83 (22.9) | 9 (2.5) | 272 (74.9) | 41 (11.3) |
Province | Mean Concentration (±SD) of Pathogens (MPN/mL) | |||
---|---|---|---|---|
Total Coliforms | Fecal Coliforms | E. coli | V. parahaemolyticus | |
Surat Thani (n = 60) | 94.9 (300.0) | 2.0 (1.5) | 1.6 (1.5) | 220.3 (674.4) |
Chanthaburi (n = 60) | 936.8 (2155.5) | 6.7 (14.8) | 5.5 (14.2) | 360.2 (1540.5) |
Trat (n = 60) | 512.5 (1629.5) | 1.6 (5.7) | 0.3 (0.9) | 251.8 (642.1) |
Phetchaburi (n = 60) | 133.1 (209.8) | 3.2 (5.9) | 2.0 (5.0) | 53.5 (270.2) |
Chonburi (n = 63) | 966.1 (2255.8) | 115.2 (335.1) | 83.0 (299.0) | 151.2 (387.3) |
Phang Nga (n = 60) | 136.5 (423.5) | 1.9 (1.8) | 1.8 (1.8) | 1,206.2 (2445.0) |
Overall average (n = 363) | 467.3 (1500.8) | 22.5 (145.2) | 16.3 (127.6) | 372.0 (1298.8) |
Predictor | Coefficient | Std. Err. 1 | C.I. 2 | p-Value |
---|---|---|---|---|
Province | ||||
Phang Nga (n = 60) | Reference group | |||
Chonburi (n = 63) | 3.823 | 0.361 | 3.117–4.530 | <0.0001 |
Surat Thani (n = 60) | −0.125 | 0.378 | −0.867–0.616 | 0.741 |
Chanthaburi (n = 60) | 1.115 | 0.368 | 0.393–1.837 | 0.002 |
Trat (n = 60) | −1.905 | 0.441 | −2.769–(−1.040) | <0.0001 |
Phetchaburi (n = 60) | 0.103 | 0.376 | −0.633–0.839 | 0.784 |
Intercept | 0.595 | 0.266 | 0.073–1.117 | 0.025 |
Season | ||||
Non-rainy (n = 183) | Reference group | |||
Rainy (n = 180) | 2.818 | 0.819 | 1.211–4.424 | 0.001 |
Intercept | 0.613 | 0.290 | 0.044–1.812 | 0.035 |
Predictor | Coefficient | Robust Std. Err. 1 | C.I. 2 | p-Value |
---|---|---|---|---|
DO 3 (mg/L) | −0.630 | 0.127 | −0.880–(−0.380) | <0.0001 |
Precipitation (mm) | 0.099 | 0.028 | 0.043–0.154 | <0.0001 |
Intercept | 4.564 | 0.798 | 2.999–6.129 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeamsripong, S.; Thaotumpitak, V.; Anuntawirun, S.; Roongrojmongkhon, N.; Atwill, E.R. Meteorological and Water Quality Factors Associated with Microbial Diversity in Coastal Water from Intensified Oyster Production Areas of Thailand. Water 2022, 14, 3838. https://doi.org/10.3390/w14233838
Jeamsripong S, Thaotumpitak V, Anuntawirun S, Roongrojmongkhon N, Atwill ER. Meteorological and Water Quality Factors Associated with Microbial Diversity in Coastal Water from Intensified Oyster Production Areas of Thailand. Water. 2022; 14(23):3838. https://doi.org/10.3390/w14233838
Chicago/Turabian StyleJeamsripong, Saharuetai, Varangkana Thaotumpitak, Saran Anuntawirun, Nawaphorn Roongrojmongkhon, and Edward R. Atwill. 2022. "Meteorological and Water Quality Factors Associated with Microbial Diversity in Coastal Water from Intensified Oyster Production Areas of Thailand" Water 14, no. 23: 3838. https://doi.org/10.3390/w14233838
APA StyleJeamsripong, S., Thaotumpitak, V., Anuntawirun, S., Roongrojmongkhon, N., & Atwill, E. R. (2022). Meteorological and Water Quality Factors Associated with Microbial Diversity in Coastal Water from Intensified Oyster Production Areas of Thailand. Water, 14(23), 3838. https://doi.org/10.3390/w14233838