Feeding of the Amphipod Gammarus aequicauda in the Presence of the Planktonic Cladoceran Moina salina and the Benthic Chironomid Larvae Baeotendipes noctivagus
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. General Ethological Observations
3.2. Search and Capture of a Chironomid Larva
3.3. Eating a Chironomid Larva
3.4. Moina salina Consumption by Gammarus aequicauda
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Feeding Behavior Parameters of G. aequicauda | Without Bottom Sediments | With Bottom Sediments | ||||
---|---|---|---|---|---|---|
Average | Range | CV | Average | Range | CV | |
Feeding on Chironomid Larva | ||||||
Time to capture chironomid larvae, min | 4.9 | 0.2–17.5 | 1.177 | 8.7 | 0.2–15.3 | 0.766 |
% of eating the entire larva (handling time) in one time | 48.3 | – | – | 47.8 | – | - |
Handling time to completely consume one prey, min | 49.2 | 29.5–74.0 | 0.240 | 58.8 | 44.1–70.1 | 0.140 |
The number of approaches spent on the complete consumption of one chironomid larva | 2.3 | 1.0–6.0 | 0.675 | 2.0 | 1.0–5.0 | 0.571 |
The duration of the time of complete eating in several visits, min | 59.6 | 34.5–112.8 | 0.379 | 60.3 | 52.8–76.3 | 0.139 |
The total duration of rest during the period of eating, min | 63.3 | 7.7–168.7 | 0.657 | 38.1 | 2.7–80.8 | 0.700 |
Feeding on Moina salina | ||||||
% cases when Moina was captured before catching a chironomid larva | 52.0 | – | – | 76.0 | – | – |
The number of Moina eaten before the capture of a chironomid larva, ind. | 2.3 | 0–8.0 | 1.105 | 4.1 | 0–10.0 | 0.738 |
The rate of Moina consumption before capturing a chironomid larva, ind./min | 0.4 | 0–1.6 | 0.765 | 0.4 | 0–0.9 | 0.679 |
Time spent searching for and handling one Moina, min | 2.5 | 0.63 | 0.780 | 2.5 | 1.1 | 0.683 |
The number of Moina consumed after fully eating a chironomid larva before the 4th hour of an experiment, ind. | 13.5 | 9.0–20.0 | 0.271 | 19.5 | 13.0–24.0 | 0.175 |
The rate of Moina consumption in the period after larva eating up to 4 experiment hours, ind./min | 0.3 | 0.13–0.41 | 0.348 | 0.11 | 0.07–0.14 | 0.191 |
The number of Moina consumed during breaks when eating a chironomid larva, ind. | 8.3 | 4.0–16.0 | 0.382 | 2.9 | 0–8.0 | 1.116 |
The rate of Moina consumption during these breaks, ind./min. | 0.13 | 0.04–0.35 | 0.593 | 0.08 (0.14 *) | 0.01–0.4 * | 1.152 * |
Average time spent searching for and handling one Moina, during these breaks, min | 7.7 | 2.9–25.0 | 0.601 | 12.5 (7.1 *) | 100 (2.5 *) | 1.202 |
The number of Moina eaten in the first 4 h of an experiment, ind. | 19.7 | 9.0–32.0 | 0.347 | 25.3 | 13.0–33.0 | 0.213 |
The Moina consumption rate by G. aequicauda in the first 4 h of the experiment, ind./min | 0.08 | 0.04–0.13 | 0.361 | 0.11 | 0.05–0.14 | 0.252 |
Time spent searching for and handling one Moina in the first 4 h of an experiment, min | 12.5 | 7.7–25.0 | 0.360 | 9.1 | 7.1–20.0 | 0.254 |
The number of Moina eaten between 4 and 8 h of an experiment, ind. | 15.2 | 10.0–27.0 | 0.267 | 12.4 | 8.0–19.0 | 0.225 |
The Moina consumption rate between 4 and 8 h of experiment, ind./min | 0.06 | 0.04–0.11 | 0.267 | 0.05 | 0.03–0.08 | 0.226 |
Time spent searching for and handling one Moina between 4 and 8 h of an experiment, min | 16.7 | 9.1–25.0 | 0.268 | 20.0 | 12.5–33.3 | 0.231 |
The total number of Moina eaten in 8 h, ind. | 34.9 | 23.0–44.0 | 0.160 | 37.7 | 23.0–45.0 | 0.128 |
Average Moina consumption rate in the whole experiment, ind./min | 0.07 | 0.05–0.09 | 0.167 | 0.08 | 0.05–0.1 | 0.131 |
References
- Poisot, T.; Mouquet, N.; Gravel, D. Trophic complementarity drives the biodiversity–ecosystem functioning relationship in food webs. Ecol. Lett. 2013, 16, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Barnes, A.D.; Jochum, M.; Lefcheck, J.S.; Eisenhauer, N.; Scherber, C.; O’Connor, M.I.; de Ruiter, P.; Brose, U. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 2018, 33, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, K.M.; Zarnetske, P.L.; Read, Q.D.; Twardochleb, L.A.; Kamoske, A.G.; Cheruvelil, K.S.; Soranno, P.A. Linking terrestrial and aquatic biodiversity to ecosystem function across scales, trophic levels, and realms. Front. Environ. Sci. 2021, 9, 692401. [Google Scholar] [CrossRef]
- Ivlev, V.S. Experimental Ecology of the Feeding of Fishes; Yale University Press: New Haven, CT, USA, 1961; 302p. [Google Scholar]
- Hildrew, A.G.; Raffaelli, D.G.; Edmonds-Brown, R. Body Size: The Structure and Function of Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 2007; 356p. [Google Scholar]
- Hammer, U.T. Saline Lake Ecosystems of the World; Junk Publishers: Dordrecht, The Netherlands, 1986; 616p. [Google Scholar]
- Flood, P.J.; Duran, A.; Barton, M.; Mercado-Molina, A.E.; Trexler, J.C. Invasion impacts on functions and services of aquatic ecosystems. Hydrobiologia 2020, 847, 1571–1586. [Google Scholar] [CrossRef]
- Kwak, I.S.; Park, Y.S. Food chains and food webs in aquatic ecosystems. Appl. Sci. 2020, 10, 5012. [Google Scholar] [CrossRef]
- Winberg, G.G. Diversity and unity of life phenomena and quantitative methods in biology. Zh. Obshch. Biol. 1981, 13, 5–19. (In Russian) [Google Scholar]
- Alimov, A.F.; Bogatov, V.V.; Golubkov, S.M. Production Hydrobiology; Nauka: Saint-Petersburg, Russia, 2013; 343p. (In Russian) [Google Scholar]
- Kalinkat, G.; Rall, B.C.; Vucic-Pestic, O.; Brose, U. The allometry of prey preferences. PLoS ONE 2011, 6, e25937. [Google Scholar] [CrossRef] [Green Version]
- Egilmez, H.I.; Morozov, A.Y. Tri-trophic plankton models revised: Importance of space, food web structure and functional response parametrisation. Math. Model. Nat. Phenom. 2016, 11, 16–33. [Google Scholar] [CrossRef] [Green Version]
- Schneider, F.D.; Brose, U.; Rall, B.C.; Guill, C. Animal diversity and ecosystem functioning in dynamic food webs. Nat. Commun. 2016, 7, 12718. [Google Scholar] [CrossRef] [Green Version]
- Nordberg, E.J.; Schwarzkopf, L. Predation risk is a function of alternative prey availability rather than predator abundance in a tropical savanna woodland ecosystem. Sci. Rep. 2019, 9, 7718. [Google Scholar] [CrossRef] [Green Version]
- Saha, N.; Kundu, M.; Saha, G.K.; Aditya, G. Alternative prey influence the predation of mosquito larvae by three water bug species (Heteroptera: Nepidae). Limnol. Rev. 2020, 20, 173–184. [Google Scholar] [CrossRef]
- Ivlev, V.S. Hunting time and the path traveled by the predator in relation to the abundance of prey populations. Zool. Zhurn. 1944, 23, 139–145. (In Russian) [Google Scholar]
- Ivlev, V.S. On the utilization of food by planktophage fishes. Bull. Math. Biophys. 1960, 22, 371–389. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Kopp, M.; Tollrian, R. Predator functional responses: Discriminating between handling and digesting prey. Ecol. Monogr. 2002, 72, 95–112. [Google Scholar] [CrossRef]
- Van Gils, J.A.; Piersma, T. Digestively constrained predators evade the cost of interference competition. J. Anim. Ecol. 2004, 73, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Tiselius, P.; Saiz, E.; Kiørboe, T. Sensory capabilities and food capture of two small copepods, Paracalanus parvus and Pseudocalanus sp. Limnol. Oceanogr. 2013, 58, 1657–1666. [Google Scholar] [CrossRef] [Green Version]
- Shadrin, N.; Yakovenko, V.; Anufriieva, E. Gammarus aequicauda and Moina salina in the Crimean saline waters: New experimental and field data on their trophic relation. Aquac. Res. 2020, 51, 3091–3099. [Google Scholar] [CrossRef]
- Shadrin, N.; Yakovenko, V.; Anufriieva, E. Behavior of Gammarus aequicauda (Crustacea, Amphipoda) during predation on Artemia (Crustacea, Anostraca): New experimental results. Int. Rev. Hydrobiol. 2020, 105, 143–150. [Google Scholar] [CrossRef]
- Rashevsky, N. Some remarks on the mathematical theory of nutrition of fishes. Bull. Math. Biophys. 1959, 21, 161–183. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Pianka, E.R. On optimal use of a patchy environment. Am. Nat. 1966, 100, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Ostrovskaya, N.A. Mathematical model of food consumption by planktonic animals. Biol. Morya 1975, 33, 22–27. (In Russian) [Google Scholar]
- Charnov, E.L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 1976, 9, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shadrin, N.V. Some theoretical aspects of copepod nutrition. In Ecology of Marine Organisms; Naukova Dumka: Kyiv, Ukraine, 1981; pp. 38–44. (In Russian) [Google Scholar]
- Vilenkin, B.Y.; Berezkina, E.V. Experimental estimation of the time spent on food consumption in the process of feeding Puntius arulius (Pisces, Cyprinidae). Zool. Zhurn. 1989, 68, 94–102. (In Russian) [Google Scholar]
- Shadrin, N.; Yakovenko, V.; Anufriieva, E. Can Gammarus aequicauda (Amphipoda) suppress a population of Baeotendipes noctivagus (Chironomidae) in a hypersaline lake? A case of Lake Moynaki (Crimea). Aquac. Res. 2021, 52, 1705–1714. [Google Scholar] [CrossRef]
- Souna, F.; Lakmeche, A.; Djilali, S. The effect of the defensive strategy taken by the prey on predator—Prey interaction. J. Appl. Math. Comput. 2020, 64, 665–690. [Google Scholar] [CrossRef]
- Cozzoli, F.; Shokri, M.; Boulamail, S.; Marrocco, V.; Vignes, F.; Basset, A. The size dependency of foraging behaviour: An empirical test performed on aquatic amphipods. Oecologia 2022, 199, 377–386. [Google Scholar] [CrossRef]
- Sentis, A.; Hemptinne, J.L.; Brodeur, J. Parsing handling time into its components: Implications for responses to a temperature gradient. Ecology 2013, 94, 1675–1680. [Google Scholar] [CrossRef] [Green Version]
- Michener, R.H.; Kaufman, L. Stable isotope ratios as tracers in marine food webs: An update. In Stable Isotopes in Ecology and Environmental Science; Michener, R., Lajtha, K., Eds.; Blackwell Publishing: Oxford, UK; pp. 238–282.
- Vander Zanden, H.B.; Soto, D.X.; Bowen, G.J.; Hobson, K.A. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies. Front. Ecol. Evol. 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- McCormack, S.A.; Trebilco, R.; Melbourne-Thomas, J.; Blanchard, J.L.; Fulton, E.A.; Constable, A. Using stable isotope data to advance marine food web modelling. Rev. Fish Biol. Fish. 2019, 29, 277–296. [Google Scholar] [CrossRef]
- Saccò, M.; Humphreys, W.F.; Stevens, N.; Jones, M.R.; Takulis, F.; Thomas, E.; Blyth, A.J. Subterranean carbon flows from source to stygofauna: A case study on the atyid shrimp Stygiocaris stylifera (Holthuis, 1960) from Barrow Island (WA). Isot. Environ. Health Stud. 2022, 58, 247–257. [Google Scholar] [CrossRef]
- Saccò, M.; White, N.E.; Harrod, C.; Salazar, G.; Aguilar, P.; Cubillos, C.F.; Meredith, K.; Baxter, B.K.; Oren, A.; Anufriieva, E.; et al. Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 2021, 96, 2828–2850. [Google Scholar] [CrossRef] [PubMed]
- Shadrin, N.; Yakovenko, V.; Anufriieva, E. Feeding behavior of Gammarus aequicauda in the presence of two prey species of Artemia sp. and Baeotendipes noctivagus. J. Exp. Zool. A: Ecol. Integr. Physiol. 2022, 337, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Shadrin, N.; Yakovenko, V.; Anufriieva, E. Suppression of Artemia spp. (Crustacea, Anostraca) populations by predators in the Crimean hypersaline lakes: A review of the evidence. Int. Rev. Hydrobiol. 2019, 104, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Shadrin, N.V.; Yakovenko, V.A.; Anufriieva, E.V. Appearance of a new species of Cladocera (Anomopoda, Chydoridae, Bosminidae) in the hypersaline Moynaki Lake, Crimea. Biol. Bull. 2021, 48, 934–937. [Google Scholar] [CrossRef]
- Thode, H.C. Testing for Normality; Marcel Dekker Inc.: New York, NY, USA, 2002; 368p. [Google Scholar]
- Müller, P.H.; Neuman, P.; Storm, R. Tafeln Der Mathematischen Statistik; VEB Fachbuchverlag: Leipzig, Germany, 1979; 280p. [Google Scholar]
- Morillo-Velarde, P.S.; Lloret, J.; Marín, A.; Sánchez-Vázquez, F.J. Effects of cadmium on locomotor activity rhythms of the amphipod Gammarus aequicauda. Arch. Environ. Contam. Toxicol. 2011, 60, 444–451. [Google Scholar] [CrossRef]
- de Azevedo Carvalho, D.; Collins, P.A.; De Bonis, C.J. The diel feeding rhythm of the freshwater crab Trichodactylus borellianus (Decapoda: Brachyura) in mesocosm and natural conditions. Mar. Freshw. Behav. Physiol. 2013, 46, 89–104. [Google Scholar] [CrossRef]
- Santos, A.D.; López-Olmeda, J.F.; Sánchez-Vázquez, F.J.; Fortes-Silva, R. Synchronization to light and mealtime of the circadian rhythms of self-feeding behavior and locomotor activity of white shrimps (Litopenaeus vannamei). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 199, 54–61. [Google Scholar] [CrossRef]
- Hemraj, D.A.; Hossain, M.A.; Ye, Q.; Qin, J.G.; Leterme, S.C. Plankton bioindicators of environmental conditions in coastal lagoons. Estuar. Coast. Shelf Sci. 2017, 184, 102–114. [Google Scholar] [CrossRef]
- Anufriieva, E.; Kolesnikova, E.; Revkova, T.; Shadrin, N. Spatio-temporal variability of zooplankton and zoobenthos as the elements of integrated zoocenosis in a marine lake (Crimea, Black Sea): What is a general pattern? J. Sea Res. 2022, 185, 102231. [Google Scholar] [CrossRef]
- Kelly, D.W.; Dick, J.T.; Montgomery, W.I. The functional role of Gammarus (Crustacea, Amphipoda): Shredders, predators, or both? Hydrobiologia 2002, 485, 199–203. [Google Scholar] [CrossRef]
- Georgievová, B.; Zhai, M.; Bojková, J.; Šorfová, V.; Syrovátka, V.; Polášková, V.; Schenková, J.; Horsák, M. Does predation by the omnivorous Gammarus fossarum affect small-scale distribution of macroinvertebrates? A case study from a calcareous spring fen. Int. Rev. Hydrobiol. 2020, 105, 162–170. [Google Scholar] [CrossRef]
- Evans, E.W.; Stevenson, A.T.; Richards, D.R. Essential versus alternative foods of insect predators: Benefits of a mixed diet. Oecologia 1999, 121, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Harwood, J.D.; Obrycki, J.J. The Role of Alternative Prey in Sustaining Predator Populations. In Proceedings of the Second International Symposium on Biological Control of Arthropods, Davos, Switzerland, 12–16 September 2005; pp. 453–462. [Google Scholar]
- Remonti, L.; Balestrieri, A.; Raubenheimer, D.; Saino, N. Functional implications of omnivory for dietary nutrient balance. Oikos 2016, 125, 1233–1240. [Google Scholar] [CrossRef]
- Layman, C.A.; Quattrochi, J.P.; Peyer, C.M.; Allgeier, J.E. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol. Lett. 2007, 10, 937–944. [Google Scholar] [CrossRef]
- Breaux, N.; Lebreton, B.; Palmer, T.A.; Guillou, G.; Pollack, J.B. Ecosystem resilience following salinity change in a hypersaline estuary. Estuar. Coast. Shelf Sci. 2019, 225, 106258. [Google Scholar] [CrossRef]
- Hölker, F.; Stief, P. Adaptive behaviour of chironomid larvae (Chironomus riparius) in response to chemical stimuli from predators and resource density. Behav. Ecol. Sociobiol. 2005, 58, 256–263. [Google Scholar] [CrossRef]
- González, M.J.; Burkart, G.A. Effects of food type, habitat, and fish predation on the relative abundance of two amphipod species, Gammarus fasciatus and Echinogammarus ischnus. J. Great Lakes Res. 2004, 30, 100–113. [Google Scholar] [CrossRef]
- Médoc, V.; Albert, H.; Spataro, T. Functional response comparisons among freshwater amphipods: Ratio-dependence and higher predation for Gammarus pulex compared to the non-natives Dikerogammarus villosus and Echinogammarus berilloni. Biol. Invasions. 2015, 17, 3625–3637. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shadrin, N.; Yakovenko, V.; Anufriieva, E. Feeding of the Amphipod Gammarus aequicauda in the Presence of the Planktonic Cladoceran Moina salina and the Benthic Chironomid Larvae Baeotendipes noctivagus. Water 2022, 14, 3948. https://doi.org/10.3390/w14233948
Shadrin N, Yakovenko V, Anufriieva E. Feeding of the Amphipod Gammarus aequicauda in the Presence of the Planktonic Cladoceran Moina salina and the Benthic Chironomid Larvae Baeotendipes noctivagus. Water. 2022; 14(23):3948. https://doi.org/10.3390/w14233948
Chicago/Turabian StyleShadrin, Nickolai, Vladimir Yakovenko, and Elena Anufriieva. 2022. "Feeding of the Amphipod Gammarus aequicauda in the Presence of the Planktonic Cladoceran Moina salina and the Benthic Chironomid Larvae Baeotendipes noctivagus" Water 14, no. 23: 3948. https://doi.org/10.3390/w14233948
APA StyleShadrin, N., Yakovenko, V., & Anufriieva, E. (2022). Feeding of the Amphipod Gammarus aequicauda in the Presence of the Planktonic Cladoceran Moina salina and the Benthic Chironomid Larvae Baeotendipes noctivagus. Water, 14(23), 3948. https://doi.org/10.3390/w14233948