Hydrodynamic Impacts on the Fate of Polychlorinated Biphenyl 153 in the Marine Environment
Abstract
:1. Introduction
2. Model Description
2.1. General Information
- —molecular and turbulent diffusion coefficient;
- wd—sinking velocity (1 m·d−1).
2.2. GOTM—The Hydrodynamic Host Model
- k—turbulent kinetic energy;
- —vertical turbulent diffusivity (eddy);
- —shear production;
- —buoyancy production;
- —rate of dissipation.
- , —turbulent and molecular diffusivities;
- τR(A)—relaxation time scale;
- A—calculated tracer distribution;
- Am—prescribed tracer profile.
2.3. ECOSMO
2.4. Model Coupling, Initial and Boundary Conditions
2.5. Chemical Model
2.5.1. Particle Partitioning (Kinetic Sorption)
2.5.2. Photolytic Degradation
- FPCB153—photon flux [µmol·m−2·s−1 = µE];
- λ—wavelength [m];
- I—sunlight irradiance in UV range of spectrum [W·m−2];
- ε153—extinction coefficient for PCB153 [m2·mol−1];
- EXTTOT—total extinction, includes marine water, DOM, detritus and phytoplankton [m2·mol−1].
2.5.3. Biological Degradation
2.5.4. Freely Dissolved PCBs
- —atmospheric flux of pollutants (detailed description is below (Section 2.6.1));
- kdiff(1,2)—rates of PCB153 diffusive exchange with dissolved in water pollutants (detailed description is below (Section 2.6.2)).
2.6. Boundary Forcing and External Processes
2.6.1. Air–Sea Exchange
- ka—mass transfer coefficient in air [m·s−1];
- Kw—mass transfer coefficient in water [m·s−1];
- Ca—PCB concentration in air [pg·m−3];
- PCBfree—PCB concentration in water [pg·m−3].
- ΔH—enthalpy of dissolution [J·mol−1];
- ΔS—entropy of dissolution [J·mol−1·K−1];
- R—gas constant [J·K−1·mol−1];
- T—temperature [K].
- u10—wind speed at 10 m above a water [m·s−1];
- Dwi and Dai—diffusivities of PCB in the air and water [cm2·s−1];
- DwCO2—CO2 diffusivities in the water [cm2·s−1];
- DaH2O—H2O diffusivities in the air [cm2·s−1].
- MWair, MWPCB—molar weight of an air and chosen PCB [g·mol−1];
- Vair, VPCB—molar volume of an air and chosen PCB [cm3·mol−1];
- P—air pressure [atm];
- νH2O—kinematic viscosity (at 25 °C) [cm2·s−1].
2.6.2. Sedimentation, Resuspension and Burial
- kbur—burial rate of PCB153 (equal for a POM burial rate in ECOSMO);
- kdeg—rate constant of pollutant degradation in sediments;
- kdiff(1,2)—rates of PCB153 diffusive exchange with dissolved in water pollutants;
- kresusp—resuspension rate (bottom shear-stress-dependent);
- ksed—sedimentation rate of PCBPOM;
- PCBPOM—concentration of PCB153 on POM [pg·m−3];
- PCBfree—dissolved in water PCB153 [pg·m−3];
- krem3—rate of sediment remineralization.
- tempc—temperature control factor [°C−1];
- T—temperature [°C].
- U1, V1—components of mean velocity at the center of the lowest cell.
2.7. Regional Characteristics for Model Implementation
3. Results and Discussion
3.1. The Deep Region with Permanent Stratification—The Gotland Deep
3.2. Permanently Mixed Region with Low Atmospheric Input and the Late Onset of Production Due to Sea Ice Cover—The Bothnian Bay
3.3. The North Sea—Tides Influenced Area with High Primary Production
Seasonally Stratified—Northern North Sea (NNS)
3.4. Permanently Mixed—Southern North Sea (SNS)
4. Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
List of abbreviations | |
PCB | polychlorinated biphenyls |
CB | chlorinated biphenyls (biphenyls with one chlorine in the structure) |
POP | Persistent organic pollutants |
SC | Stockholm Convention |
SNS | Southern North Sea |
NNS | Northern North Sea |
GOTM | ‘General Ocean Turbulence Model’ [29] |
ECOSMO | ‘ECOSystem MOdel’, is a 3D fully coupled physical–biogeochemical model [22] |
FABM | The Framework for Aquatic Biogeochemical Models [28] |
NPZD (model) | nutrients, phytoplankton, zooplankton, detritus ecosystem model |
CTD | oceanography instrument used to measure the electrical conductivity, temperature, and pressure of seawater |
WOA | World Ocean Atlas |
EMEP | ‘European Monitoring and Evaluation Programme’ [26] |
LRT | long-range transport |
OM | organic matter |
POM | particulate organic matter |
DOM | dissolved organic matter |
SSE | sea surface elevation |
ORCM | oxidative ring cleavage mechanism |
List of variables and parameters used in this article | |
PCBfree | PCB153 concentration in the dissolved phase [pg·m−3] |
PCBPOM | concentration of PCB153 on POM [pg·m−3] |
PCBDOM | concentration of PCB153 on DOM [pg·m−3] |
PCBsed | concentration of PCB153 in sediment [pg·m−2] |
POM | particulate organic matter concentration [mgC·m−3] |
DOM | dissolved organic matter concentration [mgC·m−3] |
Kow | octanol–water coefficient |
Koc | organic carbon–water partitioning coefficient |
ksorp(1,2) | rate constant of PCB153 sorption on POM and DOM respectively [s−1] |
kdesorp(1,2) | rate constant of PCB153 desorption from POM and DOM respectively [s−1] |
krem1 | rate constant of detritus (POM) remineralization [s−1] |
krem2 | rate constant of DOM remineralization [s−1] |
krem3 | rate constant of sediment remineralization [s−1] |
kresusp | resuspension rate (bottom shear stress depended) [s−1] |
ksed | sedimentation rate of PCBPOM [s−1] |
kbur | burial rate of PCB153 [s−1] |
kphoto | rate constant of PCB153 photolytic degradation [s−1] |
kbio | rate constant of PCB153 biological degradation [s−1] |
Kbio | parametrization coefficient for kbio calculation |
kdiff(1,2) | rates of PCB153 diffusive exchange with dissolved in water pollutants [s−1] |
kdeg | rate constant of pollutant degradation in sediments [s−1] |
Q153 | quantum yield of photolytic degradation |
FPCB153 | photon flux [µmol·m−2·s−1 = µE] |
λ | wavelength [m]; |
I | sunlight irradiance in UV range of spectrum [W·m−2] |
ε153 | extinction coefficient for PCB153 [m2·mol−1] |
EXTTOT | total extinction, includes marine water, DOM, detritus and phytoplankton [m2·mol−1] |
ka | mass transfer coefficient in air [m·s−1] |
Kw | mass transfer coefficient in water [m·s−1] |
Ca | PCB153 concentration in air [pg·m−3] |
ΔH | enthalpy of dissolution [J·mol−1] |
ΔS | entropy of dissolution [J·mol−1·K−1] |
R | gas constant [J·K−1·mol−1] |
u10 | wind speed at 10 m above a water [m·s−1] |
Dwi, Dai | diffusivities of PCB153 in the air and water [cm2·s−1] |
DwCO2 | CO2 diffusivities in the water [cm2·s−1] |
DaH2O | H2O diffusivities in the air [cm2·s−1] |
MWair, MWPCB | molar weight of an air and chosen PCB [g·mol−1] |
Vair, VPCB | molar volume of an air and chosen PCB [cm3·mol−1] |
P | air pressure [atm] |
νH2O | kinematic viscosity (at 25 °C) [cm2·s−1] |
Fow | open water flux [pg·m−2·s−1] |
F | atmospheric flux [pg·m−2·s−1] |
Ai | sea ice compactness (the part of the cell covered by sea ice) |
tempc | temperature control factor [°C−1] |
friction velocity | |
critical velocity | |
U1, V1 | components of mean velocity at the center of the lowest cell |
References
- Stockholm Convention. Available online: http://www.pops.int/ (accessed on 20 September 2022).
- Wolska, L.; Mechlińska, A.; Rogowska, J.; Namieśnik, J. Sources and Fate of PAHs and PCBs in the Marine Environment. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1172–1189. [Google Scholar] [CrossRef]
- IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans. Polychlorinated Biphenyls and Polybrominated Biphenyls. Lyon (FR): International Agency for Research on Cancer IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 107. 2016. Available online: https://monographs.iarc.who.int/wp-content/uploads/2018/08/mono107.pdf (accessed on 20 September 2022).
- Schwarzenbach, R.P.; Gschwend, P.M.; Imboden, D.M. Environmental Organic Chemistry, 3rd ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Mackay, D.; Shiu, W.-Y.; Shiu, W.-Y.; Lee, S.C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Hemond, H.F.; Fechner, E.J. Chemical Fate and Transport in the Environment, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Olenycz, M.; Sokołowski, A.; Niewińska, A.; Wołowicz, M.; Namieśnik, J.; Hummel, H.; Jansen, J. Comparison of PCBs and PAHs levels in European coastal waters using mussels from the Mytilus edulis complex as biomonitors. Oceanologia 2015, 57, 196–211. [Google Scholar] [CrossRef] [Green Version]
- Beyer, A.; Biziuk, M. Environmental Fate and Global Distribution of Polychlorinated Biphenyls. Rev. Environ. Contam. Toxicol. 2009, 201, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Alava, J.J.; Cisneros-Montemayor, A.M.; Sumaila, U.R.; Cheung, W.W.L. Projected amplification of food web bioaccumulation of MeHg and PCBs under climate change in the Northeastern Pacific. Sci. Rep. 2018, 8, 13460. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zhai, Z.; Wang, Z.; Wang, L. Estimation of n-octanol/water partition coefficients (KOW) of all PCB congeners by density functional theory. J. Mol. Struct. Theochem. 2005, 755, 137–145. [Google Scholar] [CrossRef]
- ChemSpider: The Free Chemical Database. Available online: http://www.chemspider.com/ (accessed on 20 September 2022).
- Daewel, U.; Yakushev, E.V.; Schrum, C.; Nizzetto, L.; Mikheeva, E. Understanding the role of organic matter cycling for the spatio-temporal structure of PCBs in the North Sea. Water 2020, 12, 817. [Google Scholar] [CrossRef] [Green Version]
- Ilyina, T.; Pohlmann, T.; Lammel, G.; Sündermann, J. A fate and transport ocean model for persistent organic pollutants and its application to the North Sea. J. Mar. Syst. 2006, 63, 1–19. [Google Scholar] [CrossRef]
- Pagni, R.M.; Sigman, M.E. The Photochemistry of PAHs and PCBs in Water and on Solids. In Environmental Photochemistry. The Handbook of Environmental Chemistry (Reactions and Processes), Vol 2/2L.; Boule, P., Ed.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Wong, K.H.; Wong, P.K. Degradation of Polychlorinated Biphenyls by UV-Catalyzed Photolysis. Hum. Ecol. Risk Assess. 2006, 12, 259–269. [Google Scholar] [CrossRef]
- Borja, J.; Taleon, D.M.; Auresenia, J.; Gallardo, S. Polychlorinated biphenyls and their biodegradation. Process Biochem. 2005, 40, 1999–2013. [Google Scholar] [CrossRef]
- Boyle, A.W.; Silvin, C.J.; Hassett, J.P.; Nakas, J.P.; Tanenbaum, S.W. Bacterial PCB biodegradation. Biodegradation 1992, 3, 285–298. [Google Scholar] [CrossRef]
- Bamford, H.; Poster, D.; Baker, J. Henry’s Law Constants of Polychlorinated Biphenyl Congeners and Their Variation with Temperature. J. Chem. Eng. Data 2000, 45, 1069–1074. [Google Scholar] [CrossRef]
- Kong, D.; MacLeod, M.; Cousins, I.T. Modelling the influence of climate change on the chemical concentrations in the Baltic Sea region with the POPCYCLING-Baltic model. Chemosphere 2014, 110, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Lamon, L.; MacLeod, M.; Marcomini, A.; Hungerbühler, K. Modeling the influence of climate change on the mass balance of polychlorinated biphenyls in the Adriatic Sea. Chemosphere 2012, 87, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Webster, E.; Mackay, D.; Di Guardo, A.; Kane, D.; Woodfine, D. Regional differences in chemical fate model outcome. Chemosphere 2004, 55, 1361–1376. [Google Scholar] [CrossRef] [PubMed]
- Daewel, U.; Schrum, C. Simulating long-term dynamics of the coupled North Sea and Baltic Sea ecosystem with ECOSMO II: Model description and validation. J. Mar. Syst. 2013, 119–120, 30–49. [Google Scholar] [CrossRef]
- McLachlan, M.S.; Undeman, E.; Zhao, F.; MacLeod, M. Predicting global scale exposure of humans to PCB 153 from historical emissions. Environ. Sci. Process. Impacts 2018, 20, 747–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berdowski, J.J.M.; Baas, J.; Bloos, J.P.J.; Visschedijk, A.J.H.; Zandveld, P.Y.J. The European Emission Inventory of Heavy Metals and Persistant Organic Pollutants for 1990; Forschungsbericht 104 02 672/03; Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit; TNO: Utrecht, The Netherlands, 1997. [Google Scholar]
- Breivik, K.; Sweetman, A.; Pacyna, J.; Jones, K. Towards a global historical emission inventory for selected PCB congeners—A mass balance approach1. Global production and consumption. Sci. Total Environ. 2002, 290, 181–198. [Google Scholar] [CrossRef]
- European Monitoring and Evaluation Programme EMEP. Available online: http://www.emep.int (accessed on 20 September 2022).
- Umlauf, L.; Burchard, H.; Bolding, K. GOTM: Source Code and Test Case Documentation, Version 4.0. Available online: https://gotm.net/manual/stable/pdf/letter.pdf (accessed on 20 September 2022).
- Burchard, H.; Bolding, K.; Ruiz-Villarreal, M. GOTM, A General Ocean Turbulence Model. Theory, Implementation and Test Cases; European Commission: Luxembourg, 1999. [Google Scholar]
- Bruggeman, J.; Bolding, K. A general framework for aquatic biogeochemical models. Environ. Modell. Softw. 2014, 61, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- van Noort, P.; Cornelissen, G.; Ten Hulscher, D.; Vrind, B.; Rigterink, H.; Belfroid, A. Slow and very slow desorption of organic compounds from sediment: Influence of sorbate planarity. Water Res. 2003, 37, 2317–2322. [Google Scholar] [CrossRef]
- Jonker, M.; Smedes, F. Preferential Sorption of Planar Contaminants in Sediments from Lake Ketelmeer, The Netherlands. Environ. Sci. Technol. 2000, 34, 1620–1626. [Google Scholar] [CrossRef]
- Lechtenfeld, O. Biogeochemistry of Marine Dissolved Organic Matter: Molecular Composition, Reactivity and New Methods. Ph.D. Thesis, Bremen University, Bremen, Germany, 2012. [Google Scholar]
- Kos Durjava, M.; ter Laak, T.; Hermens, J.; Struijs, J. Distribution of PAHs and PCBs to Dissolved Organic Matter: High Distribution Coefficients with Consequences for Environmental Fate Modeling. Chemosphere 2007, 67, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Tsang, D.; Wang, Y.; Li, Y.; Yang, X. The Photodegradation of Polybrominated Diphenyl Ethers (PBDEs) in Various Environmental Matrices: Kinetics and Mechanisms. Chem. Eng. J. 2016, 297, 74–96. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zhao, H.; Quan, X.; He, X.; Chen, S. Photochemical Formation of Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) from Polybrominated Diphenyl Ethers (PBDEs) in Aqueous Solution under Simulated Solar Light Irradiation. Environ. Sci. Technol. 2015, 49, 9092–9099. [Google Scholar] [CrossRef] [PubMed]
- Paola, C.; Davide, V. (Eds.) Surface Water Photochemistry; Royal Society of Chemistry: London, UK, 2015. [Google Scholar]
- Roszko, M.; Szymczyk, K.; Jędrzejczak, R. Photochemistry of tetra- through hexa-brominated dioxins/furans, hydroxylated and native BDEs in different media. Environ. Sci. Pollut. Res. 2015, 22, 18381–18393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.A. The long-term fate of polychlorinated biphenyls in San Francisco Bay (USA). Environ. Toxicol. Chem. 2004, 23, 2396–2409. [Google Scholar] [CrossRef] [PubMed]
- Friedman, C.L.; Selin, N.E. PCBs in the Arctic atmosphere: Determining important driving forces using a global atmospheric transport model. Atmos. Chem. Phys. 2016, 16, 3433–3448. [Google Scholar] [CrossRef]
- Odabasi, M. Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach-Containing Household Products. Environ. Sci. Technol. 2008, 42, 1445–1451. [Google Scholar] [CrossRef]
- Van Leeuwen, S.; Tett, P.; Mills, D.; Van der Molen, J. Stratified and nonstratified areas in the North Sea: Long-term variability and biological and policy implications. J. Geophys. Res. Oceans 2015, 120, 4670–4686. [Google Scholar] [CrossRef] [Green Version]
- Szymczycha, B.; Zaborska, A.; Bełdowski, J.; Kuliński, K.; Beszczyńska-Möller, A.; Kędra, M.; Pempkowiak, J. Chapter 4—The Baltic Sea. In World Seas: An Environmental Evaluation, 2nd ed.; Charles, S., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 85–111. ISBN 9780128050682. [Google Scholar] [CrossRef]
- Savchuk, O.P.; Wulff, F. Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea. Hydrobiologia 2009, 629, 209–224. [Google Scholar] [CrossRef]
- Placke, M.; Meier, H.E.M.; Neumann, T. Sensitivity of the Baltic Sea Overturning Circulation to Long-Term Atmospheric and Hydrological Changes. J. Geophys. Res. Oceans 2021, 126, e2020JC016079. [Google Scholar] [CrossRef]
- Lehmann, A.; Myrberg, K.; Post, P.; Chubarenko, I.; Dailidiene, I.; Hinrichsen, H.-H.; Hüssy, K.; Liblik, T.; Lips, U.; Meier, H.E.M.; et al. Salinity dynamics of the Baltic Sea. Earth Syst. Dynam. Discuss. 2022, 13, 373–392. [Google Scholar] [CrossRef]
- Rodhe, J.; Tett, P.; Wulff, F. Chapter 26. The Baltic and North Seas: A Regional Review of Some Important Physical-Chemical-Biological Interaction Processes; Harvard University Press: Cambridge, MA, USA, 2004; Volume 14. [Google Scholar]
- Zhao, C.; Daewel, U.; Schrum, C. Tidal impacts to primary production in the North Sea. Earth Syst. Dynam. 2019, 10, 287–317. [Google Scholar] [CrossRef]
- NAOO Official Website. Available online: https://maps.ngdc.noaa.gov/viewers/bathymetry/ (accessed on 20 September 2022).
Unit | Value | Comment | |
---|---|---|---|
General | |||
Turbulence model | second-order model | ||
TKE method | dynamic equation (k-epsilon) | ||
Bottom roughness | (m) | 0.03 | The North and Baltic Seas |
Spin-up | (year) | 10 | Accumulation of pollutants in sediment reaches equilibrium in 10 years |
Calculation time steps | (s) | 1800 | |
Relaxation (Temperature) | (s) | - | The North and Baltic Seas |
Zooming factors (du and dl) | - | 1.5; 1.0 | The North and Baltic Seas |
The North Sea | |||
Number of layers (the North Sea) | - | 110; 63 | The North Sea: NNS; SNS |
Relaxation (Salinity) | (s) | 86,400 | The North Sea |
M2 Tidal Amplitude | (m) | 0.41; 0.7 | The North Sea: NNS; SNS |
S2 Tidal Amplitude | (m) | 0.16; 0.25 | The North Sea: NNS; SNS |
M2 Tidal Period | (s) | 44,714 | The North Sea |
S2 Tidal Period | (s) | 43,200 | The North Sea |
The Baltic Sea | |||
Number of layers (the Baltic Sea) | - | 90; 125 | The Baltic Sea: BB; GB |
Relaxation (Salinity) | (s) | 432,000 | The Baltic Sea |
kdesorp·10−6 (s−1) | ksorp (s−1) | |
---|---|---|
DOM-PCB153 | 3.8 1 | 4.87 3 |
POM-PCB153 | 5.22 2 | 10.64 3 |
Parameter (Units) | Value | Source |
---|---|---|
MWair (g·mol−1) | 28.97 | Calculated |
MWPCB (g·mol−1) | 360.88 | Calculated |
MVair (cm3·mol−1) | 20.1 | Calculated |
MVPCB (cm3·mol−1) | 0.080276 | Calculated |
νH2O (cm2·s−1) | 0.0089 | Schwarzenbach [4] |
DaH2O (cm2·s−1) | 0.3 | Schwarzenbach [4] |
DwCO2 (cm2·s−1) | 0.00002 | Schwarzenbach [4] |
ΔH (PCB153) (J·mol−1) | 66,100 | Bamford 2000 [18] |
ΔS (PCB153) (J·mol−1·K−1) | 190 | Bamford 2000 [18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikheeva, E.; Bieser, J.; Schrum, C. Hydrodynamic Impacts on the Fate of Polychlorinated Biphenyl 153 in the Marine Environment. Water 2022, 14, 3952. https://doi.org/10.3390/w14233952
Mikheeva E, Bieser J, Schrum C. Hydrodynamic Impacts on the Fate of Polychlorinated Biphenyl 153 in the Marine Environment. Water. 2022; 14(23):3952. https://doi.org/10.3390/w14233952
Chicago/Turabian StyleMikheeva, Elena, Johannes Bieser, and Corinna Schrum. 2022. "Hydrodynamic Impacts on the Fate of Polychlorinated Biphenyl 153 in the Marine Environment" Water 14, no. 23: 3952. https://doi.org/10.3390/w14233952
APA StyleMikheeva, E., Bieser, J., & Schrum, C. (2022). Hydrodynamic Impacts on the Fate of Polychlorinated Biphenyl 153 in the Marine Environment. Water, 14(23), 3952. https://doi.org/10.3390/w14233952