Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tannery Wastewater
2.2. Microorganisms
2.3. Experimental Design
2.4. Biomass Production and Nutrient Removal
2.5. Protein Extraction and Quantification
2.6. Carbohydrate Extraction and Quantification
2.7. Total Lipids Extraction and Quantification
2.8. Total Carotenoids Extraction and Quantification
2.9. Phycobiliproteins Extraction and Quantification
3. Results and Discussion
3.1. Physicochemical Characterization of Tannery Effluents
3.2. Biomass Production and Nutrient Removal
3.3. Culture Optimization Using Tannery Wastewater
3.4. Metabolites Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urbina-Suarez, N.A.; Machuca-Martínez, F.; Barajas-Solano, A.F. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater. Molecules 2021, 26, 3222. [Google Scholar] [CrossRef]
- Yahya, M.D.; Obayomi, K.S.; Abdulkadir, M.B.; Iyaka, Y.A.; Olugbenga, A.G. Characterization of Cobalt Ferrite-Supported Activated Carbon for Removal of Chromium and Lead Ions from Tannery Wastewater via Adsorption Equilibrium. Water Sci. Eng. 2020, 13, 202–213. [Google Scholar] [CrossRef]
- Lofrano, G.; Belgiorno, V.; Gallo, M.; Raimo, A.; Meriç, S. Toxicity reduction in leather tanning wastewater by improved coagulation flocculation process. Glob. NEST J. 2006, 8, 151–158. [Google Scholar] [CrossRef]
- Lv, W.; Zhao, K.; Ma, S.; Kong, L.; Dang, Z.; Chen, J.; Zhang, Y.; Hu, J. Process of Removing Heavy Metal Ions and Solids Suspended in Micro-Scale Intensified by Hydrocyclone. J. Clean. Prod. 2020, 263, 121533. [Google Scholar] [CrossRef]
- Mayta, R.; Mayta, J. Remoción de Cromo y Demanda Química de Oxígeno de Aguas Residuales de Curtiembre Por Electrocoagulación. Rev. Soc. Química Perú 2017, 83, 331–340. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2017000300008 (accessed on 22 March 2021). [CrossRef]
- Castellanos-Estupiñan, M.A.; Sánchez-Galvis, E.M.; García-Martínez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Design of an Electroflotation System for the Concentration and Harvesting of Freshwater Microalgae. Chem. Eng. Trans. 2018, 64, 1–6. [Google Scholar] [CrossRef]
- Belay, A. Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options. J. Environ. Prot. 2010, 1, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Najam, T.; Shah, S.S.A.; Rahman, M.M. Chapter 24—Water-Stable Metal–Organic Framework for Environmental Remediation; Saxena, G., Kumar, V., Shah, M.P.B.T.-B., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 585–621. [Google Scholar] [CrossRef]
- Cuéllar-García, D.J.; Rangel-Basto, Y.A.; Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Muñoz-Peñaloza, Y.A. Lipids Production from Scenedesmus Obliquus through Carbon/Nitrogen Ratio Optimization. J. Phys. Conf. Ser. 2019, 1388, 012043. [Google Scholar] [CrossRef]
- Sanchez-Galvis, E.M.; Cardenas-Gutierrez, I.Y.; Contreras-Ropero, J.E.; García-Martínez, J.B.; Barajas-Solano, A.F.; Zuorro, A. An Innovative Low-Cost Equipment for Electro-Concentration of Microalgal Biomass. Appl. Sci. 2020, 10, 4841. [Google Scholar] [CrossRef]
- García, D.J.C.; Rangel-Basto, Y.A.; Barajas-Solano, A.F.; Muñoz-Peñalosa, Y.A.; Urbina-Suarez, N.A. Towards the Production of Microalgae Biofuels: The Effect of the Culture Medium on Lipid Deposition. Biotechnologia 2019, 100, 273–278. [Google Scholar] [CrossRef]
- Barajas-Solano, A.F.; Gonzalez-Delgado, A.D.; Kafarov, V. Effect of Thermal Pre-Treatment on Fermentable Sugar Production of Chlorella Vulgaris. Chem. Eng. Trans. 2014, 37, 655–660. [Google Scholar] [CrossRef]
- Oncel, S.S. Microalgae for a Macroenergy World. Renew. Sustain. Energy Rev. 2013, 26, 241–264. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Lardon, L.; Hélias, A.; Sialve, B.; Steyer, J.P.; Bernard, O. Life-Cycle Assessment of Biodiesel Production from Microalgae. Environ. Sci. Technol. 2009, 43, 6475–6481. [Google Scholar] [CrossRef] [Green Version]
- Benemann, J.; Woertz, I.; Lundquist, T. Life Cycle Assessment for Microalgae Oil Production. Disruptive Sci. Technol. 2012, 1, 68–78. [Google Scholar] [CrossRef]
- de Carvalho, J.C.; Borghetti, I.A.; Cartas, L.C.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. Biorefinery Integration of Microalgae Production into Cassava Processing Industry: Potential and Perspectives. Bioresour. Technol. 2018, 247, 1165–1172. [Google Scholar] [CrossRef]
- Chen, Y.D.; Ho, S.H.; Nagarajan, D.; Ren, N.Q.; Chang, J.S. Waste Biorefineries—Integrating Anaerobic Digestion and Microalgae Cultivation for Bioenergy Production. Curr. Opin. Biotechnol. 2018, 50, 101–110. [Google Scholar] [CrossRef]
- Guiza Franco, L.; Orozco Rojas, L.G.; Sánchez Galvis, E.M.; García Martínez, J.B.; Barajas Ferreira, C.; Zuorro, A.; Barajas Solano, A.F. Production of Chlorella Vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522. [Google Scholar] [CrossRef]
- Quintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella Vulgaris UTEX 1803. Water 2019, 11, 1526. [Google Scholar] [CrossRef] [Green Version]
- Ansari, F.A.; Gupta, S.K.; Nasr, M.; Rawat, I.; Bux, F. Evaluation of Various Cell Drying and Disruption Techniques for Sustainable Metabolite Extractions from Microalgae Grown in Wastewater: A Multivariate Approach. J. Clean. Prod. 2018, 182, 634–643. [Google Scholar] [CrossRef]
- Behera, M.; Dhali, D.; Chityala, S.; Mandal, T.; Bhattacharya, P.; Mandal, D.D. Evaluation of Performance of Planococcus Sp. TRC1 an Indigenous Bacterial Isolate Monoculture as Bioremediator for Tannery Effluent. Desalin. Water Treat. 2016, 57, 13213–13224. [Google Scholar] [CrossRef]
- Ajayan, K.V.; Selvaraju, M.; Unnikannan, P.; Sruthi, P. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species. Int. J. Phytoremediat. 2015, 17, 907–916. [Google Scholar] [CrossRef]
- Sánchez, S.; Martínez, M.E.; Espejo, M.T.; Pacheco, R.; Espinola, F.; Hodaifa, G. Mixotrophic Culture of Chlorella Pyrenoidosa with Olive-Mill Wastewater as the Nutrient Medium. J. Appl. Phycol. 2001, 13, 443–449. [Google Scholar] [CrossRef]
- Da Fontoura, J.T.; Rolim, G.S.; Mella, B.; Farenzena, M.; Gutterres, M. Defatted Microalgal Biomass as Biosorbent for the Removal of Acid Blue 161 Dye from Tannery Effluent. J. Environ. Chem. Eng. 2017, 5, 5076–5084. [Google Scholar] [CrossRef]
- Ardila, L.; Godoy, R.; Montenegro, L. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water. IOP Conf. Ser. Earth Environ. Sci. 2017, 83, 012031. [Google Scholar] [CrossRef] [Green Version]
- Pena, A.D.D.C.; Bertoldi, C.F.; da Fontoura, J.T.; Trierweiler, L.F.; Gutterres, M. Consortium of Microalgae for Tannery Effluent Treatment. Braz. Arch. Biol. Technol. 2019, 62, 1–10. [Google Scholar] [CrossRef]
- Nagabalaji, V.; Sivasankari, G.; Srinivasan, S.V.; Suthanthararajan, R.; Ravindranath, E. Nutrient Removal from Synthetic and Secondary Treated Sewage and Tannery Wastewater through Phycoremediation. Environ. Technol. 2019, 40, 784–792. [Google Scholar] [CrossRef]
- Zainith, S.; Saxena, G.; Kishor, R.; Bharagava, R.N. Application of Microalgae in Industrial Effluent Treatment, Contaminants Removal, and Biodiesel Production: Opportunities, Challenges, and Future Prospects. In Bioremediation for Environmental Sustainability: Toxicity, Mechanisms of Contaminants Degradation, Detoxification, and Challenges; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–517. [Google Scholar] [CrossRef]
- Pena, A.C.C.; Agustini, C.B.; Trierweiler, L.F.; Gutterres, M. Influence of Period Light on Cultivation of Microalgae Consortium for the Treatment of Tannery Wastewaters from Leather Finishing Stage. J. Clean. Prod. 2020, 263, 121618. [Google Scholar] [CrossRef]
- Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Kurniawati, P.; Gusrianti, R.; Dwisiwi, B.B.; Purbaningtias, T.E.; Wiyantoko, B. Verification of Spectrophotometric Method for Nitrate Analysis in Water Samples. AIP Conf. Proc. 2017, 1911, 020012. [Google Scholar] [CrossRef] [Green Version]
- Moheimani, N.R.; Webb, J.P.; Borowitzka, M.A. Bioremediation and Other Potential Applications of Coccolithophorid Algae: A Review. Algal Res. 2012, 1, 120–133. [Google Scholar] [CrossRef]
- Slocombe, S.P.; Ross, M.; Thomas, N.; McNeill, S.; Stanley, M.S. A Rapid and General Method for Measurement of Protein in Micro-Algal Biomass. Bioresour. Technol. 2013, 129, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frings, C.S.; Dunn, R.T. A Colorimetric Method for Determination of Total Serum Lipids Based on the Sulfo-Phospho-Vanillin Reaction. Am. J. Clin. Pathol. 1970, 53, 89–91. [Google Scholar] [CrossRef]
- Přibyl, P.; Cepák, V.; Kaštánek, P.; Zachleder, V. Elevated Production of Carotenoids by a New Isolate of Scenedesmus Sp. Algal Res. 2015, 11, 22–27. [Google Scholar] [CrossRef]
- Bennett, A.; Bogobad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef]
- Berkes, F. Evolution of Co-Management: Role of Knowledge Generation, Bridging Organizations and Social Learning. J. Environ. Manag. 2009, 90, 1692–1702. [Google Scholar] [CrossRef]
- Genawi, N.M.; Ibrahim, M.H.; El-Naas, M.H.; Alshaik, A.E. Chromium Removal from Tannery Wastewater by Electrocoagulation: Optimization and Sludge Characterization. Water 2020, 12, 1374. [Google Scholar] [CrossRef]
- Das, C.; Naseera, K.; Ram, A.; Meena, R.M.; Ramaiah, N. Bioremediation of Tannery Wastewater by a Salt-Tolerant Strain of Chlorella Vulgaris. J. Appl. Phycol. 2017, 29, 235–243. [Google Scholar] [CrossRef]
- Goswami, S.; Mazumder, D. Treatment of Chrome Tannery Wastewater by Biological Process—A Mini Review. World Acad. Sci. Eng. Technol. Int. J. Environ. Ecol. Eng. 2013, 7, 798–804. [Google Scholar] [CrossRef]
- Meenachi, S.; Kandasamy, S. Investigation of Tannery Liming Waste Water Using Green Synthesised Iron Oxide Nano Particles. Int. J. Environ. Anal. Chem. 2019, 99, 1286–1297. [Google Scholar] [CrossRef]
- Ullah, R.; Ahmad, W.; Ahmad, I.; Khan, M.; Khattak, M.I.; Hussain, F. Adsorption and Recovery of Hexavalent Chromium from Tannery Wastewater over Magnetic Max Phase Composite. Sep. Sci. Technol. 2021, 56, 439–452. [Google Scholar] [CrossRef]
- Le Luu, T. Tannery Wastewater Treatment after Activated Sludge Pre-Treatment Using Electro-Oxidation on Inactive Anodes. Clean Technol. Environ. Policy 2020, 22, 1701–1713. [Google Scholar] [CrossRef]
- Pal, M.; Malhotra, M.; Mandal, M.K.; Paine, T.K.; Pal, P. Recycling of Wastewater from Tannery Industry through Membrane-Integrated Hybrid Treatment Using a Novel Graphene Oxide Nanocomposite. J. Water Process Eng. 2020, 36, 101324. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, W.; De Costa, Y.G.; Zhuang, W.Q.; Yi, S. Assessing Inorganic Components of Cake Layer in A/O Membrane Bioreactor for Physical-Chemical Treated Tannery Effluent. Chemosphere 2020, 250, 126220. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Afrin, R.; Muyeed, A.A.; Sun, G. Treatment of Tannery Wastewater in a Pilot-Scale Hybrid Constructed Wetland System in Bangladesh. Chemosphere 2012, 88, 1065–1073. [Google Scholar] [CrossRef]
- Huang, W.; Shao, H.; Zhou, S.; Zhou, Q.; Li, W.; Xing, W. Modulation of Cadmium-Induced Phytotoxicity in Cabomba Caroliniana by Urea Involves Photosynthetic Metabolism and Antioxidant Status. Ecotoxicol. Environ. Saf. 2017, 144, 88–96. [Google Scholar] [CrossRef]
- Selvan, S.T.; Velramar, B.; Ramamurthy, D.; Balasundaram, S.; Sivamani, K. Pilot Scale Wastewater Treatment, CO2 Sequestration and Lipid Production Using Microalga, Neochloris Aquatica RDS02. Int. J. Phytoremediat. 2020, 22, 1462–1479. [Google Scholar] [CrossRef]
- Bellén, M.; Hernández, L.; Parra, D.; Vega, A.; Pérez, K. Using Scenedesmus Sp. for the Phycoremediation of Tannery Wastewater. Tecciencia 2016, 12, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Kozik, V.; Barbusinski, K.; Thomas, M.; Sroda, A.; Jampilek, J.; Sochanik, A.; Smolinski, A.; Bak, A. Taguchi Method and Response Surface Methodology in the Treatment of Highly Contaminated Tannery Wastewater Using Commercial Potassium Ferrate. Materials 2019, 12, 3784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, T.; Mekonnen, A.; Leta, S. Integrated Tannery Wastewater Treatment for Effluent Reuse for Irrigation: Encouraging Water Efficiency and Sustainable Development in Developing Countries. J. Water Process Eng. 2019, 30, 100514. [Google Scholar] [CrossRef]
- Yadav, A.; Raj, A.; Purchase, D.; Ferreira, L.F.R.; Saratale, G.D.; Bharagava, R.N. Phytotoxicity, Cytotoxicity and Genotoxicity Evaluation of Organic and Inorganic Pollutants Rich Tannery Wastewater from a Common Effluent Treatment Plant (CETP) in Unnao District, India Using Vigna Radiata and Allium Cepa. Chemosphere 2019, 224, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Bharagava, R.N.; Saxena, G.; Mulla, S.I.; Patel, D.K. Characterization and Identification of Recalcitrant Organic Pollutants (ROPs) in Tannery Wastewater and Its Phytotoxicity Evaluation for Environmental Safety. Arch. Environ. Contam. Toxicol. 2018, 75, 259–272. [Google Scholar] [CrossRef]
- Dunn, K.; Maart, B.; Rose, P. Arthrospira (Spirulina) in Tannery Wastewaters. Part 2: Evaluation of Tannery Wastewater as Production Media for the Mass Culture of Arthrospira Biomass. Water SA 2013, 39, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Saranya, D.; Shanthakumar, S. Effect of Culture Conditions on Biomass Yield of Acclimatized Microalgae in Ozone Pre-Treated Tannery Effluent: A Simultaneous Exploration of Bioremediation and Lipid Accumulation Potential. J. Environ. Manag. 2020, 273, 111129. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Serrano, A.; López-Alejo, J.E.; Hernández-Cortázar, M.A.; Elizalde, I. Removing Contaminants from Tannery Wastewater by Chemical Precipitation Using CaO and Ca(OH)2. Chin. J. Chem. Eng. 2020, 28, 1107–1111. [Google Scholar] [CrossRef]
- González-Fernández, C.; Ballesteros, M. Linking Microalgae and Cyanobacteria Culture Conditions and Key-Enzymes for Carbohydrate Accumulation. Biotechnol. Adv. 2012, 30, 1655–1661. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Ralph, P.J. Microalgal Bioremediation of Emerging Contaminants—Opportunities and Challenges. Water Res. 2019, 164, 114921. [Google Scholar] [CrossRef]
- Choi, S.; Song, C.W.; Shin, J.H.; Lee, S.Y. Biorefineries for the Production of Top Building Block Chemicals and Their Derivatives. Metab. Eng. 2015, 28, 223–239. [Google Scholar] [CrossRef]
- Salama, E.S.; Kurade, M.B.; Abou-Shanab, R.A.I.; El-Dalatony, M.M.; Yang, I.S.; Min, B.; Jeon, B.H. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew. Sustain. Energy Rev. 2017, 79, 1189–1211. [Google Scholar] [CrossRef]
- Sforza, E.; Kumkum, P.; Barbera, E.; Kumar, S. Bioremediation of industrial effluents: How a biochar pretreatment may increase the microalgal growth in tannery wastewater. J. Water Process Eng. 2020, 37, 101431. [Google Scholar] [CrossRef]
- Cho, H.D.; Kim, E.Y.; Hung, Y.-T. Heavy metal removal by microbial bio sorbents. In Handbook of Environmental Engineering: Environmental Bioingenieering; Humana Press: Totowa, NJ, USA, 2010; pp. 375–402. [Google Scholar]
- Gendy, T.S.; El-Temtamy, S.A. Commercialization potential aspects of microalgae for biofuel production: An overview. Egypt. J. Pet. 2013, 22, 43–51. [Google Scholar] [CrossRef] [Green Version]
Experiment | Block | % TWW | Light/Dark Cycle |
---|---|---|---|
1 | 1 | 20 | 8 |
2 | 1 | 20 | 18 |
3 | 1 | 50 | 8 |
4 | 1 | 50 | 18 |
5 (C) | 1 | 35 | 13 |
6 | 2 | 13.8 | 13 |
7 | 2 | 56.2 | 13 |
8 | 2 | 35 | 5.92 |
9 | 2 | 35 | 20.07 |
10 (C) | 2 | 35 | 13 |
Parameter | Units | Mean Value | Permissible Values RSL 631 (2015) of Colombia |
---|---|---|---|
Nitrates | mg L−1 NO3 | 1641.00 ± 4.34 | Analysis and report |
Nitrites | mg L−1 NO2 | 0.15 ± 0.0035 | Analysis and report |
Ammonia | mg L−1 N-NH3 | 180.00 ± 2.4 | Analysis and report |
Total Nitrogen | mg L−1 | 495.36 ± 5.28 | Analysis and report |
Turbidity | FAU | 1120.00 ± 7.45 | Analysis and report |
Phosphate | mg L−1 P-PO4 | 31.05 ± 0.67 | Analysis and report |
Total Phosphorus | mg L−1 | 46.32 ± 1.06 | Analysis and report |
Color | m−1 | 1300.00 ± 8.65 | Analysis and report |
COD | mg L−1 O2 | 6720.00 ± 5.34 | 1200.00 |
BOD | mg L−1 O2 | 4368.00 ± 2.34 | 600.00 |
pH | pH units | 4.5 ± 0.1 | 6–9 |
Fats and oils | mg L−1 | 387.42 ± 1.73 | 60.00 |
Total Suspended Solids (TSS) | mg L−1 | 4960.56 ± 2.3 | 600.00 |
Settling Solids (SSOL) | mg L−1 | 315.00 ± 1.51 | 2.00 |
Cr | mg L−1 | 0.17 ± 0.002 | 1.5 |
Cd | mg L−1 | 0.003 ± 0 | 0.05 |
Ni | mg L−1 | ND | N/A |
Cu | mg L−1 | ND | N/A |
Zn | mg L−1 | ND | N/A |
Fe | mg L−1 | 3.95 | N/A |
Strains | Response | % TWW | |||
---|---|---|---|---|---|
50 | 75 | 100 | CONTROL | ||
Chlorella sp. | Biomass (g L−1) | 0.9 ± 0.1 | 1.06 ± 0.02 | 1.08 ± 0.0 | 0.41 ± 0.03 |
NO3 (%) | 73.6 ± 0.84 | 78.0 ± 1.73 | 82.3 ± 1.11 | 98.6 ± 0.16 | |
PO4 (%) | 53.1 ± 1.17 | 59.9 ± 2.65 | 64.8 ± 4. 27 | 98.2 ± 0.02 | |
µ (d−1) | 0.0876 ± 0.0001 | 0.0225 ± 0.0006 | 0.0197 ± 0.005 | 0.09 ± 0.0003 | |
Cr (mg L−1) | 0.07 | 0.02 | 0 | 0 | |
Cd (mg L−1) | 0 | 0 | 0 | 0 | |
Fe (mg L−1) | 1.1 | 0.6 | 0.01 | 0 | |
Scenedesmus sp. | Biomass (g L−1) | 0.71 ± 0.15 | 0.89 ± 0.10 | 1.03 ± 0.16 | 0.30 ± 0.12 |
NO3 (%) | 84.4 ± 0.24 | 85.1 ± 1.20 | 88.1 ± 0.27 | 98.9 ± 0.33 | |
PO4 (%) | 54.2 ± 2.92 | 55.5 ± 2.75 | 61.9 ± 4.45 | 98.6 ± 0.016 | |
µ (d−1) | 0.0187 ± 0.00034 | 0.0236 ± 0.0012 | 0.0156 ± 0 | 0.1 ± 0.001 | |
Cr (mg L−1) | 0.9 | 0.06 | 0.01 | 0 | |
Cd (mg L−1) | 0 | 0 | 0 | 0 | |
Fe (mg L−1) | 0.7 | 0.1 | 0 | 0 | |
Hapalosiphon sp. | Biomass (g L−1) | 0.65 ± 0.76 | 1.18 ± 0.18 | 1.31 ± 0.23 | 0.31 ± 0.016 |
NO3 (%) | 70.1 ± 19.15 | 87.9 ± 1.77 | 90.0 ± 0.87 | 91.1 ± 0.19 | |
PO4 (%) | 49.5 ± 1.17 | 52.2 ± 2.09 | 54.1 ± 5.60 | 92.4 ± 0.01 | |
µ (d−1) | 0.0436 ± 0.0003 | 0.0352 ± 0.0005 | 0.035 ± 0.0001 | 0.039 ± 0.0003 | |
Cr (mg L−1) | 0.8 | 0.1 | 0.03 | 0 | |
Cd (mg L−1) | 0 | 0 | 0 | 0 | |
Fe (mg L−1) | 0.3 | 0.05 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbina-Suarez, N.A.; Ayala-González, D.D.; Rivera-Amaya, J.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water 2022, 14, 346. https://doi.org/10.3390/w14030346
Urbina-Suarez NA, Ayala-González DD, Rivera-Amaya JD, Barajas-Solano AF, Machuca-Martínez F. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water. 2022; 14(3):346. https://doi.org/10.3390/w14030346
Chicago/Turabian StyleUrbina-Suarez, Néstor A., Darly D. Ayala-González, Jennyfer D. Rivera-Amaya, Andrés F. Barajas-Solano, and Fiderman Machuca-Martínez. 2022. "Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria" Water 14, no. 3: 346. https://doi.org/10.3390/w14030346
APA StyleUrbina-Suarez, N. A., Ayala-González, D. D., Rivera-Amaya, J. D., Barajas-Solano, A. F., & Machuca-Martínez, F. (2022). Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water, 14(3), 346. https://doi.org/10.3390/w14030346