Heavy Metals and As in Ground Water, Surface Water, and Sediments of Dexing Giant Cu-Polymetallic Ore Cluster, East China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Analytical Methods
2.3.1. Analysis of Surface and Ground Water Samples
2.3.2. Analysis of Sediment Samples
2.3.3. Statistical Analysis
2.4. Geochemical and Environmental Risk Assessment
2.4.1. Pollution Indices (Pi and Pn)
2.4.2. Geo-Accumulation Index (Igeo)
2.4.3. Potential Ecological Risk Index (RI)
3. Results and Discussion
3.1. HMs Concentrations
3.1.1. Surface and Ground Water
3.1.2. Sediments
3.2. Spatial Distribution and Combined Characteristics of HMs
3.2.1. Spatial Distribution of HMs
3.2.2. Cluster Analysis
3.3. Pollution Characteristics and Environmental Risk Assessment
3.3.1. Ground and Surface Water
3.3.2. Sediments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vareda, J.P.; Valente, A.J.M.; Duraes, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Björkman, L.; Lundekvam, B.F.; Lægreid, T.; Bertelsen, B.I.; Morild, I.; Lilleng, P.; Lind, B.; Palm, B.; Vahter, M. Mercury in human brain, blood, muscle and toenails in relation to exposure: An autopsy study. Environ. Health 2007, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpor, O.B.; Muchie, M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. Int. J. Phys. Sci. 2010, 5, 1807–1817. [Google Scholar]
- Acosta, J.A.; Arocena, J.M.; Faz, A. Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia. Chemosphere 2015, 138, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Vareda, J.P.; Valente, A.J.; Durães, L. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels. Adv. Colloid Interface Sci. 2016, 237, 28–42. [Google Scholar] [CrossRef]
- Han, Z.; Guo, X.; Zhang, B.; Liao, J.; Nie, L. Blood lead levels of children in urban and suburban areas in China (1997–2015): Temporal and spatial variations and influencing factors. Sci. Total Environ. 2018, 625, 1659–1666. [Google Scholar] [CrossRef]
- Gafur, N.A.; Sakakibara, M.; Sano, S.; Sera, K. A case study of heavy metal pollution in water of bone river by artisanal small-scale gold mine activities in eastern part of Gorontalo, Indonesia. Water 2018, 10, 1507. [Google Scholar] [CrossRef] [Green Version]
- Qiao, D.; Wang, G.; Li, X.; Wang, S.; Zhao, Y. Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. Chemosphere 2020, 248, 125988. [Google Scholar]
- Ding, Z.; Li, Y.; Sun, Q.; Zhang, H. Trace Elements in Soils and Selected Agricultural Plants in the Tongling Mining Area of China. Int. J. Environ. Res. Public Health 2018, 15, 202. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Wang, L.; Kabwe, E.; Chen, X.; Yan, R.; An, K.; Zhang, L.; Wu, A. Copper Bioleaching in China: Review and Prospect. Minerals 2018, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated sites in europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef] [PubMed]
- Azhari, A.E.; Rhoujjati, A.; Hachimi, M.E.; Ambrosi, J.P. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in ne morocco. Ecotoxicol. Environ. Saf. 2017, 144, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.J.; Zhou, G.H.; Cheng, Z.Z.; Yang, R.; He, L.; Zeng, D.M.; Sun, B.B. Advances in geochemical survey of mine tailings project in china. J. Geochem. Explor. 2014, 139, 193–200. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, Z.; Pan, H.; Sun, B.; Zeng, D.; Ling, H.; Yang, R.; Zhou, G. Cadmium contamination in soils and crops in four mining areas, china. J. Geochem. Explor. 2018, 192, 72–84. [Google Scholar] [CrossRef]
- Ramirez, M.; Massolo, S.; Frache, R.; Correa, J.A. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chille. Mar. Pollut. Bull. 2005, 50, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Zakir, H.M.; Sharmin, S.; Akter, A.; Rahman, M.S. Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: A case study of Jamalpur Sadar area, Bangladesh. Environ. Adv. 2020, 2, 100005. [Google Scholar] [CrossRef]
- Hu, B.Q.; Li, G.G.; Li, J.; Bi, J.Q.; Zhao, J.T.; Bu, R.Y. Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay, China. Environ. Sci. Pollut. Res. 2013, 20, 4099–4110. [Google Scholar]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2015, 144, 264–272. [Google Scholar] [CrossRef]
- Chen, M.; Li, F.; Tao, M.; Hu, L.; Shi, Y.; Liu, Y. Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China. Mar. Pollut. Bull. 2019, 146, 893–899. [Google Scholar] [CrossRef]
- Yuan, G.L.; Liu, C.; Chen, L.; Yang, Z. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang lake in China. J. Hazard. Mater. 2011, 185, 336–345. [Google Scholar]
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total Environ. 2014, 470–471, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.G.; Ni, P.; Zhao, C.; Yao, J.; Li, L.; Zhao, D.L.; Zhu, A.D.; Hu, J. The research advances and genetic model of the giant Dexing Cu-Au ore cluster. Acta Petrol. Sin. 2019, 35, 3644–3658. (In Chinese) [Google Scholar]
- Yi, M. Dynamic Anlysis on Environment Quality of Main River in the Dexing Copper Mine from 2002 to 2017. Master’s Thesis, China University of Geosciences, Beijing, China, 2019. [Google Scholar]
- Xiao, H.Y.; Zhou, W.B.; Zeng, F.P.; Wu, D.S. Water chemistry and heavy metal distribution in an AMD highly contaminated river. Environ. Earth Sci. 2010, 59, 1023–1031. [Google Scholar] [CrossRef]
- Yin, Z.; Xie, S.; Fang, H.; Pu, Y.; Chen, S. Heavy metal pollution characteristics and plant restorationdiagnosis of Dexing mopper mine tailings. Anhui Chem. Ind. 2020, 46, 82–85. (In Chinese) [Google Scholar]
- Teng, Y.; Ni, S.; Jiao, P.; Deng, J.; Zhang, C.; Wang, J. Eco-environmental geochemistry of heavy metal pollution in Dexing mining area. Chin. J. Geochem. 2004, 23, 349–358. [Google Scholar]
- Ni, S.; Li, R.; Wang, A. Heavy metal content in scalp hair of the inhabitants near Dexing Copper Mine, Jiangxi Province, China. Sci. China Earth Sci. 2011, 54, 780–788. [Google Scholar] [CrossRef]
- Ni, S.; Li, R.; Wang, A. The Distribution of Heavy Metal in the Scalp Hair of the Females Near Dexing Mine Area, Jiangxi, China. Environ. Monit. China 2012, 28, 81–87. (In Chinese) [Google Scholar]
- Chang, Y.H.; Zhao, Y.Y.; Cao, C.; Shan, Y.; Cao, Q. Characteristics of heavy metals content and assessment of health risk in different environment media in the Dexing copper mining area. Acta Geol. Sin. 2015, 89, 889–908. (In Chinese) [Google Scholar]
- Ji, Y.; Wu, P.; Zhang, J.; Zhang, J.; Zhou, Y.; Peng, Y.; Zhang, S.; Cai, G.; Gao, G. Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: A case study along the Le’an river. Chemosphere 2018, 199, 361–371. [Google Scholar] [CrossRef]
- Chen, C.; Ni, S.; He, B.; Zhang, C. Assessment of heavy metals contamination in soils of Dexing region, Jiangxi province, China. Chin. J. Geochem. 2006, 25 (Suppl. S1), 27–28. [Google Scholar] [CrossRef]
- He, M.; Wang, Z.; Tang, H. Spatial and temporal patterns of acidity and heavy metals in predicting the potential for ecological impact on the Le An river polluted by acid mine drainage. Sci. Total Environ. 1997, 206, 67–77. [Google Scholar] [CrossRef]
- Zhang, Y. Analysis on the pollution status of heavy metal elements and its impact on the environment in Dexing Copper Mine, Jiangxi Province. China Metal Bull. 2019, 11, 142–144. (In Chinese) [Google Scholar]
- Wang, G.G.; Ni, P.; Wang, R.C.; Zhao, K.D.; Chen, H.; Ding, J.Y.; Zhao, C.; Cai, Y.T. Geological, fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, South China: Implications for ore genesis and exploration. J. Asian Earth Sci. 2013, 74, 343–360. [Google Scholar] [CrossRef]
- Zhao, C.; Ni, P.; Wang, G.G.; Ding, J.Y.; Chen, H.; Zhao, K.D.; Cai, Y.T.; Xu, Y.F. Geology, fluid inclusion and isotope constraints on ore genesis of the Neoproterozoic Jinshan orogenic gold deposit, South China. Geofluids 2013, 13, 506–527. [Google Scholar] [CrossRef]
- Li, L.; Ni, P.; Wang, G.G.; Zhu, A.D.; Pan, J.Y.; Chen, H.; Huang, B.; Yuan, H.X.; Wang, Z.K.; Fang, M.H. Multi-stage fluid boiling and formation of the giant Fujiawu porphyry Cu-Mo deposit in South China. Ore Geol. Rev. 2017, 81, 898–911. [Google Scholar] [CrossRef]
- Chen, H.; Chen, R.; Teng, Y.; Wu, J. Contamination characteristics, ecological risk and source identification of trace metals in sediments of the Le’an River (China). Ecotoxicol. Environ. Saf. 2016, 125, 85–92. [Google Scholar] [CrossRef]
- Yu, Y.; Hui, W.; Qi, L.; Wang, B.; Yan, Z.; Ding, A. Exposure risk of rural residents to copper in the Le’an River basin, Jiangxi Province, China. Sci. Total Environ. 2016, 548–549, 402–407. [Google Scholar] [CrossRef]
- Cheng, Z.Z.; Xie, X.J.; Pan, H.J.; Yang, R. Elemental concentrations of stream sediments in southern china. Geostand. Geoanal. Res. 2014, 38, 211–223. [Google Scholar]
- Carranza, E.J.M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J. Geochem. Explor. 2011, 110, 167–185. [Google Scholar] [CrossRef]
- Kim, I.G.; Kim, Y.B.; Kim, R.H.; Hyon, T.S. Spatial distribution, origin and contamination assessment of heavy metals in surface sediments from Jangsong tidal flat, Kangryong river estuary, DPR Korea. Mar. Pollut. Bull. 2021, 168, 122414. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Environmental Quality Standards for Surface Water (GB 3838-2002); China Standards Publishing House: Beijing, China, 2002. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. Standards for Drinking Water Quality (GB 5794-2006); China Standards Publishing House: Beijing, China, 2006. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Liu, R.P.; Xu, Y.N.; Zhang, J.H.; Chen, H.Q.; He, F.; Qiao, G.; Ke, H.L.; Shi, Y.F. A comparative study of the content of heavy metals in typical metallic mine rivers of the Tibetan Plateau. Geol. Bull. China 2018, 37, 2154–2168. (In Chinese) [Google Scholar]
- Cheng, H.X.; Li, M.; Zhao, C.D.; Li, K.; Peng, M.; Qin, A.H.; Cheng, X.M. Overview of trace metals in the urban soil of 31 metropolises in China. J. Geochem. Explor. 2014, 139, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Hammarstrom, J.M.; Seal, R.R.; Jackson, J.C. Weathering of sulfidic shale and copper mine waste: Secondary minerals and metal cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. Environ. Geol. 2003, 45, 35–57. [Google Scholar] [CrossRef] [Green Version]
- Gaillardet, J.; Viers, J.; Dupre, B. Treatise on Geochemistry, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 225–272. [Google Scholar]
- Moore, F.; Esmaeili, K.; Keshavarzi, B. Assessment of Heavy Metals Contamination in Stream Water and Sediments Affected by the Sungun Porphyry Copper Deposit, East Azerbaijan Province, Northwest Iran. Water Qual. Expo. Health 2011, 3, 37–49. [Google Scholar] [CrossRef]
Pi Class [45] | Pollution Level | Pn Class [38] | Pollution Level | Igeo Class [46] | Pollution Level | Eir Class | Potential Risk | RI Class [44] | Ecological Risk |
---|---|---|---|---|---|---|---|---|---|
<1 | Safe | <0.7 | Safe | <0 | Unpolluted | <40 | Low | <150 | Low |
1–2 | Slight | 0.7–1 | Precaution | 0–1 | Unpolluted to Moderate | 40–80 | Moderate | 150–300 | Moderate |
2–3 | Moderate | 1–2 | Slight | 1–2 | Moderate | 80–160 | High | 300–600 | High |
3–5 | Heavy | 2–3 | Moderate | 2–3 | Moderate to Heavy | 160–320 | serious | >600 | serious |
>5 | Extreme | >3 | Heavy | 3–4 | Heavy | >320 | severe | ||
4–5 | Heavy to Extreme | ||||||||
>5 | Extreme |
Location | As | Cd | Cr | Cu | Hg | Pb | Zn | pH | |
---|---|---|---|---|---|---|---|---|---|
SW | |||||||||
FXT | Mean | 1.89 ± 0.81 | 0.26 ± 0.11 | 1.12 ± 0.25 | 4.64 ± 3.07 | 0.024 ± 0.010 | 0.62 ± 0.78 | 35.8 ± 39.5 | 7.15 ± 0.24 |
n = 11 | Range | 0.81~3.48 | 0.16~0.48 | 0.77~1.56 | 1.51~10.5 | 0.005~0.040 | 0.08~2.71 | 5.22~101 | 6.80~7.50 |
DWT | Mean | 1.76 ± 1.94 | 2.64 ± 7.58 | 13.1 ± 49.9 | 5689 ± 22,503 | 0.038 ± 0.019 | 1.38 ± 1.45 | 507 ± 1792 | 5.26 ± 1.56 |
n = 23 | Range | 0.55~10.1 | 0.009~37.2 | 0.34~241 | 2.53~108,700 | 0.009~0.073 | 0.01~5.7 | 7.06~8715 | 2.47~7.22 |
LAR | Mean | 1.36 ± 0.33 | 0.13 ± 0.15 | 1.04 ± 0.4 | 32.1 ± 80.7 | 0.043 ± 0.023 | 0.59 ± 0.26 | 27.1 ± 24.6 | 7.04 ± 0.27 |
n = 19 | Range | 0.74~2.29 | 0.01~0.54 | 0.52~2.36 | 1.86~362 | 0.012~0.108 | 0.29~1.11 | 4.85~81.2 | 6.41~7.55 |
FJWT | Mean | 945 ± 1557 | 2859 ± 4124 | 143 ± 180 | 14325 ± 32,074 | 0.045 ± 0.027 | 382 ± 840 | 4732 ± 5100 | 3.00 ± 0.60 |
n = 8 | Range | 1.03~4275 | 0.67~9107 | 0.76~549 | 126~93,281 | 0.016~0.090 | 1.72~2435 | 82.7~12,460 | 2.40~4.24 |
JST | Mean | 19.7 ± 9.43 | 0.012 ± 0.005 | 1.26 ± 0.2 | 2.2 ± 0.33 | 0.035 ± 0.014 | 0.1 ± 0.1 | 23.1 ± 20.1 | 7.24 ± 0.23 |
n = 8 | Range | 2.15~30.7 | 0.01~0.02 | 1.09~1.72 | 1.67~2.59 | 0.022~0.064 | 0.01~0.27 | 5.89~56.7 | 7.01~7.68 |
YST | Mean | 30.7 ± 35 | 189 ± 141 | 117 ± 185 | 5291 ± 4152 | 0.070 ± 0.066 | 570 ± 600 | 45829 ± 37,022 | 3.27 ± 0.67 |
n = 5 | Range | 10.3~92.6 | 120~442 | 1.35~442 | 1606~12,010 | 0.017~0.182 | 78~1611 | 24420~111,700 | 2.79~4.40 |
DXR | Mean | 4.0 ± 5.8 | 13.5 ± 43.1 | 0.96 ± 0.38 | 22.2 ± 15.4 | 0.035 ± 0.017 | 1.47 ± 1.82 | 302 ± 814 | 7.20 ± 0.56 |
n = 24 | Range | 0.74~30.6 | 0.014~215 | 0.46~1.73 | 2.61~59.4 | 0.017~0.081 | 0.23~5.71 | 4.77~3914 | 6.00~8.50 |
SW-All | Mean | 71.3 ± 457 | 213 ± 1261 | 18.5 ± 73.8 | 2405 ± 13,396 | 0.037 ± 0.023 | 52.8 ± 280 | 2529 ± 11,791 | 6.26 ± 1.63 |
n = 114 | Range | 0.55~4275 | 0.009~9107 | 0.26~549 | 1.51~108,700 | 0.005~0.182 | 0.01~2435 | 4.77~111,700 | 2.40~8.50 |
GB 3838-2002 Class III | 50 | 5 | 50 | 1000 | 0.1 | 50 | 1000 | 6.0~9.0 | |
GW | Mean | 1.3 ± 2.48 | 0.08 ± 0.09 | 2.54 ± 0.97 | 3.43 ± 5.44 | 0.024 ± 0.013 | 1.24 ± 3.61 | 23.8 ± 34.9 | 6.19 ± 0.48 |
n = 27 | Range | 0.06~12 | 0.013~0.42 | 1.62~5. 13 | 0.3~27.9 | 0.010~0.05 | 0.2~19.2 | 2.76~168 | 5.39~7.31 |
GB 5749-2006 | 10 | 5 | 50 | 1000 | 1 | 10 | 1000 | 6.5~8.5 |
Location | As | Cd | Cr | Cu | Hg | Pb | Zn | pH | |
---|---|---|---|---|---|---|---|---|---|
FXT | Mean | 14.8 ± 3.82 | 0.17 ± 0.06 | 93.3 ± 17.5 | 415 ± 464 | 0.046 ± 0.013 | 21.3 ± 10.7 | 73.1 ± 29.3 | 7.72 ± 0.65 |
n = 11 | Range | 6.89~21.9 | 0.08~0.26 | 71~122 | 42.9~1410 | 0.026~0.071 | 6.6~35.5 | 36~108 | 6.89~8.82 |
DWT | Mean | 35.3 ± 35.6 | 0.3 ± 0.15 | 102 ± 27 | 876 ± 743 | 0.61 ± 2.31 | 52.2 ± 28 | 107 ± 41.6 | 5.83 ± 1.58 |
n = 30 | Range | 6.37~190 | 0.08~0.6 | 69~203 | 39.2~2538 | 0.025~12.77 | 9.2~155 | 38~217 | 3.69~8.43 |
LAR | Mean | 17.7 ± 35.7 | 1.99 ± 10.8 | 85.9 ± 13.9 | 184 ± 189 | 0.093 ± 0.16 | 52.6 ± 151 | 81.1 ± 49.7 | 6.81 ± 0.94 |
n = 36 | Range | 4.58~220 | 0.07~65.1 | 68~144 | 16~680 | 0.018~0.79 | 17~930 | 50~280 | 4.18~8.52 |
FJWT | Mean | 289 ± 414 | 0.68 ± 0.62 | 115 ± 10.5 | 370 ± 221 | 0.085 ± 0.044 | 99.3 ± 72 | 123 ± 53.7 | 4.75 ± 0.87 |
n = 12 | Range | 9.36~1428 | 0.09~1.71 | 94~126 | 55.7~860 | 0.028~0.15 | 20.3~235 | 50~194 | 3.75~6.8 |
JST | Mean | 509 ± 199 | 0.3 ± 0.12 | 93.9 ± 7.22 | 50.2 ± 21.2 | 1.04 ± 0.45 | 33 ± 8.85 | 124 ± 20.7 | 8.01 ± 0.35 |
n = 8 | Range | 202~820 | 0.17~0.47 | 84~106 | 26.9~89.8 | 0.30~1.62 | 19.3~42.7 | 99~149 | 7.6~8.5 |
YST | n = 1 | 893 | 5.22 | 145 | 1369 | 0.36 | 1000 | 1883 | 7.88 |
DXR | Mean | 98.7 ± 122 | 1.25 ± 1.79 | 70 ± 22.7 | 254 ± 216 | 0.094 ± 0.082 | 65.2 ± 66.5 | 151 ± 83.5 | 7.42 ± 0.57 |
n = 29 | Range | 12.2~600 | 0.23~7.91 | 34~123 | 13.8~1035 | 0.025~0.34 | 26.2~253 | 82~382 | 5.99~8.17 |
All | Mean | 75.8 ± 172 | 0.8 ± 4.65 | 93.2 ± 60.3 | 279 ± 441 | 0.26 ± 0.95 | 53.1 ± 99.9 | 117 ± 143 | 6.81 ± 1.19 |
n = 200 | Range | 0.88~1428 | 0.07~65.1 | 23~823 | 9.26~2538 | 0.018~12.8 | 6.6~1000 | 36~1883 | 3.69~8.82 |
Background value | 13.1 | 0.23 | 67 | 25 | 0.075 | 32.2 | 81 |
Pollution Level | Pi | Pollution Level | Pn | ||||||
---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Hg | Pb | Zn | |||
Safe | 26 | 27 | 27 | 27 | 27 | 26 | 27 | Safe | 25 |
Slight | 1 | 0 | 0 | 0 | 0 | 1 | 0 | Precaution | 1 |
Slight | 1 |
Pollution Level | Pi | Pollution Level | Pn | ||||||
---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Hg | Pb | Zn | |||
Safe | 109 | 91 | 106 | 100 | 112 | 106 | 100 | Safe | 86 |
Slight | 1 | 8 | 3 | 1 | 2 | 1 | 4 | Precaution | 4 |
Moderate | 1 | 2 | 1 | 2 | 0 | 0 | 0 | Slight | 5 |
Heavy | 0 | 2 | 2 | 4 | 0 | 0 | 1 | Moderate | 2 |
Extreme | 3 | 11 | 2 | 7 | 0 | 7 | 9 | Heavy | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Zhou, G.; Yang, R.; Cheng, Z.; Sun, B. Heavy Metals and As in Ground Water, Surface Water, and Sediments of Dexing Giant Cu-Polymetallic Ore Cluster, East China. Water 2022, 14, 352. https://doi.org/10.3390/w14030352
Pan H, Zhou G, Yang R, Cheng Z, Sun B. Heavy Metals and As in Ground Water, Surface Water, and Sediments of Dexing Giant Cu-Polymetallic Ore Cluster, East China. Water. 2022; 14(3):352. https://doi.org/10.3390/w14030352
Chicago/Turabian StylePan, Hanjiang, Guohua Zhou, Rong Yang, Zhizhong Cheng, and Binbin Sun. 2022. "Heavy Metals and As in Ground Water, Surface Water, and Sediments of Dexing Giant Cu-Polymetallic Ore Cluster, East China" Water 14, no. 3: 352. https://doi.org/10.3390/w14030352
APA StylePan, H., Zhou, G., Yang, R., Cheng, Z., & Sun, B. (2022). Heavy Metals and As in Ground Water, Surface Water, and Sediments of Dexing Giant Cu-Polymetallic Ore Cluster, East China. Water, 14(3), 352. https://doi.org/10.3390/w14030352