Forest Fires, Land Use Changes and Their Impact on Hydrological Balance in Temperate Forests of Central Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Simulation
2.3. Data and Sources of Information
2.3.1. Hydrological Catchment Units
2.3.2. Land Use Changes
2.3.3. Hydrological Parameters
2.4. Model Construction
2.5. Calibration and Validation
Measurement of Goodness of Fit
Parameters | Abbreviation | Resolution | Sensitivity * |
---|---|---|---|
Area | A | Land use | High |
Water storage capacity in the deep zone | Dw | Basin | High |
Deep layer conductivity | Kd | Basin | Moderate |
Initial moisture of the lower layer | Z2 | Basin | No influence |
Water storage capacity in the root zone | Sw | Soil type | Moderate |
Root zone conductivity | Ks | Soil type | Moderate |
Preferential flow direction | f | Soil type | Moderate |
Initial moisture of the upper layer | Z1 | Soil type | No influence |
Crop coefficient | Kc | Land use | High |
Leaf area index | LAI | Land use | High |
Precipitation | P | Basin | High |
Temperature | T | Basin | Moderate |
Wind | V | Basin | Low |
Relative humidity | HR | Basin | Low |
Latitude | L | Basin | Low |
Cloud fraction | FN | Basin | Low |
2.6. Construction of Scenarios
2.7. Hydrological Balance
3. Results and Discussion
3.1. Changes in Land Use
3.2. Future Land Use Scenarios
3.3. Model Calibration
3.4. Hydrological Balance
3.4.1. Current Hydrological Balance
3.4.2. Future Projections
3.4.3. Environmental Hydrological Service in Temperate Forests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flores-López, F.; Galaitsi, S.; Escobar, M.; Purkey, D. Modeling of Andean Páramo Ecosystems’ Hydrological Response to Environmental Change. Water 2016, 8, 94. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthes; Island Press: Washington, DC, USA, 2005; p. 137. [Google Scholar]
- Secretaría del Medio Ambiente y Recursos Naturales (Semarnat). Ecosistemas Terrestres. In Informe de la Situación del Medio Ambiente en México 2012; Semarnat: Zapopan, Mexico, 2012; pp. 40–118. [Google Scholar]
- Balvanera, P.; Cotler, H.; Aburto, O.; Aguilar, A.; Aguilera, M.; Aluja, M.; Andrade, A.; Arroyo, I.; Ashworth, L.; Astier, M.; et al. Estado y tendencias de los servicios ecosistémicos. In Capital Natural de México, Vol. II: Estado de Conservación y Tendencias de Cambio; Conabio: Tlalpan, Mexico, 2009; pp. 185–245. [Google Scholar]
- Roffe, T.G.; Toruño, P.J.; Orantes, E.A.M.; Espinoza, E.I.G. Servicios ambientales y gestión de los recursos hídricos utilizando el modelo WEAP: Casos de estudio en Iberoamérica. Rev. Iberoam. Bioecon. Cambio Clim. 2015, 1, 72–87. [Google Scholar] [CrossRef] [Green Version]
- Isik, S.; Kalin, L.; Schoonover, J.E.; Srivastava, P.; Lockaby, B.G. Modeling effects of changing land use/cover on daily streamflow: An Artificial Neural Network and curve number based hybrid approach. J. Hydrol. 2013, 485, 103–112. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The nature and value of ecosystem services: An overview highlighting hydrologic services. Ann. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Comisión Nacional del Agua (Conagua). Atlas del Agua en México 2015; Secretaría del Medio Ambiente y Recursos Naturales: Zapopan, Mexico, 2015; p. 135.
- Brauman, K.A. Hydrologic ecosystem services: Linking ecohydrologic processes to human well-being in water research and watershed management. WIREs Water 2015, 2, 345–358. [Google Scholar] [CrossRef]
- Manson, E. Los servicios hidrológicos y la conservación de los bosques de México. Madera Bosques 2016, 10, 3–20. [Google Scholar] [CrossRef]
- De la Maza, H.R. Pago por servicios ambientales México. In Agua: El oro Azul; Senado de la República, LXI Legislatura, Comisión de Recursos Hidráulicos, Comisión de Medio Ambiente, Recursos Naturales y Pesca: Ciudad de México, Mexico, 2012; pp. 73–88. [Google Scholar]
- Zilberman, D.; Lipper, L.; McCarthy, N. Putting Payments for Environmental Services in the Context of Economic Development. In Payment for Environmental Services in Agricultural Landscapes; The Food and Agriculture Organization of the United Nations: New York, NY, USA, 2009; pp. 1–25. [Google Scholar]
- Rzedowski, J. Capítulo 4: Influencia del hombre. In Vegetación de México, 1st ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: México D.F., Mexico, 2006; pp. 59–74. [Google Scholar]
- Aboelnour, M.; Gitau, M.W.; Engel, B.A. A Comparison of Streamflow and Baseflow Responses to Land-Use Change and the Variation in Climate Parameters Using SWAT. Water 2020, 12, 191. [Google Scholar] [CrossRef] [Green Version]
- Khoshnoodmotlagh, S.; Verrelst, J.; Daneshi, A.; Mirzaei, M.; Azadi, H.; Haghighi, M.; Hatamimanesh, M.; Marofi, S. Transboundary basins need more attention: Anthropogenic impacts on land cover changes in aras river basin, monitoring and prediction. Remote Sens. 2020, 12, 3329. [Google Scholar] [CrossRef]
- Comisión Nacional Forestal (Conafor). Programas y Acciones en Reforestación, Conservación y Sanidad Forestal de Ecosistemas Forestales; Coordinación General de Conservación y Restauración: Zapopan, Mexico, 2010; p. 108.
- Kepner, W.G.; Ramsey, M.M.; Brown, E.S.; Jarchow, M.E.; Dickinson, K.J.M.; Mark, A.F. Hydrologic futures: Using scenario analysis to evaluate impacts of forecasted land use change on hydrologic services. Ecosphere 2012, 3, 1–25. [Google Scholar] [CrossRef]
- Vargas, C.R.d.C.; Sanchez, T.G.; Rolón, A.J.C.; Pichardo, R.R.; Tobías, J.R.; Treviño, T.J. Disponibilidad de los Recursos Hídricos ante Escenarios de Cambio Climático en una Cuenca Costera de Tamaulipas, México. Investig. Actuales Medioambiente 2015, 1, 86–100. [Google Scholar]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; & Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Qiu, L.; Chen, Y.; Wu, Y.; Xue, Q.; Shi, Z.; Lei, X.; Liao, W.; Zhao, F.; Wang, W. The water availability on the Chinese Loess Plateau since the implementation of the grain for green project as indicated by the evaporative stress index. Remote Sens. 2021, 13, 3302. [Google Scholar] [CrossRef]
- Droogers, P.; Immerzeel, W.W. Calibration Methodologies in Hydrological Modeling: State of the Art. In National User Support Programme 2001–2005. FutureWater-Science for Solutions; Citeseer: Princeton, NJ, USA, 2006; Volume 9, p. 36. [Google Scholar]
- Esquivel, A.G.; Nevarez, F.M.M.; Velásquez, V.M.A.; Sánchez, C.I.; Bueno, H.P. Hydrological modeling of a basin in Mexico’s arid northern region and its response to environmental changes. Agric. Biosyst. Eng. 2017, 9, 3–17. [Google Scholar] [CrossRef] [Green Version]
- López, G.T.G.; Manzano, M.G.; Ramírez, A.I. Disponibilidad hídrica bajo escenarios de cambio climático en el Valle de Galeana, Nuevo León, México. Tecnol. Cienc. Agua 2017, 8, 105–114. [Google Scholar] [CrossRef]
- Centro de Cambio Global (CCG); Universidad Católica de Chile, Stockholm Environment Institute. Guía Metodológica—Modelación Hidrológica y de Recursos Hídricos con el Modelo WEAP; Boston: Santiago, Chile, 2009; p. 86. [Google Scholar]
- Amato, C.; McKinney, D.; Ingol-Blanco, E.; Teasley, R.L. WEAP Hydrology Model Applied: The Rio Conchos Basin; Center for Research in Water Resources, University of Texas at Austin: Austin, TX, USA, 2006; p. 69. [Google Scholar]
- Ahmadaali, J.; Barani, G.-A.; Qaderi, K.; Hessari, B. Analysis of the Effects of Water Management Strategies and Climate Change on the Environmental and Agricultural Sustainability of Urmia Lake Basin, Iran. Water 2018, 10, 160. [Google Scholar] [CrossRef] [Green Version]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A demand-, priority-, and preference-driven water planning model. Part 1: Model characteristics. Water Int. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- Labrador, A.F.; Zúñiga, J.M.; Romero, J. Desarrollo de un modelo para la planificación integral del recurso hídrico en la cuenca hidrográfica del Río Aipe, Huila, Colombia Development of a model for integral planning of water resources in Aipe catchment, Huila, Colombia. Rev. Ing. Reg. 2016, 15, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Merrill, N.H.; Gold, A.J.; Kellogg, D.Q.; Uchida, E. Modeling the production of multiple ecosystem services from agricultural and forest landscapes in Rhode Island. Agric. Resour. Econ. Rev. 2013, 42, 251–274. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). Acuerdo Por el Que se Dan a Conocer los Resultados del Estudio Técnico de las Aguas Nacionales Subterráneas del Acuífero Texcoco, Clave 1507, en el Estado de México, Región Hidrológico-Administrativa XIII, Aguas del Valle de México; Secretaría de Gobernación, Diario Oficial de la Federación (DOF): Ciudad de México, Mexico, 2019; p. 12.
- García, E. Modificaciones al Sistema Climático de Köppen para la República Mexicana; Instituto de Geografia, Universidad Autónoma de México (UNAM): Mexico City, Mexico, 2004. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Conjunto de Datos Geológicos Vectoriales E1402. Escala 1:250,000. Serie I; INEGI: Aguascalientes, Mexico, 2002.
- Universidad Autónoma Chapingo (UNAM). Atlas Nacional de México, Vol II: Hidrogeología, Escala 1:4,000,000; Instituto de Geografía, UNAM: Mexico City, Mexico, 1990. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Conjunto de datos Vectorial Edafológico, Escala 1:250,000 Serie II (Conjunto Nacional); INEGI: Aguascalientes, Mexico, 2014.
- Sieber, J.; Purkey, D. WEAP Water Evaluation and Planning System User Guide; Stockholm Environment Institute, U.S. Center. E. U.: Somerville, MA, USA, 2015; p. 343. [Google Scholar]
- Servicio Metereológico Nacional (SMN). Información Climatológica Nacional: Información de Estaciones Climatológicas; Comisión Nacional del Agua (Conagua): Mexico City, Mexico, 2020.
- Gómez, J.D.; Etchevers, J.D.; Monterroso, A.I.; Gay, C.; Campo, J.; Martínez, M. Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information. Atmosfera 2008, 21, 35–56. [Google Scholar]
- Gómez-Díaz, J.D.; Monterroso-Rivas, A.I. Actualización de la Delimitación de Las Zonas Áridas, Semiáridas y Sub-Húmedas Secas de México a Escala Regional. Reporte Final de Proyecto de Investigación Fondo CONAFOR-CONACYT; Universidad Autónoma Chapingo, Departamento de Suelos: Texcoco, Mexico, 2012. [Google Scholar]
- Young, C.A.; Escobar-Arias, M.I.; Fernandes, M.; Joyce, B.; Kiparsky, M.; Mount, J.F.; Mehta, V.K.; Purkey, D.; Viers, J.H.; Yates, D. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation 1. J. Am. Water Resour. Assoc. 2009, 45, 1409–1423. [Google Scholar] [CrossRef]
- Congedo, L. Complemento de clasificación semiautomático: Una herramienta de Python para la descarga y el procesamiento de imágenes de detección remota en QGIS. Rev. Softw. Código Abierto 2021, 6, 3172. [Google Scholar] [CrossRef]
- Breiman, L. RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. Random For. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Stockholm Environment Institute (SEI). Water Evaluation and Planning System Tutorial Español; SEI: Somerville, MA, USA, 2017. [Google Scholar]
- Comisión Nacional del Agua (Conagua). Banco Nacional de Datos de Aguas Superficiales (BANDAS); Conagua: México City, Mexico, 2016.
- Jantzen, T.; Klezendorf, B.; Middleton, J.; Smith, J. WEAP Hydrology Modeling Applied: The Upper Rio Florido Rive Basin; Center for Research in Water Resources; The University of Texas: Austin, TX, USA, 2006. [Google Scholar]
- Water Evaluation and Planning System (WEAP). Versión 2021. Windows; Stockholm Environment Institute (SEI): Stockholm, Sweden, 2021.
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1549–1559. [Google Scholar] [CrossRef]
- Lu, C.; Chiang, L.-C. Assessment of Sediment Transport Functions with the Modified SWAT-Twn Model for a Taiwanese Small Mountainous Watershed. Water 2019, 11, 1749. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, I.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Vijai, H.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar]
- Singh, J.; Knapp, H.; Demissie, M. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 4030, 343–360. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M. Goodness-of-fit functions for comparison of simulated and observed hydrological time series. In Package ‘hydroGOF’ March; Universidad de La Frontera: Temuco, Araucanía, Chile, 2020; p. 76. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ma, L.; Ascough Ii, J.C.; Ahuja, L.R.; Shaffer, M.J.; Hanson, J.D.; Rojas, K.W. Root zone water quality model sensitivity analysis using Monte Carlo simulation. Trans. ASAE 2000, 43, 883. [Google Scholar] [CrossRef] [Green Version]
- Martínez Sifuentes, A.R.; Villanueva-Díaz, J.; Ávalos, J.E.; Vázquez, C.V.; Castillo, I.O. Pérdida de suelo y modificación de escurrimientos causados por el cambio de uso de la tierra en la cuenca del río Conchos, Chihuahua. Nova Sci. 2020, 12, 1–26. [Google Scholar] [CrossRef]
- Hernández, V.G.A.; Gutiérrez, C.M.d.C.; Barragan, M.S.M.; Ángeles, C.E.R.; Gutiérrez, C.E.V.; Ortiz, S.C.A. La mineralogía en la estimación de las temperaturas de los incendios forestales y sus efectos inmediatos en Andosoles, Estado de México. Madera Bosques 2020, 26, e2611932. [Google Scholar] [CrossRef]
- Protectora de Bosques del Estado de México (Probosque). Estadisticas de Incendios Forestales en el Estado de México: Administrador de Base de Datos PostGIS; Probosque: Mexico City, Mexico, 2021.
- León-Muñoz, J.; Aguayo, R.; Marcé, R.; Catalán, N.; Woelfl, S.; Nimptsch, J.; Arismendi, I.; Contreras, C.; Soto, D.; Miranda, A. Climate and Land Cover Trends Affecting Freshwater Inputs to a Fjord in Northwestern Patagonia. Front. Mar. Sci. 2021, 8, 960. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils. Hydrol. Processes 2017, 31, 324–340. [Google Scholar] [CrossRef]
- Poon, P.K.; Kinoshita, A.M. Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes. J. Hydrol. 2018, 559, 71–83. [Google Scholar] [CrossRef]
- Kinoshita, A.M.; Chin, A.; Simon, G.L.; Briles, C.; Hogue, T.S.; O’Dowd, A.P.; Gerlak, A.K.; Albornoz, A.U. Wildfire, water, and society: Toward integrative research in the “Anthropocene”. Anthropocene 2016, 16, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Rengers, F.K.L.A.; McGuire, J.W.; Kean, D.M.; Staley, D.E.J.H. Model simulations of flood and debris flow timing in steep catchments after wildfire. Water Resour. Res. 2016, 52, 6041–6061. [Google Scholar] [CrossRef] [Green Version]
- Robichaud, P.R.; Wagenbrenner, J.W.; Pierson, F.B.; Spaeth, K.E.; Ashmun, L.E.; & Moffet, C.A. Infiltration and interrill erosion rates after a wildfire in western Montana, USA. Catena 2016, 142, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Rzedowski, J. Capítulo 17: Bosque de coníferas. In Vegetación de México, 1st ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: México D.F., Mexico, 2006; pp. 295–327. [Google Scholar]
- Miranda, F.; Hernández, X.E. Los tipos de vegetación de México y su clasificación. Bot. Sci. 2016, 28, 29. [Google Scholar] [CrossRef]
- Secretaría del Medio Ambiente y Recursos Naturales (Semarnat). Informe de la Situación del Medio Ambiente en Mexico. In Compendio de Estadísticas Ambientales. Indicadores Clave y de Desempeño Ambiental; Semarnat: Zapopan, Mexico, 2012; p. 361. [Google Scholar]
- Laino-Guanes, R.; Suárez-Sánchez, J.; González-Espinosa, M.; Musálem-Castillejos, K.; Ramírez-Marcial, N.; Bello-Mendoza, R.; Jiménez, F. Modelación del balance hídrico y el movimiento de nutrientes utilizando WEAP: Limitaciones para modelar los efectos de la restauración forestal y el cambio climático en la cuenca alta del río Grijalva. Aqua-LAC 2017, 9, 46–58. [Google Scholar] [CrossRef]
- Hernández, I.U.; Alfaro, B.R.; Menéndez, M.G.; Becerra, L.W.M.; Garnica, J.G.F.; Torrens, Y.A. Impacto de quemas prescritas en la estabilidad del escurrimiento superficial en un bosque de pino. Madera Bosques 2020, 26, 1–12. [Google Scholar] [CrossRef]
- Ingol-Blanco, E.; McKinney, D.C. Development of a hydrological model for the rio Conchos basin. Am. Soc. Civ. Eng. 2013, 18, 340–351. [Google Scholar] [CrossRef]
- Kandera, M.; Výleta, R.; Liová, A.; Danáčová, Z.; Lovasová, Ľ. Testing of water evaluation and planning (Weap) model for water resources management in the hron river basin. Acta Hydrol. Slov. 2021, 22, 30–39. [Google Scholar] [CrossRef]
- Abdi, D.A.; Ayenew, T. Evaluation of the WEAP model in simulating subbasin hydrology in the Central Rift Valley basin, Ethiopia. Ecol. Processes 2021, 10, 41. [Google Scholar] [CrossRef]
- Asghar, A.; Iqbal, J.; Amin, A.; Ribbe, L. Integrated hydrological modeling for assessment of water demand and supply under socio-economic and IPCC climate change scenarios using WEAP in Central Indus Basin. J. Water Supply Res. Technol. AQUA 2019, 68, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Al-Mukhtar, M.M.; Mutar, G.S. Modelling of Future Water Use Scenarios Using WEAP Model: A Case Study in Baghdad City, Iraq. Eng. Technol. J. 2020, 39, 488–503. [Google Scholar] [CrossRef]
- Nevárez, F.M.M.; Fernández, R.D.S.; Sánchez, C.I.; Sánchez, G.M.; Macedo, C.A.; Palacios, E.C. Comparación de los modelos WEAP y SWAT en una cuenca de Oaxaca. Tecnol. Cienc. Agua 2021, 12, 358–401. [Google Scholar] [CrossRef]
- García-Coll, I.; Martínez, A.; Ramírez, A.; Niño, A.; Rivas, J.A.; Domínguez, L. La relación agua-bosque: Delimitación de zonas prioritarias para pago de servicios ambientales hidrológicos en la cuenca del río Gavilanes, Coatepec, Veracruz. In El Manejo Integral de Cuencas en México. Estudios y Reflexiones para Orientar la Política Ambiental, 2nd ed.; Cotler, H., Ed.; Instituto Nacional de Ecología: Ciudad de México, Mexico, 2007; pp. 113–130. [Google Scholar]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Price, K.; Jackson, C.R.; Parker, A.J.; Reitan, T.; Dowd, J.; Cyterski, M. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States. Water Resour. Res. 2011, 47, W02516. [Google Scholar] [CrossRef]
- Viramontes, D.; Descroix, L.; Bollery, A. Variables de suelos determinantes del escurrimiento y la erosión en un sector de la Sierra Madre Occidental. Ing. Hidraul. Mex. 2006, 21, 73–83. [Google Scholar]
- Morales, D.; Rostagno, M.; La Manna, L. Impacto del fuego sobre el comportamiento hidrológico del suelo en un bosque de ciprés. Patagon. For. 2010, 1, 23–24. [Google Scholar]
- Price, K.; Jackson, C.R. Effects of forest conversion on baseflows in the southern Appalachians: A cross-landscape comparison of synoptic measurements. In Proceedings of the Georgia Water Resources Conference, Athens, GA, USA, 27–29 March 2007; Available online: http://cms.ce.gatech.edu/gwri/uploads/proceedings/2007/2.3.4.pdf (accessed on 15 April 2021).
- Mab, P.; Kositsakulchai, E. Water balance analysis of tonle sap lake using weap model and satellite-derived data from google earth engine. Sci. Technol. Asia 2020, 25, 45–58. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, Y.; Shi, Z.; Yu, M.; Zhao, F.; Guan, Y. Quantifying spatiotemporal variations in soil moisture driven by vegetation restoration on the Loess Plateau of China. J. Hydrol. 2021, 600, 126580. [Google Scholar] [CrossRef]
- Puno, R.C.C.; Puno, G.R.; Talisay, B.A.M. Hydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model. Glob. J. Environ. Sci. Manag. 2019, 5, 71–82. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Shaw, M. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Fan, M.; Hideaki, S.; Wang, Q. Optimal conservation planning of multiple hydrological ecosystem services under land use and climate changes in Teshio river watershed, northernmost of Japan. Ecol. Indic. 2016, 62, 1–13. [Google Scholar] [CrossRef]
- Tena, T.M.; Mwaanga, P.; Nguvulu, A. Impact of land use/land cover change on hydrological components in Chongwe River Catchment. Sustainability 2019, 11, 6415. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, Z.; Chen, X.; Shi, P. The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environ. Earth Sci. 2009, 59, 811–820. [Google Scholar] [CrossRef]
- Martínez-González, F.; Sosa-Pérez, F.; Ortiz-Medel, J. Comportamiento de la humedad del suelo con diferente cobertura vegetal en la Cuenca La Esperanza. Tecnol. Cienc. Agua 2010, 1, 89–103. [Google Scholar]
- Poca, M.; Cingolani, A.M.; Gurvich, D.E.; Whitworth-Hulse, J.I.; & Saur Palmieri, V. La degradación de los bosques de altura del centro de Argentina reduce su capacidad de almacenamiento de agua. Ecol. Austral 2018, 28, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Bruijnzeel, L.A. Hydrological functions of tropical forest, not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Iida, S.; Levia, D.F.; Shimizu, A.; Shimizu, T.; Tamai, K.; Nobuhiro, T.; Kabeya, N.; Noguchi, S.; Sawano, S.; Araki, M. Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand. J. Hydrol. 2017, 548, 770–783. [Google Scholar] [CrossRef]
- Zhongming, W.; Lees, B.G.; Feng, J.; Wanning, L.; Haijing, S. Stratified vegetation cover index: A new way to assess vegetation impact on soil erosion. Catena 2010, 83, 87–93. [Google Scholar] [CrossRef]
- Matías, R.M.; Gómez, D.D.J.; Monterroso, R.A.I.; Villar, B.D.J.H.G.; Uribe, M.; Ruiz, G.P. Factores que influyen en la erosión hídrica del suelo en un bosque templado. Rev. Mex. Cienc. For. 2020, 11, 51–71. [Google Scholar] [CrossRef]
- Esse, C.; Correa-Araneda, F.; Saavedra, P.; Santander-Massa, R. Efecto del Uso del Suelo Sobre la Disponibilidad de Agua y Eficiencia Hídrica en Cuencas Templadas del Centro-Sur de Chile; Unidad de Cambio Climático y Medio Ambiente, Universidad Autónoma de Chile: Providencia, Chile, 2019. [Google Scholar]
Land Use Class | Surface Total | % | Texcoco River | % | Chapingo River | % | San Bernardino River | % |
---|---|---|---|---|---|---|---|---|
Temperate forest | 2021.4 | 26.1 | 1448.5 | 37.1 | 472.1 | 24.2 | 100.8 | 5.4 |
Reforestation | 1145.6 | 14.8 | 199.9 | 5.1 | 395.4 | 20.3 | 550.3 | 29.2 |
Secondary vegetation | 438.7 | 5.7 | 166.3 | 4.3 | 160.9 | 8.3 | 111.5 | 5.9 |
Grassland | 52.2 | 0.7 | 48.6 | 1.2 | 3.6 | 0.2 | 0.1 | 0.0 |
Mine | 212.2 | 2.7 | 39.4 | 1.0 | 87.0 | 4.5 | 85.9 | 4.6 |
Rainfed agriculture | 2294.8 | 29.6 | 1042.8 | 26.7 | 420.4 | 21.6 | 831.6 | 44.2 |
Irrigated agriculture | 540.3 | 7.0 | 354.6 | 9.1 | 89.1 | 4.6 | 96.7 | 5.1 |
Protected agriculture | 80.8 | 1.0 | 60.2 | 1.5 | 18.7 | 1.0 | 1.9 | 0.1 |
Urban | 949.9 | 12.3 | 545.9 | 14.0 | 300.0 | 15.4 | 104.0 | 5.5 |
Bodies of water | 4.6 | 0.1 | 3.3 | 0.1 | 1.3 | 0.1 | 0.0 | 0.0 |
Total | 7740.6 | 100.0 | 3909.4 | 100.0 | 1948.5 | 100.0 | 1882.6 | 100.0 |
Scenario | Year | Trend | Characteristics |
---|---|---|---|
1 | 2021 | Current | Decrease in temperate forest area and increase in reforestation areas with respect to the areas occupied in 1995. |
2 | 2047 | Positive | Increase in temperate forest area, recovery of degraded areas, and without any new forest fires. |
3 | 2047 | Negative | Decrease in temperate forest area and restoration areas; increase in urban areas, rainfed agriculture, and secondary vegetation with respect to current land use areas. |
Land Use Class | 1995 | % | 2008 | % | 2021 | % | 1995–2008 | 2008–2021 | Total Change | Change ha/Year |
---|---|---|---|---|---|---|---|---|---|---|
Temperate forest | 2403.0 | 31.0 | 2345.4 | 30.3 | 2021.4 | 26.1 | −57.6 | −323.9 | −381.6 | −14.7 |
Reforestation | 968.3 | 12.5 | 1104.6 | 14.3 | 1145.6 | 14.8 | 136.4 | 41.0 | 177.4 | 6.8 |
Secondary vegetation | 137.0 | 1.8 | 300.7 | 3.9 | 438.7 | 5.7 | 163.7 | 138.0 | 301.7 | 11.6 |
Grassland | 74.0 | 1.0 | 102.6 | 1.3 | 52.2 | 0.7 | 28.6 | −50.3 | −21.8 | −0.8 |
Mine | 147.8 | 1.9 | 124.2 | 1.6 | 212.2 | 2.7 | −23.6 | 88.0 | 64.4 | 2.5 |
Rainfed agriculture | 2530.0 | 32.7 | 2399.8 | 31.0 | 2294.8 | 29.6 | −130.3 | −105.0 | −235.3 | −9.0 |
Irrigated agriculture | 664.4 | 8.6 | 483.6 | 6.2 | 540.3 | 7.0 | −180.8 | 56.8 | −124.1 | −4.8 |
Protected agriculture | 20.0 | 0.3 | 32.2 | 0.4 | 80.8 | 1.0 | 12.2 | 48.6 | 60.8 | 2.3 |
Urban | 791.7 | 10.2 | 844.3 | 10.9 | 949.9 | 12.3 | 52.6 | 105.6 | 158.2 | 6.1 |
Bodies of water | 4.3 | 0.1 | 3.2 | 0.0 | 4.6 | 0.1 | −1.1 | 1.4 | 0.3 | 0.0 |
Land Use Class | BT 1 | R 2 | VS 3 | P 4 | M 5 | AT 6 | AI 7 | AP 8 | U 9 | CA 10 |
---|---|---|---|---|---|---|---|---|---|---|
Reference class 1995 | Current class 2008 | |||||||||
Temperate forest | - | 32.6 | 49.3 | 31.7 | - | 2.7 | - | 0.8 | 0.4 | - |
Reforestation | 18.2 | - | 100.2 | 0.1 | 5.4 | 49.3 | 8.9 | 0.4 | 35.0 | - |
Secondary vegetation | 34.7 | 4.3 | - | 0.9 | - | - | 2.7 | - | - | - |
Grassland | 3.5 | - | 1.2 | 0.0 | - | - | - | - | - | - |
Reference class 2008 | Current class 2021 | |||||||||
Temperate forest | - | 131.5 | 280.9 | 18.3 | - | 4.1 | - | - | - | - |
Reforestation | 14.4 | - | 31.9 | 0.1 | 8.2 | 197.1 | 53.8 | 3.4 | 42.6 | 0.2 |
Secondary vegetation | 26.6 | 106.2 | - | 0.9 | - | 42.2 | 0.2 | 0.6 | 0.6 | 0.1 |
Grassland | 68.9 | 0.1 | 0.5 | - | - | 0.2 | - | - | - | - |
Land Use Class | Area (%) | ||||
---|---|---|---|---|---|
1995 | 2008 | Current_2021 | Positive_2047 | Negative_2047 | |
Temperate forest | 31.0 | 30.3 | 26.0 | 48.5 | 13.6 |
Reforestation | 12.5 | 14.3 | 14.9 | 9.6 | 2.4 |
Secondary vegetation | 1.8 | 3.9 | 5.7 | 0.3 | 4.9 |
Grassland | 1.0 | 1.3 | 0.7 | 0 | 2.8 |
Mine | 1.9 | 1.6 | 2.7 | 2.8 | 3.6 |
Rainfed agriculture | 32.6 | 31.0 | 29.6 | 18.2 | 48.7 |
Irrigated agriculture | 8.6 | 6.3 | 6.9 | 3.6 | 5.6 |
Protected agriculture | 0.3 | 0.4 | 1.1 | 2.6 | 2.1 |
Urban | 10.2 | 10.9 | 12.2 | 14.3 | 16.3 |
Bodies of water | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 |
Scenario | Reference (mm/Year) | Current (mm/Year) | Ev (%) Current | Positive (mm/Year) | Ev (%) Positive | Negative (mm/Year) | Ev (%) Negative | |
---|---|---|---|---|---|---|---|---|
Chapingo River | ||||||||
Inflows | Precipitation | 631.3 | 635.8 | 0.7 | 624.5 | −1.1 | 624.5 | −1.1 |
Water stored in the soil the previous year | 111.0 | 108.5 | −2.3 | 126.3 | 13.8 | 74.5 | −32.9 | |
Outflows | Evapotranspiration | 532.2 | 534.7 | 0.5 | 536.0 | 0.7 | 497.7 | −6.5 |
Water stored in the soil | 159.3 | 153.3 | −3.8 | 165.8 | 4.1 | 127.6 | −19.9 | |
Base flow | 1.5 | 4.2 | 180.0 | 9.3 | 520.0 | 9.1 | 506.7 | |
Inter flow | 10.9 | 12.3 | 12.8 | 14.0 | 28.4 | 13.1 | 20.2 | |
Surface runoff | 38.4 | 40.0 | 4.2 | 25.9 | −32.6 | 64.6 | 68.2 | |
Texcoco River | ||||||||
Inflows | Precipitation | 635.7 | 635.3 | −0.1 | 632.8 | −0.5 | 632.8 | −0.5 |
Water stored in the soil the previous year | 128.5 | 130.7 | 1.7 | 139.4 | 8.5 | 125.3 | −2.5 | |
Outflows | Evapotranspiration | 532.3 | 533.7 | 0.3 | 538.7 | 1.2 | 513.1 | −3.6 |
Water stored in the soil | 204.2 | 199.8 | −2.2 | 204.2 | 0.0 | 186.4 | −8.7 | |
Base flow | 0.8 | 4.1 | 412.5 | 10.8 | 1250.0 | 9.4 | 1075.0 | |
Inter flow | 2.3 | 2.7 | 17.4 | 3.1 | 34.8 | 3.7 | 60.9 | |
Surface runoff | 24.6 | 25.9 | 5.3 | 15.2 | −38.2 | 45.6 | 85.4 | |
San Bernardino River | ||||||||
Inflows | Precipitation | 645.0 | 645.0 | 0.0 | 645.0 | 0.0 | 645.0 | 0.0 |
Water stored in the soil the previous year | 72.4 | 70.7 | −2.3 | 102.4 | 41.4 | 54.1 | −25.3 | |
Outflows | Evapotranspiration | 544.6 | 544.7 | 0.02 | 558.5 | 2.6 | 518.5 | −4.8 |
Water stored in the soil | 114.8 | 108.1 | −5.8 | 140 | 22.0 | 91.8 | −20.0 | |
Base flow | 1.1 | 2.8 | 154.5 | 6.8 | 518.2 | 6.7 | 509.1 | |
Inter flow | 12.7 | 13.5 | 6.3 | 15.3 | 20.5 | 15.9 | 25.2 | |
Surface runoff | 44.3 | 46.8 | 5.6 | 27.1 | −38.8 | 66.4 | 49.9 |
Scenario | Reference (mm/Year) | Current (mm/Year) | Ev (%) Current | Positive (mm/Year) | Ev (%) Positive | Negative (mm/Year) | Ev (%) Negative | |
---|---|---|---|---|---|---|---|---|
Chapingo River | ||||||||
Inflows | Precipitation | 769.6 | 769.6 | 0.0 | 769.6 | 0.0 | 769.6 | 0.0 |
Water stored in the soil the previous year | 157.7 | 152.4 | −3.3 | 159.0 | 0.8 | 124.7 | −20.9 | |
Outflows | Evapotranspiration | 657.4 | 653.8 | −0.5 | 660.6 | 0.5 | 620.5 | −5.6 |
Water stored in the soil | 245.7 | 237.3 | −3.4 | 249.2 | 1.4 | 208.7 | −15.1 | |
Base flow | 0.91 | 0.92 | 1.4 | 1.0 | 10.4 | 1.0 | 6.0 | |
Inter flow | 10.8 | 10.4 | −3.6 | 10.9 | 1.0 | 8.4 | −22.4 | |
Surface runoff | 12.5 | 19.7 | 57.1 | 6.9 | −45.2 | 55.8 | 346.3 | |
Texcoco River | ||||||||
Inflows | Precipitation | 769.6 | 769.6 | 0.0 | 769.6 | 0.0 | 769.6 | 0.0 |
Water stored in the soil the previous year | 138.0 | 137.9 | −0.05 | 142.3 | 3.1 | 119.7 | −13.3 | |
Outflows | Evapotranspiration | 634.7 | 634.5 | −0.04 | 643.1 | 1.3 | 597.0 | −6.0 |
Water stored in the soil | 254.5 | 246.9 | −3.0 | 258.2 | 1.4 | 223.1 | −12.3 | |
Base flow | 1.2 | 2.9 | 136.3 | 2.0 | 67.3 | 1.8 | 43.5 | |
Inter flow | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 | |
Surface runoff | 17.2 | 23.3 | 35.9 | 8.6 | −49.6 | 66.5 | 287.4 | |
San Bernardino River | ||||||||
Inflows | Precipitation | 769.6 | 769.6 | 0.0 | 769.6 | 0.0 | 769.6 | 0.0 |
Water stored in the soil the previous year | 155.9 | 143.9 | −7.67 | 160.6 | 3.0 | 102.5 | −34.2 | |
Outflows | Evapotranspiration | 646.7 | 638.5 | −1.27 | 651.7 | 0.8 | 583.0 | −9.8 |
Water stored in the soil | 245.5 | 225.0 | −8.34 | 249.3 | 1.6 | 179.1 | −27.0 | |
Base flow | 2.1 | 2.1 | 1.39 | 2.8 | 34.0 | 2.4 | 15.0 | |
Inter flow | 20.6 | 18.7 | −9.05 | 21.1 | 2.4 | 18.1 | −12.1 | |
Surface runoff | 10.8 | 29.4 | 172.24 | 5.4 | −49.8 | 89.7 | 729.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruíz-García, V.H.; Borja de la Rosa, M.A.; Gómez-Díaz, J.D.; Asensio-Grima, C.; Matías-Ramos, M.; Monterroso-Rivas, A.I. Forest Fires, Land Use Changes and Their Impact on Hydrological Balance in Temperate Forests of Central Mexico. Water 2022, 14, 383. https://doi.org/10.3390/w14030383
Ruíz-García VH, Borja de la Rosa MA, Gómez-Díaz JD, Asensio-Grima C, Matías-Ramos M, Monterroso-Rivas AI. Forest Fires, Land Use Changes and Their Impact on Hydrological Balance in Temperate Forests of Central Mexico. Water. 2022; 14(3):383. https://doi.org/10.3390/w14030383
Chicago/Turabian StyleRuíz-García, Víctor H., Ma. Amparo Borja de la Rosa, Jesús D. Gómez-Díaz, Carlos Asensio-Grima, Moisés Matías-Ramos, and Alejandro I. Monterroso-Rivas. 2022. "Forest Fires, Land Use Changes and Their Impact on Hydrological Balance in Temperate Forests of Central Mexico" Water 14, no. 3: 383. https://doi.org/10.3390/w14030383
APA StyleRuíz-García, V. H., Borja de la Rosa, M. A., Gómez-Díaz, J. D., Asensio-Grima, C., Matías-Ramos, M., & Monterroso-Rivas, A. I. (2022). Forest Fires, Land Use Changes and Their Impact on Hydrological Balance in Temperate Forests of Central Mexico. Water, 14(3), 383. https://doi.org/10.3390/w14030383