Water and Health Nexus—Land Use Dynamics, Flooding, and Water-Borne Diseases in the Odaw River Basin, Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Approach
2.3. System Dynamics—Qualitative System Dynamics
2.4. Methods
2.4.1. Stakeholder Workshop I
2.4.2. Sampling and Sample Size Estimation for Household Surveys
2.4.3. Focus Group Discussions and Expert Elicitation
2.4.4. Stakeholder Workshop II: Development of the QSD—Causal Loop Diagrams
2.4.5. Data Integration and Analysis
3. Results
3.1. Basic Factors Contributing to Water-Borne Diseases
3.1.1. Access to Water and Sanitation
3.1.2. Household Wastewater Management
3.1.3. Exposure Pathways and Risks of Water-Borne Diseases
3.2. Flooding, Water Pollution, and Water-Borne Diseases Pathways
3.2.1. Causes of Flooding in the Odaw River Catchment
3.2.2. Impacts of Household Solid Waste Disposal on Flooding
3.2.3. Land Use and Land Cover Change
3.3. Interventions for Reducing Disease Risks and Prevention Strategies
3.3.1. The Existing Interventions and Prevention Strategies
3.3.2. Intervention Measures Proposed by the Stakeholders
4. Discussion
4.1. Access to WASH and Wastewater Management—Impacts on Water-Borne Diseases
4.2. Water Pollution and the Risk of Water-Borne Diseases—Influences of Floods, Waste Management, and LULC Change, and Waste Management
4.3. The Way Forward
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magana-Arachchi, D.N.; Wanigatunge, R.P. Ubiquitous Waterborne Pathogens. In Waterborne Pathogens; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–42. ISBN 9780128187838. [Google Scholar]
- Addae, B.; Oppelt, N. Land-Use/Land-Cover Change Analysis and Urban Growth Modelling in the Greater Accra Metropolitan Area (GAMA), Ghana. Urban Sci. 2019, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Evers, M.; Höllermann, B.; Almoradie, A.D.S.; Santos, G.G.; Taft, L. The Pluralistic Water Research Concept: A New Human-Water System Research Approach. Water 2017, 9, 933. [Google Scholar] [CrossRef] [Green Version]
- Sclar, E.; Volavka-Close, N.; Brown, P. The Urban Transformation: Health, Shelter and Climate Change; Routledge: Abingdon, UK, 2013; ISBN 978-1-84971-216-3. [Google Scholar]
- Zhu, J.; Zhang, Q.; Tong, Z.; Liu, X.; Yan, F. Spatio-Temporal Effect of Urbanization on Surface Water Bodies: A Method of RS and GIS. Open Civ. Eng. J. 2016, 10, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Anthonj, C.; Beskow, S.; Dornelles, F.; Fujita, A.T.; Galharte, C.A.; Galvão, P.; Grabner, D.; Gatti Junior, P.; Gücker, B.; Hildebrandt, A.; et al. Water in Urban Regions: Building Future Knowledge to Integrate Land Use, Ecosystem Services and Human Health; Deutsche Akademie der Naturforscher Leopoldina e.V.: Halle, Germany, 2014; pp. 1–32. [Google Scholar]
- Gretsch, S.R.; Ampofo, J.A.; Baker, K.K.; Clennon, J.; Null, C.A.; Peprah, D.; Reese, H.; Robb, K.; Teunis, P.; Wellington, N.; et al. Quantification of Exposure to Fecal Contamination in Open Drains in Four Neighborhoods in Accra, Ghana. J. Water Health 2016, 14, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Mackinnon, E.; Ayah, R.; Taylor, R.; Owor, M.; Ssempebwa, J.; Olago, I.D.; Kubalako, R.; Dia, A.T.; Gaye, C.; Campos, L.C.; et al. 21st Century Research in Urban WASH and Health in Sub-Saharan Africa: Methods and Outcomes in Transition. Int. J. Environ. Health Res. 2019, 29, 457–478. [Google Scholar] [CrossRef] [Green Version]
- Maassen, A.; Galvin, M. What Does Urban Transformation Look like? Findings from a Global Prize Competition. Sustainability 2019, 11, 4653. [Google Scholar] [CrossRef] [Green Version]
- WHO. International Coordination Group on Vaccine Provision for Cholera; Report of the Annual Meeting; WHO: Geneva, Switzerland, 2019; Available online: https://apps.who.int/iris/handle/10665/333251 (accessed on 3 January 2022).
- Ferreira, C.; Peter Dominic Walsh, R.; Nunes, J.P.; Steenhuis, T.; Nunes, M.; de Lima, J.; Coelho, C.; Dinis Ferreira, A. Impact of Urban Development on Streamflow Regime of a Portuguese Peri-Urban Mediterranean Catchment. J. Soils Sediments 2016, 16, 2580–2593. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The Impacts of Urbanisation and Climate Change on Urban Flooding and Urban Water Quality: A Review of the Evidence Concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Anthonj, C.; Diekkrüger, B.; Borgemeister, C.; Kistemann, T. Health Risk Perceptions and Local Knowledge of Water-Related Infectious Disease Exposure among Kenyan Wetland Communities. Int. J. Hyg. Environ. Health 2018, 222, 34–48. [Google Scholar] [CrossRef]
- Mastel, M.; Bussalleu, A.; Paz-Soldan, V.A.; Salmon-Mulanovixh, G.; Valdes-Vaelasquez, A.; Hartinger, S.M. Critical Linkages between Land Use Change and Human Health in the Amazon Region: A Scoping Review. PLoS Negl. Trop. Dis. 2018, 13, e0196414. [Google Scholar] [CrossRef]
- Abu, M.; Codjoe, S.N.A. Experience and Future Perceived Risk of Floods and Diarrheal Disease in Urban Poor Communities in Accra, Ghana. Int. J. Environ. Res. Public Health 2018, 15, 2830. [Google Scholar] [CrossRef] [Green Version]
- Akubia, J.E.K.; Bruns, A. Unravelling the Frontiers of Urban Growth: Spatio-Temporal Dynamics of Land-Use Change and Urban Expansion in Greater Accra Metropolitan Area, Ghana. Land 2019, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Owusu, A.B.; Agbozo, M. Application of Geographic Information Systems for Flood Risk Analysis: A Case Study from Accra Metropolitan Area. Present Environ. Sustain. Dev. 2019, 13, 81–97. [Google Scholar] [CrossRef]
- Ohene-Adjei, K.; Kenu, E.; Bandoh, D.A.; Addo, P.N.O.; Noora, C.L.; Nortey, P.; Afari, E.A. Epidemiological Link of a Major Cholera Outbreak in Greater Accra Region of Ghana, 2014. BMC Public Health 2017, 17, 801. [Google Scholar] [CrossRef] [Green Version]
- WHO Fact Sheets. Cholera; WHO: Geneva, Switzerland, 2019; Volume 66, pp. 432–438. [Google Scholar]
- WHO. Situation Report on Cholera Outbreak in Ghana; WHO: Geneva, Switzerland, 2016; Volume 2015. [Google Scholar]
- Owusu-Ansah, E. Urbanization and Disaster in Accra, Ghana. Does Human Life Matters? RUDN J. Ecol. Life Saf. 2018, 26, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Songsore, J. The Complex Interplay between Everyday Risks and Disaster Risks: The Case of the 2014 Cholera Pandemic and 2015 Flood Disaster in Accra, Ghana. Int. J. Disaster Risk Reduct. 2017, 26, 43–50. [Google Scholar] [CrossRef]
- Ntajal, J.; Falkenberg, T.; Kistemann, T.; Evers, M. Influences of Land-Use Dynamics and Surface Water Systems Interactions on Water-Related Infectious Diseases—A Systematic Review. Water 2020, 12, 631. [Google Scholar] [CrossRef] [Green Version]
- Codjoe, S.N.A.; Larbi, R.T. Climate Change/Variability and Schistosomiasis Transmission in Ga District, Ghana. Clim. Dev. 2016, 8, 58–71. [Google Scholar] [CrossRef]
- Simister, R.E.C. Urban Water Management: Using the City Water Balance Model to Model Urban Water Systems in Accra, Ghana; University of Birmingham: Birmingham, UK, 2010. [Google Scholar]
- Gimba, F.A. Application of SWITCH City Water Balance Model to Abelenkpe Area of Accra, Ghana; University of Abertay Dundee: Dundee, Scotland, 2009. [Google Scholar]
- Ackom, E.K.; Adjei, K.A.; Odai, S.N. Spatio-Temporal Rainfall Trend and Homogeneity Analysis in Flood Prone Area: Case Study of Odaw River Basin-Ghana. SN Appl. Sci. 2020, 2, 1–26. [Google Scholar] [CrossRef]
- Owusu, K.; Obour, P.B. Urban Flooding, Adaptation Strategies, and Resilience: Case Study of Accra, Ghana. In African Handbook of Climate Change Adaptation; Springer International Publishing: Cham, Switzerland, 2021; pp. 2387–2403. ISBN 9783030451066. [Google Scholar]
- Nkrumah, F.; Klutse, N.A.B.; Adukpo, D.C.; Owusu, K.; Quagraine, K.A.; Owusu, A.; Gutowski, W. Rainfall Variability over Ghana: Model versus Rain Gauge Observation. Int. J. Geosci. 2014, 05, 673–683. [Google Scholar] [CrossRef] [Green Version]
- Osei, P. Modeling the Changes in Exposure and Vulnerability in Accra, Ghana for the Future. In Proceedings of the Analysis and Management of Changing Risks for Natural Hazards, Padua, Italy, 18–19 November 2014; pp. 1–9. [Google Scholar]
- Asumadu-Sarkodie, S.; Owusu, P.A.; Rufangura, P. Impact Analysis of Flood in Accra, Ghana. Adv. Appl. Sci. Res. 2015, 6, 53–78. [Google Scholar] [CrossRef]
- GIBB. Greater Accra Regional Spatial Development Framework; Baseline Assessment Report; GIBB: Accra, Ghana, 2017; Volume 1, pp. 11–280. [Google Scholar]
- Karikari, A.; Asante, K.; Biney, C. Water Quality Characteristics at the Estuary of Korle Lagoon in Ghana. West Afr. J. Appl. Ecol. 2009, 10, 1–12. [Google Scholar] [CrossRef]
- Larmie, S.A. Ghana Greater Accra Resilient and Integrated Development Project: The Environmental Impact Assessment [EIA] Study for Dredging the Odaw Basin; Ministry of Works and Housing: Accra, Ghana, 2019; pp. 1–120.
- Coyle, G. Qualitative and Quantitative Modelling in System Dynamics: Some Research Questions. Syst. Dyn. Rev. 2000, 16, 225–244. [Google Scholar] [CrossRef]
- Powell, J.H.; Mustafee, N.; Chen, A.S.; Hammond, M. System-Focused Risk Identification and Assessment for Disaster Preparedness: Dynamic Threat Analysis. Eur. J. Oper. Res. 2016, 254, 550–564. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.H.; Coyle, R.G. Identifying Strategic Action in Highly Politicized Contexts Using Agent-Based Qualitative System Dynamics. J. Oper. Res. Soc. 2005, 56, 787–798. [Google Scholar] [CrossRef]
- White, A.S. Qualitative System Dynamics as a Tool in Accessible Design. J. Softw. Eng. Appl. 2011, 04, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Schiller, C.; Winters, M.; Hanson, H.M.; Ashe, M.C. A Framework for Stakeholder Identification in Concept Mapping and Health Research: A Novel Process and Its Application to Older Adult Mobility and the Built Environment. BMC Public Health 2013, 13, 428. [Google Scholar] [CrossRef] [Green Version]
- Hansen, S.F.; Baun, A. DPSIR and Stakeholder Analysis of the Use of Nanosilver; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9, ISBN 1156901502. [Google Scholar]
- Pourhoseingholi, M.A.; Vahedi, M.; Rahimzadeh, M. Sample Size Calculation in Medical Studies. Gastroenterol. Hepatol. Bed Bench 2013, 6, 14–17. [Google Scholar]
- Sterman, J.D. All Models Are Wrong: Reflections on Becoming a Systems Scientist. Syst. Dyn. Rev. 2002, 18, 501–531. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land Use Change, Urbanization, and Change in Landscape Pattern in a Metropolitan Area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Falkenberg, T.; Saxena, D.; Kistemann, T. Impact of Wastewater-Irrigation on in-Household Water Contamination. A Cohort Study among Urban Farmers in Ahmedabad, India. Sci. Total Environ. 2018, 639, 988–996. [Google Scholar] [CrossRef]
- Kamba, F.; Sangija, F.; Wei, S. Impact of Water Pollution on Human Health in the Central African Republic. Adv. Soc. Sci. Res. J. 2016, 3, 90–115. [Google Scholar] [CrossRef]
- Grytdal, S.P.; Weatherholtz, R.; Esposito, D.H.; Campbell, J.; Reid, R.; Gregoricus, N.; Schneeberger, C.; Lusk, T.S.; Xiao, L.; Garrett, N.; et al. Water Quality, Availability, and Acute Gastroenteritis on the Navajo Nation—A Pilot Case-Control Study. J. Water Health 2018, 16, 1018–1028. [Google Scholar] [CrossRef] [Green Version]
- Pickering, A.J.; Null, C.; Winch, P.J.; Mangwadu, G.; Arnold, B.F.; Prendergast, A.J.; Njenga, S.M.; Rahman, M.; Ntozini, R.; Benjamin-Chung, J.; et al. The WASH Benefits and SHINE Trials: Interpretation of WASH Intervention Effects on Linear Growth and Diarrhoea. Lancet Glob. Health 2019, 7, e1139–e1146. [Google Scholar] [CrossRef] [Green Version]
- Okaka, F.O.; Odhiambo, B.D.O. Relationship between Flooding and out Break of Infectious Diseases in Kenya: A Review of the Literature. J. Environ. Public Health 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mboussou, F.; Ndumbi, P.; Ngom, R.; Kassamali, Z.; Ogundiran, O.; Van Beek, J.; Williams, G.; Okot, C.; Hamblion, E.L.; Impouma, B. Infectious Disease Outbreaks in the African Region: Overview of Events Reported to the World Health Organization in 2018. Epidemiol. Infect. 2019, 147, e307. [Google Scholar] [CrossRef] [Green Version]
- Mukanyandwi, V.; Kurban, A.; Hakorimana, E.; Nahayo, L.; Habiyaremye, G.; Gasirabo, A.; Sindikubwabo, T. Seasonal Assessment of Drinking Water Sources in Rwanda Using GIS, Contamination Degree (Cd), and Metal Index (MI). Environ. Monit. Assess. 2019, 191, 734. [Google Scholar] [CrossRef] [Green Version]
- McGrane, S.J. Impacts of Urbanisation on Hydrological and Water Quality Dynamics, and Urban Water Management: A Review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Kickbusch, I.; Buckett, K. Implementing Health in All Policies: Adelaide 2010; Department of Health, Government of South Australia: Adelaide, Australia, 2010; p. 99. ISBN 978-1-74243-033-1.
Community | Pan Latrine (%) | Ventilated Improved Pit Latrine (%) | Open Defecation (%) | Flush Toilet (%) | Total |
---|---|---|---|---|---|
Alajo | 38 (48) | 34 (43) | 2 (3) | 6 (8) | 80 |
Nima | 46 (58) | 29 (36) | 2 (3) | 3 (4) | 80 |
Odawna | 45 (56) | 31 (39) | 2 (3) | 2 (3) | 80 |
Agbogba | 32 (40) | 13 (16) | 0 (0) | 35 (43) | 80 |
Total | 161 | 107 | 6 | 46 | 320 |
Waste Disposal Strategies | Number of Households (%) | |
---|---|---|
Public waste collection points | 119 | (37) |
Burn solid wastes | 48 | (15) |
Private house-to-house collection service | 97 | (30) |
Bury the waste | 12 | (4) |
Indiscriminate waste disposal | 28 | (9) |
Direct dumping into the river/gutter | 16 | (5) |
Total | 320 | (100) |
Year | Area Coverage | Water | Vegetation | Built-Up Area | Bare-Land |
---|---|---|---|---|---|
1991 | Area (km2) | 0.45 | 187.91 | 51.16 | 25.81 |
Area (%) | 0.17 | 70.82 | 19.28 | 9.73 | |
2002 | Area (km2) | 0.25 | 125.26 | 87.34 | 52.48 |
Area (%) | 0.09 | 47.21 | 32.92 | 19.78 | |
2011 | Area (km2) | 0.44 | 108.19 | 143.45 | 13.24 |
Area (%) | 0.16 | 40.78 | 54.07 | 4.99 | |
2020 | Area (km2) | 0.31 | 57.16 | 171.24 | 32.80 |
Area (%) | 0.12 | 21.54 | 64.54 | 12.00 | |
1991–2002 | Area change (km2) | −0.20 | −62.65 | 36.18 | 26.67 |
% change | −0.07 | −23.61 | 13.64 | 10.05 | |
2002–2011 | Area change (km2) | 0.19 | −17.07 | 56.12 | −39.24 |
% change | 0.07 | −6.43 | 21.15 | −14.79 | |
2011–2020 | Area change (km2) | −0.13 | −51.03 | 27.79 | 19.56 |
% change | −0.05 | −19.23 | 10.47 | 7.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntajal, J.; Höllermann, B.; Falkenberg, T.; Kistemann, T.; Evers, M. Water and Health Nexus—Land Use Dynamics, Flooding, and Water-Borne Diseases in the Odaw River Basin, Ghana. Water 2022, 14, 461. https://doi.org/10.3390/w14030461
Ntajal J, Höllermann B, Falkenberg T, Kistemann T, Evers M. Water and Health Nexus—Land Use Dynamics, Flooding, and Water-Borne Diseases in the Odaw River Basin, Ghana. Water. 2022; 14(3):461. https://doi.org/10.3390/w14030461
Chicago/Turabian StyleNtajal, Joshua, Britta Höllermann, Timo Falkenberg, Thomas Kistemann, and Mariele Evers. 2022. "Water and Health Nexus—Land Use Dynamics, Flooding, and Water-Borne Diseases in the Odaw River Basin, Ghana" Water 14, no. 3: 461. https://doi.org/10.3390/w14030461
APA StyleNtajal, J., Höllermann, B., Falkenberg, T., Kistemann, T., & Evers, M. (2022). Water and Health Nexus—Land Use Dynamics, Flooding, and Water-Borne Diseases in the Odaw River Basin, Ghana. Water, 14(3), 461. https://doi.org/10.3390/w14030461