Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia
Abstract
:1. Introduction
2. Research Materials and Methods
2.1. Area of Study and Description
2.2. Samples Collection and Analytical Procedures
2.3. Indexing Method
2.3.1. Water Quality Indices (WQIs)
2.3.2. Drinking Water Quality Index (DWQI)
2.3.3. Irrigation Water Quality Index (IWQI)
2.3.4. Total Dissolves Solids (TDS)
2.3.5. Potential Salinity (PS)
2.3.6. Sodium Adsorption Ratio (SAR)
2.3.7. Residual Sodium Carbonate (RSC)
2.4. Partial Least-Square Regression (PLSR) and Multiple Linear Regression (MLR)
- (1)
- R2 coefficient;
- (2)
- root mean square error (RMSE);
- (3)
- mean absolute deviation (MAD);
- (4)
- Accuracy (ACC) of the models
2.5. Data Analysis and Graphical Approach
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Geochemical Facies and Controlling Mechanisms
3.3. Water Quality Indices
3.3.1. Drinking Water Quality Index (DWQI)
3.3.2. Irrigation Water Quality Index (IWQI)
3.3.3. Total Dissolved Solids (TDS)
3.3.4. Potential Salinity (PS)
3.3.5. Sodium Absorption Ratio (SAR)
3.3.6. Residual Sodium Carbonate (RSC)
3.4. Multivariate Statistical Analysis
3.5. Using Partial Least Square Regression to Predict WQIs for Drinking and Irrigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Busico, G.; Kazakis, N.; Cuoco, E.; Colombani, N.; Tedesco, D.; Voudouris, K.; Mastrocicco, M. A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses. Water Res. 2020, 171, 115386. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.T.; Gnanachandrasamy, G. Evaluation of groundwater quality for drinking and irrigation purposes using GIS-based water quality index in urban area of Abaya-Chemo sub-basin of Great Rift Valley, Ethiopia. Appl. Water Sci. 2021, 11, 148. [Google Scholar] [CrossRef]
- Batarseh, M.; Imreizeeq, E.; Tilev, S.; Al Alaween, M.; Suleiman, W.; Al Remeithi, A.M.; Al Tamimi, M.K.; Al Alawneh, M. Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) and GIS-Zoning maps: Case study from Abu Dhabi Emirate, UAE. Groundw. Sustain. Dev. 2021, 14, 100611. [Google Scholar] [CrossRef]
- Danfeng, L. Quantifying water use and groundwater recharge under flood irrigation in an arid oasis of northwestern China. Agric. Water Manag. 2020, 240, 106326. [Google Scholar]
- Masoud, M.; Niyazi, B.; Elfeki, A.; Zaidi, S. Mapping of Flash Flood Hazard Prone Areas Based on Integration between Physiographic Features and GIS Techniques (Case Study of Wadi Fatimah, Saudi Arabia). In Proceedings of the 6 International Conference on Water Resources and Arid Environments (ICWRAE 6), Riyadh, Saudi Arabia, 16–18 December 2014; pp. 334–347. [Google Scholar]
- Chafouq, D.; El Mandour, A.; Elgettafi, M.; Himi, M.; Chouikri, I.; Casas, A. Hydrochemical and isotopic characterization of groundwater in the Ghis-Nekor plain (northern Morocco). J. Afr. Earth Sci. 2018, 139, 1–13. [Google Scholar] [CrossRef]
- Barzegar, R.; AsghariMoghaddam, A.; Adamowski, J.; Nazemi, A.H. Delimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworks. Environ. Sci. Pollut. Res. 2019, 26, 8325–8339. [Google Scholar] [CrossRef]
- Ahmed, S.; Kumar, P.; Rozbu, M.; Chowdhury, A.; Nuzhat, S.; Rafa, N.; Mahlia, T.; Ong, H.; Mofijur, M. Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil. Environ. Technol. Innov. 2022, 25, 102114. [Google Scholar] [CrossRef]
- Yousefi, H.; Zahedi, S.; Niksokhan, M.H. Modifying the analysis made by water quality index using multi-criteria decision-making methods. J. Afr. Earth Sci. 2018, 138, 309–318. [Google Scholar] [CrossRef]
- Adimalla, N.; Dhakate, R.; Kasarla, A.; Taloor, A.K. Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundw. Sustain. 2020, 10, 100334. [Google Scholar] [CrossRef]
- Taloor, A.K.; Pir, R.A.; Adimalla, N.; Ali, S.; Manhas, D.S.; Roy, S.; Singh, A.K. Spring water quality and discharge assessment in the Basantar watershed of Jammu Himalaya using geographic information system (GIS) and water quality Index (WQI). Groundw. Sustain. Dev. 2020, 10, 100364. [Google Scholar] [CrossRef]
- Mondal, N.C.; Singh, V.P. Hydrochemical analysis of salinization for a tannery belt in Southern India. J. Hydrol. 2011, 405, 235–247. [Google Scholar] [CrossRef]
- Mondal, N.C.; Singh, V.P.; Singh, V.S. Hydrochemical characteristic of coastal aquifer from Tuticorin, Tamilnadu, India. Environ. Monit. Assess. 2011, 175, 531–550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ma, L.; Abuduwaili, J.; Ge, Y.; Issanova, G.; Saparov, G. Hydrochemical characteristics and irrigation suitability of surface water in the Syr Darya River, Kazakhstan. Environ. Monit. Assess. 2019, 191, 572. [Google Scholar] [CrossRef] [Green Version]
- Gad, M.; El-Hattab, M. Integration of water pollution indices and DRASTIC model for assessment of groundwater quality in El Fayoum Depression, Western Desert, Egypt. J. Afr. Earth Sci. 2019, 158, 103554. [Google Scholar] [CrossRef]
- Gad, M.; El Osta, M. Geochemical controlling mechanisms and quality of the groundwater resources in El Fayoum Depression, Egypt. Arab. J. Geosci. 2020, 13, 861. [Google Scholar] [CrossRef]
- Shakeri, A.; Ghoreyshinia, S.; Mehrabi, B. Surface and groundwater quality in Taftan geothermal field, SE Iran. Water Qual. Expo. Health 2014, 7, 205–218. [Google Scholar] [CrossRef]
- Gad, M.; Saad, A. Hydrogeochemical evaluation of fractured Limestone aquifer by applying a geochemical model in eastern Nile Valley, Egypt. Environ. Earth Sci. 2017, 76, 641. [Google Scholar] [CrossRef]
- Gad, M.; Dahab, K.; Ibrahim, H. Applying of a geochemical model on the Nubian sandstone aquifer in Siwa Oasis, Western Desert, Egypt. Environ. Earth Sci. 2018, 77, 401. [Google Scholar] [CrossRef]
- Gad, M.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; Elsayed, S. Combining Hydrogeochemical Characterization and a Hyperspectral Reflectance Tool for Assessing Quality and Suitability of Two Groundwater Resources for Irrigation in Egypt. Water 2020, 12, 2169. [Google Scholar] [CrossRef]
- Hussein, H.A.; Ricka, A.; Kuchovsky, T.; El Osta, M.M. Groundwater hydrochemistry and origin in the south-eastern part of Wadi El Natrun, Egypt. Arab. J. Geosci. 2017, 10, 170–184. [Google Scholar] [CrossRef]
- Egbueri, J.C. Assessment of the quality of groundwater proximal to dumpsites in Awka and Nnewi metro-polises: A comparative approach. Int. J. Energ. Water Res. 2018, 2, 33–48. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, B.X.; Wang, P.; Chen, J.; Yang, L.; Xiao, K. Hydrogeochemical evolution and heavy metal contamination in groundwater of a reclaimed land on Zhoushan Island. Water 2018, 10, 316–338. [Google Scholar] [CrossRef] [Green Version]
- Mgbenu, C.N.; Egbueri, J.C. The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, southeast Nigeria. Appl. Water Sci. 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.K.; Logeshkumaran, A.; Magesh, N.S.; Prince, S.; Godson, N.; Chandrasekar. Hydro-geochemistry and application of water quality index (DWQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Appl. Water Sci. 2015, 5, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Mirzavand, M.; Sadeghi, S.H.; Bagheri, R. Groundwater and soil salinization and geochemical evolution of Femenin-Ghahavand plain, Iran. Environ. Sci. Pollut. R. 2020, 27, 43056–43066. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Thukral, A.K.; Rodrigo-Comino, J. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Hum. Ecol. Risk Assess. 2018, 26, 1–16. [Google Scholar] [CrossRef]
- Li, P.; Tian, R.; Liu, R. Solute geochemistry and multivariate analysis of water quality in the GuohuaPhosphorite Mine, Guizhou Province, China. Expo. Health 2019, 11, 81–94. [Google Scholar] [CrossRef]
- Gad, M.; Abou El-Safa, M.M.; Farouk, M.; Hussein, H.; Alnemari, A.M.; Elsayed, S.; Khalifa, M.M.; Moghanm, F.S.; Eid, E.M.; Saleh, A.H. Integration of Water Quality Indices and Multivariate Modeling for Assessing Surface Water Quality in Qaroun Lake, Egypt. Water 2021, 13, 2258. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicol. Environ. Saf. 2019, 176, 153–161. [Google Scholar] [CrossRef]
- Dimri, D.; Daverey, A.; Kumar, A.; Sharma, A. Monitoring water quality of river ganga using multivariate techniques and WQI (water quality index) in western himalayan region of uttarakhand, India. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100375. [Google Scholar] [CrossRef]
- Pak, H.Y.; Chuah, C.J.; Tan, M.L.; Yong, E.L.; Snyder, S.A. A framework for assessing the adequacy of Water Quality Index—Quantifying parameter sensitivity and uncertainties in missing values distribution. Sci. Total Environ. 2021, 751, 141982. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indicat. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Yogendra, K.; Puttaiah, E.T. Determination of water quality index and suitability of an urban waterbody in Shimoga Town, Karnataka. In Proceedings of the Proceedings of Taal2007: The 12th World Lake Conference, Jaipur, India, 28 October–2 November 2007; pp. 342–346. [Google Scholar]
- Sener, S.; Davraz, A.; Karagüzel, R. Evaluating the anthropogenic and geologic impacts on water quality of the Egirdir Lake, Turkey. Environ. Earth Sci. 2013, 70, 2527–2544. [Google Scholar] [CrossRef]
- Arslan, B.; Akün, E. Management, contamination and quality evaluation of groundwater in North Cyprus. Agric.Water Manag. 2019, 222, 1–11. [Google Scholar] [CrossRef]
- Shil, S.; Singh, U.K.; Mehta, P. Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS. Appl. Water Sci. 2019, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese loess plateau. Sci. Total Environ. 2018, 650, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US); Committee on Water Quality Criteria. A Report of the Committee on Water Quality Criteria, National Academy of Sciences, National Academy of Engineering; Environmental Protection Agency: Washington, DC, USA, 1972.
- Wilcox, L.V. Classification and Use of Irrigation Waters; US Department of Agriculture: Washington, DC, USA, 1955.
- Haque, S.; Kannaujiya, S.; Taloor, A.K.; Keshri, D.; Bhunia, R.K.; Champati Ray, P.K.; Chauhan, P. Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundw. Sustain. Dev. 2020, 10, 100337. [Google Scholar] [CrossRef]
- Karuppannan, S.; SerreKawo, N. Groundwater quality assessment using geospatial techniques and WQI in north east of adama town, oromia region, Ethiopia. Hydrospatial Anal. 2020, 3, 22–36. [Google Scholar] [CrossRef]
- Yetis, A.D.; Kahraman, N.; Yesilnacar, M.I.; Kara, H. Groundwater quality assessment using GIS based on some pollution indicators over the past 10 Years (2005–2015): A case study from semi-arid harran plain, Turkey. Water Air Soil Pollut. 2021, 232, 11. [Google Scholar] [CrossRef]
- Abowaly, M.; Belal, A.; Abd Elkhalek, E.; Elsayed, S.; Abou Samra, R.; Alshammari, A.; Moghanm, F.; Shaltout, K.; Alamri, S.; Eid, E. Assessment of Soil Pollution Levels in North Nile Delta, by Integrating Contamination Indices, GIS, and Multivariate Modeling. Sustainability 2021, 13, 8027. [Google Scholar] [CrossRef]
- Gad, M.; Elsayed, S.; Moghanm, F.S.; Almarshadi, M.H.; Alshammari, A.S.; Khedher, K.M.; Eid, E.M.; Hussein, H. Combining Water Quality Indices and Multivariate Modeling to Assess Surface Water Quality in the Northern Nile Delta, Egypt. Water 2020, 12, 2142. [Google Scholar] [CrossRef]
- Elsayed, S.; Gad, M.; Farouk, M.; Saleh, A.H.; Hussein, H.; Elmetwalli, A.H.; Elsherbiny, O.; Moghanm, F.S.; Moustapha, M.E.; Taher, M.A.; et al. Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt. Sustainability 2021, 13, 10408. [Google Scholar] [CrossRef]
- Niyazi, b.; Khan, A.; Masoud, M.; Elfeki, A.; Basahi, J. Variability of the geomorphometric characteristics of Makkah Al Mukaramah basins in Saudi Arabia and the impact on the hydrologic response. J. Afr. Earth Sci. 2020, 168, 103842. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Deutsch, W.J. Groundwater Geochemistry Fundamentals and Application to Contamination; Lewis Publishers: Boca Raton, FL, USA, 1997. [Google Scholar]
- Singh, S.; Ghosh, N.C.; Gurjar, S.; Krishan, G.; Kumar, S.; Berwal, P. Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environ. Monit. Assess. 2018, 190, 29. [Google Scholar] [CrossRef] [PubMed]
- Cude, C.G. Oregon water quality index a tool for evaluating water quality management effectiveness. J. Am. Water Resour. Assoc. 2001, 37, 125–137. [Google Scholar] [CrossRef]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G.; Water, A. Quality index: Do we dare? Water Sewage Works 1970, 117, 339–343. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Spandana, M.P.; Suresh, K.R.; Prathima, B. Developing an irrigation water quality index for vrishabavathi command area. Int. J. Eng. Res. Technol. 2013, 2, 821–830. [Google Scholar]
- Zaman, M.; Shahid, S.A.; Heng, L. Irrigation water quality. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer International Publishing: Cham, Switzerland, 2018; pp. 113–131. [Google Scholar]
- Abbasnia, A.; Radfard, M.; Mahvi, A.H.; Nabizadeh, R.; Yousefi, M.; Soleimani, H.; Alimohammadi, M. Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. Data Br. 2018, 19, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Ayers, R.; Westcot, D. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29 Rev. 1; Food and Agriculture Organization of the United Nations: Rome, Italy, 1994. [Google Scholar]
- Doneen, L.D. Notes on Water Quality in Agriculture; Published as a Water Science and Engineering, Paper 4001; Department of Water Science and Engineering, University of California: Oakland, CA, USA, 1964. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils [Handbook]. Soil Science; United States Department of Agriculture: Washington, DC, USA, 1954; 78p.
- Eaton, F.M. Significance of carbonates in irrigation waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gupta, I.C. Management of Saline & Waste Water in Agriculture; Scientific Publishers: Jodhpur, India, 2015. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Chadha, D.K. A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol. J. 1999, 7, 431–439. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Giménez-Forcada, E.; San Román, F.J.S. An excel macro to plot the HFE-Diagram to identify seawater intrusion phases. Ground Water 2015, 53, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, M.A.M. Major elements hydrochemistry and groundwater quality of Wadi Fatimah, West Central Arabian Shield, Saudi Arabia. Arab. J. Geosci. 2013, 6, 2633–2653. [Google Scholar] [CrossRef]
- Yechieli, Y.; Wood, W.W. Hydrogeologic processes in saline systems: Playas, Sabkhas, and Saline Lakes. Earth Sci. Rev. 2002, 58, 343–365. [Google Scholar] [CrossRef]
- Monjerezi, M. Groundwater Salinity in Lower Shire River Valley (Malawi) Hydro-Geochemical and Isotope Constraints on Sources and Evolution; University of Oslo: Oslo, Norway, 2012; 188p. [Google Scholar]
- Berner, E.; Berner, R. Global Environment: Water, Air and Geochemical Cycles, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Adimalla, N.; Taloor, A.K. Hydrogeochemical investigation of groundwater quality in the hard rock terrain of South India using Geographic Information System (GIS) and groundwater quality index (GWQI) techniques. Groundw. Sustain. Dev. 2020, 10, 100288. [Google Scholar] [CrossRef]
- Yasmin, G.; Islam, D.; Islam, M.T.; Shariot-Ullah, M.; Adham, A.K.M. Evaluation of groundwater quality for irrigation and drinking purposes in Barishal district of Bangladesh. Fundam. Appl. Agric. 2019, 4, 632–641. [Google Scholar] [CrossRef]
- Davis, S.; Dewiest, R. Hydrogeology; Wiley: New York, NY, USA, 1966. [Google Scholar]
- Puntamkar, S.; Kant, K.; Mathur, S. The effect of saline water irrigation on soil properties. Trans. Indian Soc. Desert Technol. Univ. Cent. Desert Stud. 1988, 13, 69–72. [Google Scholar]
- Srinivasamoorthy, K.; Gopinath, M.; Chidambaram, S.; Vasanthavigar, M.; Sarma, V.S. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. J. King Saud Uni. Sci. 2014, 26, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Subramani, T.; Elango, L.; Damodarasamy, S.R. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ. Geol. 2005, 47, 1099–1110. [Google Scholar] [CrossRef]
- Suarez, D.L.; Wood, J.D.; Lesch, S.M. Effect of SAR on water infiltration under a sequential rain-irrigation management system. Agric. Water Manag. 2006, 86, 150–164. [Google Scholar] [CrossRef]
- Todd, D.K. Groundwater Hydrology, 1st ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1960; 336p. [Google Scholar]
- Sudhakar, A.; Narsimha, A. Suitability and assessment of groundwater for irrigation purpose: A case study of Kushaiguda area, Ranga Reddy district, Andhra Pradesh, India. Adv. Appl. Sci. Res. 2013, 4, 75–81. [Google Scholar]
- Sundaray, S.K.; Nayak, B.B.; Bhatta, D. Environmental studies on river water quality with reference to suitability for agricultural purposes: Mahanadi river estuarine system, India—A case study. Environ. Monit. Assess. 2009, 155, 227–243. [Google Scholar] [CrossRef]
- Ravikumar, P.; Somashekar, R.K.; Angami, M. Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State, India. Environ. Monit. Assess. 2011, 173, 459–487. [Google Scholar] [CrossRef] [PubMed]
- Meireles, A.C.M.; Andrade, E.M.; Chaves, L.C.; Frischkorn, G.H.; Crisóstomo, L.A. A new proposal of the classification of irrigation water. Rev. Ciênc. Agron. 2010, 41, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Mustapha, A.; Aris, Z.A. Multivariate statistical analysis and environmental modelling of heavy metals pollution by industries. Pol. J. Environ. Stud. 2012, 21, 1359–1367. [Google Scholar]
- Chen, J.; Lu, J. Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East China. PLoS ONE 2014, 9, e102714. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, S.; El-Gozayer, K.; Allam, A.; Schmidhalter, U. Passive reflectance sensing using regression and multivariate analysis to estimate biochemical parameters of different fruits kinds. Sci. Hortic. 2019, 243, 21–33. [Google Scholar] [CrossRef]
Physicochemical Parameters | Unit | WHO (2017) Si | Unit Weight wi | ||
---|---|---|---|---|---|
pH | - | 8.5 | 0.415 | 86.000 | 35.729 |
TDS | mg/L | 500 | 0.007 | 105.996 | 0.748 |
EC | µs/cm | 1500 | 0.002 | 70.600 | 0.166 |
TH | mg/L | 500 | 0.007 | 60.944 | 0.430 |
K+ | mg/L | 12 | 0.294 | 65.210 | 19.190 |
Na+ | mg/L | 200 | 0.017 | 33.388 | 0.589 |
Mg2− | mg/L | 50 | 0.070 | 34.735 | 2.453 |
Ca2+ | mg/L | 75 | 0.047 | 124.540 | 5.864 |
Cl− | mg/L | 250 | 0.014 | 43.076 | 0.608 |
SO42− | mg/L | 250 | 0.014 | 71.666 | 1.012 |
HCO32− | mg/L | 120 | 0.029 | 76.250 | 2.243 |
CO3− | mg/L | 350 | 0.0100 | 3.428 | 0.0345 |
NO3− | mg/L | 50 | 0.070 | 88.775 | 6.270 |
∑ (Si) | ∑ (wi) = 1 |
Makkah Al-Mukarramah Province, KSA (n = 59) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T °C | pH | EC | TDS | TH | K+ | Na+ | Mg2+ | Ca2+ | Cl− | SO42− | HCO32− | CO3− | NO3− | |
Min | 30.00 | 6.99 | 553.00 | 226.90 | 44.10 | 0.99 | 43.64 | 4.11 | 10.91 | 70.53 | 30.00 | 12.20 | 0.00 | 0.01 |
Max | 32.00 | 8.39 | 25,000.00 | 18,518.30 | 6025.50 | 79.03 | 4602.75 | 575.27 | 1995.80 | 7271.03 | 5180.27 | 274.50 | 24.00 | 475.44 |
Mean | 30.60 | 7.74 | 4217.20 | 2572.30 | 1188.90 | 13.87 | 441.93 | 90.56 | 327.25 | 926.22 | 692.35 | 146.18 | 7.01 | 57.27 |
SD | 0.75 | 0.33 | 4595.60 | 3247.10 | 1209.10 | 13.35 | 729.02 | 108.44 | 333.83 | 1450.50 | 788.69 | 51.56 | 8.19 | 84.55 |
Water Quality Indices (WQIs) | Sample Range | Range | Water Category | Number of Samples (%) | |||
---|---|---|---|---|---|---|---|
Min. | Max. | Mean | SD | ||||
Drinking water quality (DWQI) | 23.29 | 545.53 | 118.68 | 88.28 | 0–25 | Excellent | 1 (2%) |
26–50 | Good | 2 (3%) | |||||
51–75 | Poor | 10 (17%) | |||||
76–100 | Very poor | 19 (32%) | |||||
>100 | Unsuitable | 27 (46%) | |||||
Irrigation water quality index (IWQI) | 19.42 | 95.93 | 64.07 | 20.42 | 85–100 | No restriction | 15 (25.5%) |
70–85 | Low restriction | 12 (20.5%) | |||||
55–70 | Moderate restriction | 5 (8.5%) | |||||
40–55 | High restriction | 22 (37%) | |||||
0–40 | Serve restriction | 5 (8.5%) | |||||
Total dissolved solids (TDS) | 226.90 | 18,518.32 | 2572.30 | 3247.14 | <700 | No restriction | 12 (20%) |
700–3000 | Slight to moderate restriction | 33 (56%) | |||||
>3000 | Serve restriction | 14 (24%) | |||||
Potential salinity (PS) | 3.03 | 258.96 | 33.32 | 48.17 | <3 | Excellent to good | 0 (0.0%) |
3 to 5 | Good to Injurious | 8 (14%) | |||||
>5 | Injurious to Unsatisfactory | 51(86%) | |||||
Sodium adsorption ratio (SAR) | 1.109 | 31.00 | 4.84 | 4.86 | 2–10 | Excellent | 54 (92%) |
10–18 | Good | 3 (5%) | |||||
18–26 | Doubtful or Fairly poor | 1 (1.5%) | |||||
>26 | Unsuitable | 1 (1.5%) | |||||
Residual Sodium Carbonate (RSC) | −118.91 | −0.40 | −21.14 | 24.33 | <1.25 | Safe | 59 (100%) |
1.25–2.5 | Marginal | 0 (0.0%) | |||||
>2.5 | Unsuitable | 0 (0.0%) |
Water Quality Indices | LVs | Calibration | Validation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R2cal | RMSEc | MADc | ACCc | R2val | RMSEv | MADv | ACCv | |||
PLSR | DWQI | 9 | 0.992 *** | 7.356 | 6.323 | 0.991 | 0.987 *** | 10.030 | 7.686 | 0.989 |
IWQI | 4 | 0.905 *** | 10.516 | 5.781 | 0.999 | 0.848 *** | 13.680 | 6.331 | 0.984 | |
TDS | 2 | 0.999 *** | 58.920 | 21.147 | 0.981 | 0.999 *** | 71.985 | 26.538 | 0.980 | |
PS | 1 | 0.989 *** | 0.982 | 0.279 | 0.998 | 0.999 *** | 1.494 | 0.273 | 0.985 | |
SAR | 2 | 0.919 *** | 1.370 | 0.811 | 0.824 | 0.861 *** | 1.838 | 0.814 | 0.817 | |
RSC | 2 | 0.999 *** | 0.762 | 0.427 | 0.962 | 0.998 *** | 0.874 | 0.448 | 0.924 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Osta, M.; Masoud, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water 2022, 14, 483. https://doi.org/10.3390/w14030483
El Osta M, Masoud M, Alqarawy A, Elsayed S, Gad M. Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water. 2022; 14(3):483. https://doi.org/10.3390/w14030483
Chicago/Turabian StyleEl Osta, Maged, Milad Masoud, Abdulaziz Alqarawy, Salah Elsayed, and Mohamed Gad. 2022. "Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia" Water 14, no. 3: 483. https://doi.org/10.3390/w14030483
APA StyleEl Osta, M., Masoud, M., Alqarawy, A., Elsayed, S., & Gad, M. (2022). Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water, 14(3), 483. https://doi.org/10.3390/w14030483