Runoff Probability Prediction Model Based on Natural Gradient Boosting with Tree-Structured Parzen Estimator Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Natural Gradient Boosting (NGboost)
2.2.2. Probability Distribution
2.2.3. Tree-Structured Parzen Estimator (TPE)
2.2.4. Performance Measures
2.2.5. Runoff Prediction Model
3. Results
3.1. Hyperparameter Tuning
3.2. Deterministic Predictions
3.3. Probabilistic Predictions
4. Discussion
- In the range of values allowed by the experimental arithmetic, the greater the number of timesteps of previous observations in the input, the better the performance;
- The depth of the decision tree base learner needs to be optimally selected for different situations;
- The number of base learners can be selected between 800 and 1200;
- The learning rate between 0.001 and 0.03 is better; and
- The percentage of subsamples used in the model training has little effect on the prediction of the model.
5. Conclusions
- Apply the NGboost model to the deterministic and probabilistic prediction of runoff at monthly, weekly and daily scales, and achieve better predictions;
- Use the TPE algorithm to optimize the prediction model hyperparameters, improve the model prediction effect and summarize some recommendations of prediction model hyperparameter tuning; and
- Analyze the prediction models with normal, lognormal and exponential distributions for different runoff characteristics and different time scales, and summarize the recommended distributions in different conditions.
- The prediction accuracy is not sufficient for high flow cases, especially at extreme values. In the prediction results of each time scale, it can be seen that there is more room to improve the model prediction accuracy in high flow cases. Some methods of extreme value analysis can be applied in subsequent work to deal specifically with the high flow case.
- More probability distribution functions can be introduced to participate in the test. In this study, three probability distributions—normal distribution, lognormal distribution and exponential distribution—were tested. Subsequent studies can introduce more distribution forms to test the prediction effect of the model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loucks, D.P.; Van Beek, E. Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications; Springer: Berlin/Heidelberg, Germany, 2017; Volume 4, ISBN 9783319442327. [Google Scholar]
- Ramaswamy, V.; Saleh, F. Ensemble Based Forecasting and Optimization Framework to Optimize Releases from Water Supply Reservoirs for Flood Control. Water Resour. Manag. 2020, 34, 989–1004. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, C.; Peng, Y.; Fu, G.; Zhou, H. A two stage B ayesian stochastic optimization model for cascaded hydropower systems considering varying uncertainty of flow forecasts. Water Resour. Res. 2014, 50, 9267–9286. [Google Scholar] [CrossRef]
- Feng, Z.-K.; Niu, W.-J.; Liu, S.; Luo, B.; Miao, S.-M.; Liu, K. Multiple hydropower reservoirs operation optimization by adaptive mutation sine cosine algorithm based on neighborhood search and simplex search strategies. J. Hydrol. 2020, 590, 125223. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Lu, W.; Zhang, J.; Zhou, J.; Guo, S. Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation. J. Hydrol. 2016, 540, 712–726. [Google Scholar] [CrossRef]
- Bourdin, D.R.; Fleming, S.W.; Stull, R.B. Streamflow Modelling: A Primer on Applications, Approaches and Challenges. Atmos.-Ocean 2012, 50, 507–536. [Google Scholar] [CrossRef] [Green Version]
- Devia, G.K.; Ganasri, B.; Dwarakish, G. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Meng, X.; Huang, M.; Liu, D.; Yin, M. Simulation of rainfall–runoff processes in karst catchment considering the impact of karst depression based on the tank model. Arab. J. Geosci. 2021, 14, 250. [Google Scholar] [CrossRef]
- Lü, H.; Hou, T.; Horton, R.; Zhu, Y.; Chen, X.; Jia, Y.; Wang, W.; Fu, X. The streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method. J. Hydrol. 2012, 480, 102–114. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, L.; Qin, H.; Hong, X.; Ye, J.; Yin, X. Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression. J. Hydrol. 2018, 561, 146–159. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Khan, A.; Zhang, Y.-K.; Kuang, X.; Liang, X.; Taccari, M.L.; Nuttall, J. Daily runoff forecasting by deep recursive neural network. J. Hydrol. 2021, 596, 126067. [Google Scholar] [CrossRef]
- Gao, S.; Huang, Y.; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J. Hydrol. 2020, 589, 125188. [Google Scholar] [CrossRef]
- He, X.; Luo, J.; Li, P.; Zuo, G.; Xie, J. A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting. Water Resour. Manag. 2020, 34, 865–884. [Google Scholar] [CrossRef]
- Rezaie-Balf, M.; Kim, S.; Fallah, H.; Alaghmand, S. Daily river flow forecasting using ensemble empirical mode decomposition based heuristic regression models: Application on the perennial rivers in Iran and South Korea. J. Hydrol. 2019, 572, 470–485. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ni, L.; Wang, D.; Wu, J.; Wang, Y.; Tao, Y.; Zhang, J.; Liu, J. Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model. J. Hydrol. 2020, 586, 124901. [Google Scholar] [CrossRef]
- Herr, H.D.; Krzysztofowicz, R. Ensemble Bayesian forecasting system Part I: Theory and algorithms. J. Hydrol. 2015, 524, 789–802. [Google Scholar] [CrossRef]
- Herr, H.D.; Krzysztofowicz, R. Ensemble Bayesian forecasting system Part II: Experiments and properties. J. Hydrol. 2019, 575, 1328–1344. [Google Scholar] [CrossRef]
- Tajiki, M.; Schoups, G.; Franssen, H.J.H.; Najafinejad, A.; Bahremand, A. Recursive Bayesian Estimation of Conceptual Rainfall-Runoff Model Errors in Real-Time Prediction of Streamflow. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Montanari, A.; Grossi, G. Estimating the uncertainty of hydrological forecasts: A statistical approach. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- López, P.L.; Verkade, J.S.; Weerts, A.H.; Solomatine, D.P. Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn River: A comparison. Hydrol. Earth Syst. Sci. 2014, 18, 3411–3428. [Google Scholar] [CrossRef] [Green Version]
- Duan, T.; Anand, A.; Ding, D.Y.; Thai, K.K.; Basu, S.; Ng, A.; Schuler, A. NGBoost: Natural Gradient Boosting for Probabilistic Prediction. In Proceedings of the 37th International Conference on Machine Learning, Virtual, 12–18 July 2020; Volume 119. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 45, 1189–1232. [Google Scholar] [CrossRef]
- Cai, X.; Yang, Y.; Jiang, G. Online Risk Measure Estimation VIA Natural Gradient Boosting. In Proceedings of the 2020 Winter Simulation Conference (WSC), Orlando, FL, USA, 14–18 December 2020; pp. 2341–2352. [Google Scholar]
- Li, Y.; Wang, Y.; Wu, B. Short-Term Direct Probability Prediction Model of Wind Power Based on Improved Natural Gradient Boosting. Energies 2020, 13, 4629. [Google Scholar] [CrossRef]
- Pfau, M.; Sahu, S.; Rupnow, R.A.; Romond, K.; Millet, D.; Holz, F.G.; Schmitz-Valckenberg, S.; Fleckenstein, M.; Lim, J.I.; de Sisternes, L.; et al. Probabilistic Forecasting of Anti-VEGF Treatment Frequency in Neovascular Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2021, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Zhi, X.; Ji, Y.; Ji, L.; Tian, Y. Prediction Skill of Extended Range 2-m Maximum Air Temperature Probabilistic Forecasts Using Machine Learning Post-Processing Methods. Atmosphere 2020, 11, 823. [Google Scholar] [CrossRef]
- Ben Jabeur, S.; Ballouk, H.; Ben Arfi, W.; Khalfaoui, R. Machine Learning-Based Modeling of the Environmental Degradation, Institutional Quality, and Economic Growth. Environ. Model. Assess. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ghawi, R.; Pfeffer, J. Efficient Hyperparameter Tuning with Grid Search for Text Categorization using kNN Approach with BM25 Similarity. Open Comput. Sci. 2019, 9, 160–180. [Google Scholar] [CrossRef]
- Noh, J.; Park, H.-J.; Kim, J.S.; Hwang, S.-J. Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management. Mathematics 2020, 8, 565. [Google Scholar] [CrossRef] [Green Version]
- Stuke, A.; Rinke, P.; Todorović, M. Efficient hyperparameter tuning for kernel ridge regression with Bayesian optimization. Mach. Learn. Sci. Technol. 2021, 2, 035022. [Google Scholar] [CrossRef]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Proceedings of the 24th International Conference on Neural Information Processing Systems, Guangzhou, China, 14–18 November 2017; Curran Associates Inc.: Red Hook, NY, USA; pp. 2546–2554. [Google Scholar]
- Valsecchi, C.; Consonni, V.; Todeschini, R.; Orlandi, M.E.; Gosetti, F.; Ballabio, D. Parsimonious Optimization of Multitask Neural Network Hyperparameters. Molecules 2021, 26, 7254. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, W.; Qian, F.; Li, Y. Potential Analysis of the Attention-Based LSTM Model in Ultra-Short-Term Forecasting of Building HVAC Energy Consumption. Front. Energy Res. 2021, 9, 730640. [Google Scholar] [CrossRef]
- Nguyen, H.-P.; Liu, J.; Zio, E. A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators. Appl. Soft Comput. 2020, 89, 106116. [Google Scholar] [CrossRef] [Green Version]
- Bergstra, J.; Yamins, D.; Cox, D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In Proceedings of the 30th International Conference on International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 28, pp. 115–123. [Google Scholar]
- Amari, S.-I. Natural Gradient Works Efficiently in Learning. Neural Comput. 1998, 10, 251–276. [Google Scholar] [CrossRef]
- Martens, J. New Insights and Perspectives on the Natural Gradient Method. arXiv 2014, arXiv:1412.1193. [Google Scholar]
- Dawid, A.P. The geometry of proper scoring rules. Ann. Inst. Stat. Math. 2006, 59, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Gebetsberger, M.; Messner, J.W.; Mayr, G.J.; Zeileis, A. Estimation Methods for Nonhomogeneous Regression Models: Minimum Continuous Ranked Probability Score versus Maximum Likelihood. Mon. Weather Rev. 2018, 146, 4323–4338. [Google Scholar] [CrossRef]
- Dominguez, E.; Dawson, C.W.; Ramirez, A.; Abrahart, R. The search for orthogonal hydrological modelling metrics: A case study of 20 monitoring stations in Colombia. J. Hydroinformatics 2010, 13, 429–442. [Google Scholar] [CrossRef]
- Moreido, V.; Gartsman, B.; Solomatine, D.; Suchilina, Z. How Well Can Machine Learning Models Perform without Hydrologists? Application of Rational Feature Selection to Improve Hydrological Forecasting. Water 2021, 13, 1696. [Google Scholar] [CrossRef]
Time Scale | Mean 1 | Minimum 1 | Maximum 1 | Standard Deviation 1 | Autocorrelation 2 |
---|---|---|---|---|---|
monthly | 13,643 | 3058 | 52,168 | 9745 | 0.7554 |
weekly | 13,706 | 2824 | 63,714 | 10,381 | 0.9038 |
daily | 13,707 | 2470 | 79,881 | 10,665 | 0.9852 |
Time scale | Mean 1 | Minimum 1 | Maximum 1 | Standard Deviation 1 | Autocorrelation 2 |
---|---|---|---|---|---|
monthly | 4499 | 900 | 19,448 | 3592 | 0.7516 |
weekly | 4520 | 770 | 26,971 | 3793 | 0.9317 |
daily | 4520 | 640 | 28,600 | 3847 | 0.9926 |
Station | Time Scale | Distributions | Number of Timesteps | Base Learner Depth | Number of Learners | Learning Rate | Percent of Subsample |
---|---|---|---|---|---|---|---|
Yichang | Monthly | Normal | 12 | 3 | 900 | 0.03722 | 0.6 |
LogNormal | 12 | 3 | 1100 | 0.01003 | 0.5 | ||
Exponential | 12 | 4 | 1100 | 0.00577 | 0.6 | ||
Weekly | Normal | 16 | 3 | 500 | 0.00568 | 0.5 | |
LogNormal | 15 | 2 | 1200 | 0.00346 | 0.9 | ||
Exponential | 15 | 2 | 1400 | 0.00372 | 0.5 | ||
Daily | Normal | 16 | 3 | 1100 | 0.0068 | 0.7 | |
LogNormal | 27 | 2 | 900 | 0.00864 | 1 | ||
Exponential | 23 | 2 | 700 | 0.01962 | 0.8 | ||
Pingshan | Monthly | Normal | 12 | 5 | 800 | 0.01198 | 0.5 |
LogNormal | 12 | 5 | 900 | 0.05111 | 0.7 | ||
Exponential | 12 | 4 | 1400 | 0.01632 | 0.7 | ||
Weekly | Normal | 13 | 3 | 1200 | 0.00384 | 0.5 | |
LogNormal | 13 | 2 | 800 | 0.01528 | 0.7 | ||
Exponential | 14 | 2 | 900 | 0.02597 | 0.5 | ||
Daily | Normal | 15 | 4 | 1500 | 0.01235 | 0.9 | |
LogNormal | 15 | 2 | 700 | 0.01047 | 1 | ||
Exponential | 21 | 2 | 1100 | 0.0125 | 0.8 |
Time Scale | Models | RMSE | MRE | R2 | IRMSE |
---|---|---|---|---|---|
Monthly | SVM | 8612.16 | 0.5501 | −0.0625 | 0.9231 |
Xgboost | 4518.05 | 0.2036 | 0.7076 | 0.4843 | |
Normal | 4138.10 | 0.1863 | 0.7547 | 0.4436 | |
LogNormal | 4035.07 | 0.1703 | 0.7668 | 0.4325 | |
Exponential | 4019.67 | 0.1747 | 0.7685 | 0.4309 | |
Weekly | SVM | 9050.41 | 0.5176 | −0.0274 | 1.6681 |
Xgboost | 4387.76 | 0.1905 | 0.7585 | 0.8087 | |
Normal | 3685.47 | 0.1488 | 0.8296 | 0.6793 | |
LogNormal | 3654.54 | 0.1473 | 0.8325 | 0.6736 | |
Exponential | 3632.26 | 0.1468 | 0.8345 | 0.6695 | |
Daily | SVM | 6958.66 | 0.2143 | 0.4358 | 1.9935 |
Xgboost | 2316.02 | 0.0895 | 0.9375 | 0.6635 | |
Normal | 2103.43 | 0.0771 | 0.9484 | 0.6026 | |
LogNormal | 2097.01 | 0.0774 | 0.9488 | 0.6007 | |
Exponential | 2099.29 | 0.0777 | 0.9486 | 0.6014 |
Time Scale | Models | RMSE | MRE | R2 | IRMSE |
---|---|---|---|---|---|
Monthly | SVM | 3184.43 | 0.4586 | −0.1542 | 0.9276 |
Xgboost | 1349.63 | 0.1934 | 0.7927 | 0.3931 | |
Normal | 1232.74 | 0.1915 | 0.8270 | 0.3591 | |
LogNormal | 1228.67 | 0.1810 | 0.8282 | 0.3579 | |
Exponential | 1239.29 | 0.1832 | 0.8252 | 0.3610 | |
Weekly | SVM | 3172.36 | 0.3825 | −0.0220 | 1.8276 |
Xgboost | 1205.08 | 0.1620 | 0.8525 | 0.6942 | |
Normal | 1068.97 | 0.1405 | 0.8840 | 0.6158 | |
LogNormal | 1058.50 | 0.1357 | 0.8862 | 0.6098 | |
Exponential | 1063.74 | 0.1378 | 0.8851 | 0.6128 | |
Daily | SVM | 1596.71 | 0.1514 | 0.7511 | 2.0013 |
Xgboost | 503.49 | 0.0687 | 0.9753 | 0.6311 | |
Normal | 467.98 | 0.0644 | 0.9786 | 0.5866 | |
LogNormal | 475.35 | 0.0642 | 0.9779 | 0.5958 | |
Exponential | 473.28 | 0.0641 | 0.9781 | 0.5932 |
Time Scale | Distributions | ICP | INAW | CWC |
---|---|---|---|---|
Monthly | Normal | 0.4388 | 0.0742 | 0.1919 |
LogNormal | 0.6582 | 0.0962 | 0.1897 | |
Exponential | 1.0000 | 1.0108 | 1.0108 | |
Weekly | Normal | 0.9293 | 0.1649 | 0.1649 |
LogNormal | 0.8834 | 0.1562 | 0.3151 | |
Exponential | 1.0000 | 0.6858 | 0.6858 | |
Daily | Normal | 0.7842 | 0.0428 | 0.0899 |
LogNormal | 0.7650 | 0.0419 | 0.0908 | |
Exponential | 1.0000 | 0.4965 | 0.4965 |
Time Scale | Distributions | ICP | INAW | CWC |
---|---|---|---|---|
Monthly | Normal | 0.3214 | 0.0521 | 0.1451 |
LogNormal | 0.0204 | 0.0060 | 0.0205 | |
Exponential | 1.0000 | 0.9307 | 0.9307 | |
Weekly | Normal | 0.7456 | 0.1315 | 0.2849 |
LogNormal | 0.6749 | 0.1300 | 0.2929 | |
Exponential | 1.0000 | 0.7808 | 0.7808 | |
Daily | Normal | 0.6876 | 0.0374 | 0.0837 |
LogNormal | 0.7138 | 0.0403 | 0.0888 | |
Exponential | 1.0000 | 0.6108 | 0.6108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, K.; Qin, H.; Zhou, J.; Liu, G. Runoff Probability Prediction Model Based on Natural Gradient Boosting with Tree-Structured Parzen Estimator Optimization. Water 2022, 14, 545. https://doi.org/10.3390/w14040545
Shen K, Qin H, Zhou J, Liu G. Runoff Probability Prediction Model Based on Natural Gradient Boosting with Tree-Structured Parzen Estimator Optimization. Water. 2022; 14(4):545. https://doi.org/10.3390/w14040545
Chicago/Turabian StyleShen, Keyan, Hui Qin, Jianzhong Zhou, and Guanjun Liu. 2022. "Runoff Probability Prediction Model Based on Natural Gradient Boosting with Tree-Structured Parzen Estimator Optimization" Water 14, no. 4: 545. https://doi.org/10.3390/w14040545
APA StyleShen, K., Qin, H., Zhou, J., & Liu, G. (2022). Runoff Probability Prediction Model Based on Natural Gradient Boosting with Tree-Structured Parzen Estimator Optimization. Water, 14(4), 545. https://doi.org/10.3390/w14040545