Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Quality Ratings
- All wines produced from the same winegrape region were grouped together providing an average region-wide wine rating score per year for the specific variety. For example, although Agiorgitiko variety is currently cultivated across different areas in Greece, only wines produced within Nemea region (PDO) were considered to create the longest available timeseries. However, two representative areas for the indigenous varieties Assyrtiko (i.e., Drama and Santorini), Malagouzia (Athens and Chalkidiki), and Xinomavro (Amyndeon and Naoussa) were selected due to their importance.
- Wines that age in oak barrels from 12 to 24 months (matured process) were grouped together and characterised as “aged wines”. This label was adopted only for the later ripening red varieties of Agiorgitiko and Xinomavro (3 cases in total).
- Wines that appeared in the competition for evaluation one year after their production were grouped together and characterised as “young wines”.
2.2. Climate Data Collection and Procedures
2.3. Statistical Analysis
3. Results
3.1. Historical Climate Overview for the Period during 1980–2019 over the Growing Season (Averages and Trends)
3.2. Greek Wine Quality Evolution
3.3. Relationships between Climate and Wine Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Mullins, M.G.; Bouquet, A.; Williams, L.E. Biology of the Grapevine; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- García de Cortázar-Atauri, I.; Brisson, N.; Gaudillere, J.-P. Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). Int. J. Biometeorol. 2009, 53, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.V.; Duchene, E.; Tomasi, D.; Yuste, J.; Braslavksa, O.; Schultz, H.R.; Martinez, C.; Boso, S.; Langellier, F.; Perruchot, C.; et al. Changes in European Winegrape Phenology and Relationships with Climate; GESCO: Wuppertal, Germany, 2005. [Google Scholar]
- Parker, A.K.; Garcia de Cortazar-Atauri, I.; van Leeuwen, C.; Chuine, I. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust. J. Grape Wine Res. 2011, 17, 206–216. [Google Scholar] [CrossRef]
- Parker, A.; Garcia de Cortazar-Atauri, I.; Chuine, I.; Barbeau, G.; Bois, B.; Boursiquot, J.M.; Cahurel, J.Y.; Claverie, M.; Dufourcq, T.; Gény, L.; et al. Classification of varieties for their timing of flowering and veraison using a modeling approach. a case study for the grapevine species Vitis vinifera L. Agric. For. Meteorol. 2013, 180, 249–264. [Google Scholar] [CrossRef]
- Coombe, B.G. Influence of temperature on composition and quality of grapes. In Symposium on Grapevine Canopy and Vigor Management; ISHS Acta Horticulturae: Davis, CA, USA, 1987; pp. 23–35. [Google Scholar]
- Bock, A.; Sparks, T.H.; Estrella, N.; Manzel, A. Climate-Induced Changes in Grapevine Yield and Must Sugar Content in Franconia (Germany) between 1805 and 2010. PLoS ONE 2013, 8, e69015. [Google Scholar] [CrossRef]
- Neethling, E.; Barbeau, G.; Bonnefoy, C.; Quénol, H. Change in climate and berry composition for grapevine varieties cultivated in the Loire Valley. Clim. Res. 2012, 53, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.I.; Lombard, P.B. Environmental and Management-Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Fraga, H.; Garcia de Cortazar-Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Nemani, R.R.; White, M.A.; Cayan, D.R.; Jones, G.V.; Running, S.W.; Coughlan, J.C.; Peterson, D.L. Asymmetric warming over coastal California and its impact on the premium wine industry. Clim. Res. 2001, 19, 25–34. [Google Scholar] [CrossRef] [Green Version]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef] [Green Version]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Climate change and winegrape quality in Australia. Clim. Res. 2008, 36, 99–111. [Google Scholar] [CrossRef]
- Baciocco, K.A.; Davis, R.E.; Jones, G.V. Climate and Bordeaux wine quality: Identifying the key factors that differentiate vintages based on consensus rankings. J. Wine Res. 2014, 25, 75–90. [Google Scholar] [CrossRef]
- Davis, R.E.; Dimon, R.A.; Jones, G.V.; Bois, B. The effect of climate on Burgundy vintage quality rankings. OENO One 2019, 1, 59–73. [Google Scholar] [CrossRef] [Green Version]
- 2019 Statistical Report on World Vitiviniculture. Available online: https://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 6 January 2022).
- 2016 World Vitiviniculture Situation. OIV Statistical Report on World Vitiviniculture. Available online: https://www.oiv.int/public/medias/5029/world-vitiviniculture-situation-2016.pdf (accessed on 6 January 2022).
- Koufos, G.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Response of viticulture-related climatic indices and zoning to historical and future climate conditions in Greece. Int. J. Climatol. 2017, 38, 2097–2111. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Adaptive capacity of winegrape varieties cultivated in Greece to cliamte change: Current trends and future projections. OENO One 2020, 4, 1201–1219. [Google Scholar] [CrossRef]
- Schultz, H.R.; Jones, G.V. Climate induced historic and future changes in viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Jones, G.V. Vintage Ratings: Applications of a Ranking Procedure to Facilitate a Better Understanding of Climate’s Role in Wine Quality. Int. Vitic. Enol. Soc. Tech. Rev. 2020. [Google Scholar] [CrossRef]
- Corsi, A.; Ashenfelter, O. Predicting Italian Wine Quality from Weather Data and Expert Ratings. J. Wine Econ. 2019, 14, 234–251. [Google Scholar] [CrossRef]
- Koufos, G.; Mavromatis, T.; Koundouras, S.; Fyllas, M.N.; Jones, G.V. Viticulture–climate relationships in Greece: The impact of recent climate trends on harvest dates variation. Int. J. Climatol. 2014, 34, 1445–1459. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F. RClimDex (1.0) User Guide; Climate Research Branch Environment Canada: Downsview, ON, Canada, 2004; Available online: http://etccdi.pacificclimate.org/software.shtml (accessed on 13 October 2017).
- Gladstones, J. Viticulture and Environment; Winetitles: Underdale, Australia, 1992; p. 310. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A multicriteria classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M. SPEI: Calculation of the Standardized Precipitation Evapotranspiration Index; R Package Version 1.6; 2013. Available online: http://CRAN.R-project.org/package=SPEI (accessed on 13 October 2017).
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http://www.R-project.org/ (accessed on 13 August 2019).
- Ramos, M.C.; Jones, G.V.; Martinez-Casasnovas, J.A. Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim. Res. 2008, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine phenology and climate change: Relationships and trends in the Veneto Region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Duchêne, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Garnier, C.; Agut, C.; Baculat, B.; Barbeau, G.; Besnard, E.; Bois, B.; Boursiquot, J.-M.; Chuine, I.; Dessup, T.; et al. Heat requirements for grapevine varieties are essential information to adapt plant material in a changing climate. In Proceedings of the 7th International Terroir Congress, Changins, Switzerland, 14–18 June 2008; pp. 222–227. [Google Scholar]
- Lebon, E.; Dumas, V.; Pieri, P.; Schultz, H. Modelling the seasonal dynamics of the soil water balance of vineyards. Funct. Plant Biol. 2003, 30, 699–710. [Google Scholar] [CrossRef]
- Canova, L.; Marini, G.; Chernyavskaya, M.; Mattei, M.D.E. In vino qualitas: Climate change effects on Italian wine production. Enometrica 2012, 5, 7–25. [Google Scholar]
- Tarara, J.M.; Lee, J.; Spayd, S.E.; Scagel, F. Berry temperature and solar radiation alter acylation, proportion and concentration of anthocyanin in Merlot grapes. Am. J. Enol. Vitic. 2008, 59, 235–247. [Google Scholar]
- Torres, N.; Martínez-Lüscher, J.; Porte, E.; Kurtural, S.K. Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. Front. Plant Sci. 2020, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Alatzas, A.; Theocharis, S.; Miliordos, D.E.; Leontaridou, K.; Kanellis, A.K.; Kotseridis, Y.; Hatzopoulos, P.; Koundouras, S. The effect of water deficit on two Greek Vitis vinifera L. cultivars: Physiology, Grape Composition and Gene Expression during berry development. Plants 2021, 10, 1947. [Google Scholar] [CrossRef] [PubMed]
- Gambetta, G.; Kurtural, S.K. Global warming and wine quality: Are we close to the tipping point? OENO One 2021, 3, 353–361. [Google Scholar] [CrossRef]
- Oczkowski, E. The effect of weather on wine quality and prices: An Australian spatial analysis. J. Wine Econ. 2016, 11, 48–65. [Google Scholar] [CrossRef]
- Ashenfelter, O. Predicting the Quality and Prices of Bordeaux Wine. Econ. J. 2008, 118, 174–184. [Google Scholar] [CrossRef]
- Ramirez, C.D. Wine quality, wine prices and the weather: Is Napa “different”? J. Wine Econ. 2008, 3, 114–131. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
Variety/Abbreviation | Region | Type of Wines Produced | Period of Record |
---|---|---|---|
Agiorgitiko L,R,a | Nemea–PDO | Red dry | 2009–2018 (583) |
Assyrtiko M,W,a | Santorini–PDO | White dry | 2003–2018 (248) |
Drama–GI | White dry | 2009–2018 (44) | |
Athiri M,W,a | Rodos–PDO | White dry and sparkling | 2003–2019 ** (89) |
Debina L,W,a | Ioannina–PDO | White dry and sparkling | 2006–2019 (55) |
Malagouzia E,W,a | Chalkidiki–GI | White dry | 2005–2019 (31) |
Athens–GI | White dry | 2006–2019 (45) | |
Moschofilero M,W,a | Tripoli–PDO | White dry | 2003–2019 (207) |
Muscat of Alexandria M,W,b | Limnos–PDO | White dry | 2003–2019 (100) |
Robola E,W,a | Kephalonia–PDO | White dry | 2004–2019 ** (42) |
Savvatiano L,W,a | Athens–GI | White dry | 2004–2019 (184) |
Vilana M,W,a | Crete–PDO | White dry | 2004–2018 (71) |
Xinomavro L,R,a | Florina–PDO | Red dry | 2003–2016 (77) |
Naoussa–PDO | Red dry | 2008–2017 (152) |
Global Climate Model (GCM, Driver) | Regional Climate Model (RCM) | Scenario |
---|---|---|
CNRM-CERFACS-CNRM-CM5 | CLMcom-CCLM4-8-17 | historical rcp45 rcp85 |
CNRM-CERFACS-CNRM-CM5 | CNRM-ALADIN53 | historical rcp45 rcp85 |
CNRM-CERFACS-CNRM-CM5 | SMHI-RCA4 | historical rcp45 rcp85 |
ICHEC-EC-EARTH | KNMI-RACMO22E | historical rcp45 rcp85 |
IPSL-IPSL-CM5A-MR | IPSL-INERIS-WRF331F | historical rcp45 rcp85 |
IPSL-IPSL-CM5A-MR | SMHI-RCA4 | historical rcp45 rcp85 |
MOHC-HadGEM2-ES | CLMcom-CCLM4-8-17 | historical rcp45 rcp85 |
MOHC-HadGEM2-ES | SMHI-RCA4 | historical rcp45 rcp85 |
MPI-M-MPI-ESM-LR | CLMcom-CCLM4-8-17 | historical rcp45 rcp85 |
MPI-M-MPI-ESM-LR | MPI-CSC-REMO2009 | historical rcp45 rcp85 |
Weather Stations (Winegrape Areas) | TX Mean (°C) | TN Mean (°C) | PRCP (mm) | DI |
---|---|---|---|---|
1980–2019 | 1980–2019 | 1980–2019 | 1980–2019 | |
Alexandroupoli (Maronia) | 25.6 (0.9) ↑0.77 | 14.1 (1.1) ↑0.86 | 208 (80) ↑0.38 | −100 (54) ↑0.16 |
Athens (Markopoulo) | 27.5 (0.9) ↑0.70 | 18.5 (0.8) ↑0.63 | 112 (48) ↑0.12 | −100 (31) ↑0.05 |
Crete (Peza) | 25.8 (0.6) ↑0.66 | 18.5 (0.6) ↑0.75 | 97 (58) ↓−0.13 | −41 (24) ↓−0.05 |
Ioannina (Ioannina) | 25.7 (0.9) ↑0.32 | 11.7 (0.7) ↑0.64 | 404 (152) ↑0.16 | −101 (85) ↑0.17 |
Kephalonia (Valsamata) | 25.9 (0.8) ↑0.75 | 17.5 (0.7) ↑ 0.33 | 243 (94) ↑0.18 | −30 (53) ↑0.10 |
Limnos (Limnos) | 24.7 (0.8) ↑0.72 | 16.1 (0.8) ↑0.80 | 161 (85) ↑0.41 | −44 (47) ↑0.06 |
Larisa (Rapsani) | 28.0 (0.8) ↑0.48 | 13.9 (0.8) ↑0.83 | 212 (77) ↑0.17 | −171 (53) ↑0.18 |
Rodos (Ebonas) | 26.3 (0.6) ↑0.63 | 20.5 (0.6) ↑0.79 | 107 (77) ↑0.15 | −11 (28) ↑0.31 |
Santorini (Santorini) | 25.4 (0.8) ↑0.61 | 19.1 (0.9) ↑0.79 | 54 (43) ↑0.06 | −31 (27) ↓−0.02 |
Thessaloniki (Epanomi) | 26.6 (0.8) ↑0.52 | 15.6 (0.9) ↑0.80 | 218 (72) ↑0.13 | −87 (47) ↑0.40 |
Tripoli (Tripoli) | 25.7 (0.9) ↑0.26 | 10.6 (1.0) ↑0.44 | 256 (96) ↑0.17 | −175 (56) ↑0.15 |
Overall: | 26.1 (0.7) ↑0.68 | 16.0 (0.7) ↑0.83 | 188 (49) ↑0.29 | −81 (31) ↑0.24 |
Island | 25.6 (0.6) ↑0.75 | 18.3 (0.6) ↑0.83 | 132 (45) ↑0.29 | −32 (22) ↑0.20 |
Mainland | 26.5 (0.7) ↑0.59 | 14.1 (0.7) ↑0.82 | 235 (60) ↑0.27 | −122 (40) ↑0.26 |
Variety | Winegrape Area | Average (Standard Deviation) | Trend Year−1 | Period of Records |
---|---|---|---|---|
Malagouzia E,W,a | Chalkidiki | 81.9 (4.0) | 0.62 (0.48) | 2005–2019 |
Athens | 82.3 (2.2) | 0.37 (0.50) | 2006–2019 | |
Robola E,W,a | Kephalonia | 82.8 (3.0) | 0.38 (0.39) | 2004–2019 ** |
Muscat of Alexandria M,W,b | Limnos | 81.2 (3.2) | 0.21 (0.11) | 2003–2019 |
Moschofilero M,W,a | Tripoli | 81.9 (3.1) | 0.52 (0.74) | 2003–2019 |
Vilana M,W,a | Crete | 82.1 (2.2) | 0.35 (0.48) | 2004–2018 |
Athiri M,W,a | Rodos | 82.5 (2.2) | 0.09 (0.05) | 2003–2019 ** |
Assyrtiko M,W,a | Santorini | 82.6 (3.7) | 0.44 (0.32) | 2003–2018 |
Drama | 85.3 (2.9) | 0.66 (0.49) | 2009–2018 | |
Debina L,W,a | Ioannina | 81.3 (3.3) | 0.40 (0.26) | 2006–2019 |
Agiorgitiko L,R,a | Nemea | 82.5 (4.8) | 0.71 (0.20) | 2009–2018 |
Savvatiano L,W,a | Athens | 82.7 (1.5) | 0.21 (0.44) | 2004–2019 |
Xinomavro L,R,a | Florina | 84.2 (1.6) | 0.31 (0.63) | 2003–2016 |
Naousa | 84.6 (2.8) | 0.51 (0.31) | 2008–2017 | |
Summary | Overall Early Mid Late Red White Mainland Island | 82.7 (2.9) 82.3 (3.0) 82.6 (2.9) 83.0 (2.8) 83.7 (3.1) 82.4 (2.8) 83.0 (2.9) 82.2 (2.9) | 0.41 0.46 0.38 0.43 0.51 0.39 0.48 0.29 |
Model | Fixed Components | Estimate | p-Value |
---|---|---|---|
WQRS = TX_GS + TN_GS + DI + PRCP_GS | intercept | 46.41 | *** |
TX_GS | 1.99 | *** | |
TN_GS | −0.77 | *** | |
DI | 0.03 | *** | |
Prcp_GS | −0.01 | ** | |
Model summary | Number of varieties: 14 Number of observations: 197 Marginal R2/Conditional R2: 0.22/0.39 |
Variety | Winegrape Area | WQRS FPn rcp45 | WQRS FPn rcp85 | WQRS FPf rcp45 | WQRS FPf rcp85 |
---|---|---|---|---|---|
Malagouzia E,W,a | Chalkidiki | 81.3 | 82.1 | 81.9 | 83.9 |
Athens | 81.6 | 82.4 | 82.3 | 84.2 | |
Robola E,W,a | Kephalonia | 82.9 | 83.8 | 83.6 | 85.5 |
Muscat of Alexandria M,W,b | Limnos | 82.5 | 83.3 | 83.2 | 85.1 |
Moschofilero M,W,a | Tripoli | 82.3 | 83.2 | 83.0 | 84.9 |
Vilana M,W,a | Crete | 83.0 | 83.8 | 83.7 | 85.6 |
Athiri M,W,a | Rodos | 82.9 | 83.7 | 83.6 | 85.5 |
Assyrtiko M,W,a | Santorini | 83.7 | 84.6 | 84.4 | 86.3 |
Drama | 83.5 | 84.3 | 84.1 | 86.0 | |
Debina L,W,a | Ioannina | 81.4 | 82.3 | 82.1 | 84.0 |
Agiorgitiko L,R,a | Nemea | 81.4 | 82.2 | 82.0 | 83.9 |
Savvatiano L,W,a | Athens | 82.0 | 82.8 | 82.7 | 84.6 |
Xinomavro L,R,a | Florina | 85.2 | 86.1 | 85.9 | 87.8 |
Naousa | 83.8 | 84.6 | 84.4 | 86.3 | |
Summary | Overall Early Mid Late Red White Mainland Island | 82.7 81.9 83.0 82.8 83.5 82.5 82.5 83.0 | 83.5 82.8 83.8 84.3 84.3 83.3 83.3 83.8 | 83.3 82.6 83.7 83.4 84.1 83.1 83.2 83.7 | 85.3 84.5 85.6 85.3 86.0 85.1 85.1 85.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Theocharis, S.; Jones, G.V. Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties. Water 2022, 14, 573. https://doi.org/10.3390/w14040573
Koufos GC, Mavromatis T, Koundouras S, Fyllas NM, Theocharis S, Jones GV. Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties. Water. 2022; 14(4):573. https://doi.org/10.3390/w14040573
Chicago/Turabian StyleKoufos, Georgios C., Theodoros Mavromatis, Stefanos Koundouras, Nikolaos M. Fyllas, Serafeim Theocharis, and Gregory V. Jones. 2022. "Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties" Water 14, no. 4: 573. https://doi.org/10.3390/w14040573
APA StyleKoufos, G. C., Mavromatis, T., Koundouras, S., Fyllas, N. M., Theocharis, S., & Jones, G. V. (2022). Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties. Water, 14(4), 573. https://doi.org/10.3390/w14040573