Pretreatment of Rubber Additives Processing Wastewater by Aluminum–Carbon Micro-Electrolysis Process: Process Optimization and Mechanism Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Apparatus and Procedure
2.3. Analytical Methods
2.4. Statistical Analysis and Modelling Using RSM
3. Results and Discussion
3.1. Effects of Operation Parameters on Treatment Efficiency
3.1.1. Effect of Initial pH
3.1.2. Effect of Aluminum Scrap Dosage
3.1.3. Effect of Al/C Mass Ratio
3.1.4. Effects of Reaction Time and Stirring Speed
3.2. Reaction Mechanism
3.3. Statistical Analysis
3.4. Process Optimization and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krainara, S.; Suraraksa, B.; Prommeenate, P.; Thayanukul, P.; Luepromchai, E. Enrichment and characterization of bacterial consortia for degrading 2-mercaptobenzothiazole in rubber industrial wastewater. J. Hazard. Mater. 2020, 400, 123291. [Google Scholar] [CrossRef] [PubMed]
- Kusworo, T.D.; Ariyanti, N.; Utomo, D.P. Effect of nano-TiO2 loading in polysulfone membranes on the removal of pollutant following natural-rubber wastewater treatment. J. Water Process Eng. 2020, 35, 101190. [Google Scholar] [CrossRef]
- Ghorai, S.; Jalan, A.K.; Roy, M.; Das, A.; De, D. Tuning of accelerator and curing system in devulcanized green natural rubber compounds. Polym. Test. 2018, 69, 133–145. [Google Scholar] [CrossRef]
- Promnuan, K.; Higuchi, T.; Imai, T.; Kongjan, P.; Reungsang, A.; O-Thong, S. Simultaneous biohythane production and sulfate removal from rubber sheet wastewater by two-stage anaerobic digestion. Int. J. Hydrogen Energy 2020, 45, 263–274. [Google Scholar] [CrossRef]
- Lin, J.; Ye, W.; Baltaru, M.-C.; Tang, Y.P.; Bernstein, N.J.; Gao, P.; Balta, S.; Vlad, M.; Volodin, A.; Sotto, A.; et al. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. J. Membr. Sci. 2016, 514, 217–228. [Google Scholar] [CrossRef]
- Liu, W.-W.; Tu, X.-Y.; Wang, X.-P.; Wang, F.-q.; Li, W. Pretreatment of coking wastewater by acid out, micro-electrolysis process with in situ electrochemical peroxidation reaction. Chem. Eng. J. 2012, 200, 720–728. [Google Scholar] [CrossRef]
- Yang, X. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology. J. Hazard. Mater. 2009, 169, 480–485. [Google Scholar] [CrossRef]
- Yang, X.; Xue, Y.; Wang, W. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis. Bioresour. Technol. 2009, 100, 649–653. [Google Scholar] [CrossRef]
- Song, N.; Xu, J.; Cao, Y.; Xia, F.; Zhai, J.; Ai, H.; Shi, D.; Gu, L.; He, Q. Chemical removal and selectivity reduction of nitrate from water by (nano) zero-valent iron/activated carbon micro-electrolysis. Chemosphere 2020, 248, 125986. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Yao, B.; Zou, D. Removal of chlortetracycline by nano- micro-electrolysis materials: Application and mechanism. Chemosphere 2020, 238, 124543. [Google Scholar] [CrossRef]
- Ma, W.; Han, Y.; Xu, C.; Han, H.; Zhong, D.; Zhu, H.; Li, K. The mechanism of synergistic effect between iron-carbon microelectrolysis and biodegradation for strengthening phenols removal in coal gasification wastewater treatment. Bioresour. Technol. 2019, 271, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q. Treatment of oilfield produced water using Fe/C micro-electrolysis assisted by zero-valent copper and zero-valent aluminium. Environ. Technol. 2015, 36, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Guo, S.; Guo, C.; Dai, D.; Jiao, X.; Ma, T.; Chen, J. Stability of Fe–C micro-electrolysis and biological process in treating ultra-high concentration organic wastewater. Chem. Eng. J. 2014, 255, 535–540. [Google Scholar] [CrossRef]
- Wang, X.; Gong, X.; Zhang, Q.; Du, H. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction. J. Environ. Sci. 2013, 25, S63–S68. [Google Scholar] [CrossRef]
- Huang, D.; Yue, Q.; Fu, K.; Zhang, B.; Gao, B.; Li, Q.; Wang, Y. Application for acrylonitrile wastewater treatment by new micro-electrolysis ceramic fillers. Desalin. Water Treat. 2016, 57, 4420–4428. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, Y.; Zhang, T.; Ji, F.; Xu, X. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation. Chemosphere 2016, 152, 23–30. [Google Scholar] [CrossRef]
- Wang, D.; Han, H.; Han, Y.; Li, K.; Zhu, H. Enhanced treatment of Fischer-Tropsch (F-T) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system: Effect of electric field. Bioresour. Technol. 2017, 232, 18–26. [Google Scholar] [CrossRef]
- Ma, L.M.; Ding, Z.G.; Gao, T.Y.; Zhou, R.F.; Xu, W.Y.; Liu, J. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system. Chemosphere 2004, 55, 1207–1212. [Google Scholar] [CrossRef]
- Fan, J.H.; Ma, L.M. The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater. J. Hazard. Mater. 2009, 164, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Deng, C.; Tang, X.; Si, S.; Xiao, K. Degradation of p-nitrophenol by interior microelectrolysis of zero-valent iron/copper-coated magnetic carbon galvanic couples in the intermittent magnetic field. Chem. Eng. J. 2012, 210, 203–211. [Google Scholar] [CrossRef]
- Zhao, H.; Nie, T.; Zhao, H.; Liu, Y.; Zhang, J.; Ye, Q.; Xu, H.; Shu, S. Enhancement of Fe-C micro-electrolysis in water by magnetic field: Mechanism, influential factors and application effectiveness. J. Hazard. Mater. 2020, 410, 124643. [Google Scholar] [CrossRef] [PubMed]
- Attour, A.; Touati, M.; Tlili, M.; Ben Amor, M.; Lapicque, F.; Leclerc, J.P. Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep. Purif. Technol. 2014, 123, 124–129. [Google Scholar] [CrossRef]
- Kobya, M.; Gengec, E.; Demirbas, E. Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chem. Eng. Process Process Intensif. 2016, 101, 87–100. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, M.; Liu, Y. Preparation and application of aluminum-carbon microelectrolysis materials. J. Environ. Eng. 2018, 144, 04018016. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, Y.; Liu, Y.; Li, Q.; Zhou, Z.; Ren, Z. Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system. Chem. Eng. J. 2017, 315, 403–414. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Susanto, H.; Aryanti, N.; Rokhati, N.; Widiasa, I.N.; Al-Aziz, H.; Utomo, D.P.; Masithoh, D.; Kumoro, A.C. Preparation and characterization of photocatalytic PSf-TiO2/GO nanohybrid membrane for the degradation of organic contaminants in natural rubber wastewater. J. Environ. Chem. Eng. 2021, 9, 105066. [Google Scholar] [CrossRef]
- Fu, Q.; Hu, Y. Treatment effect and decolorization mechanism of Congo red wastewater by aluminum-carbon microelectrolysis. Huanjing Kexue Xuebao/Acta Sci. Circumstantiae 2013, 33, 1527–1534. [Google Scholar]
- Wang, L.; Yang, Q.; Wang, D.; Li, X.; Zeng, G.; Li, Z.; Deng, Y.; Liu, J.; Yi, K. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments. J. Hazard. Mater. 2016, 318, 460–467. [Google Scholar] [CrossRef]
- Sharma, S.; Aygun, A.; Simsek, H. Electrochemical treatment of sunflower oil refinery wastewater and optimization of the parameters using response surface methodology. Chemosphere 2020, 249, 126511. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, P. Pre-treatment of petroleum refinery wastewater by coagulation and flocculation using mixed coagulant: Optimization of process parameters using response surface methodology (RSM). J. Water Process Eng. 2020, 36, 101317. [Google Scholar] [CrossRef]
- Dawood, A.; Li, Y.J.W. Modeling and optimization of new flocculant dosage and pH for flocculation: Removal of pollutants from wastewater. Water 2013, 5, 342. [Google Scholar] [CrossRef]
- Wang, B.; Tian, K.; Xiong, X.; Ren, H. Treatment of overhaul wastewater containing N-methyldiethanolamine (MDEA) through modified Fe–C microelectrolysis-configured ozonation: Investigation on process optimization and degradation mechanisms. J. Hazard. Mater. 2019, 369, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.; Ju, F.; Wu, X. Treatment of wastewater containing EDTA-Cu(II) using the combined process of interior microelectrolysis and Fenton oxidation–coagulation. Sep. Purif. Technol. 2012, 89, 117–124. [Google Scholar] [CrossRef]
- Chen, R.-H.; Chai, L.-Y.; Wang, Y.-Y.; Liu, H.; Shu, Y.-D.; Zhao, J. Degradation of organic wastewater containing Cu–EDTA by Fe–C micro-electrolysis. Trans. Nonferrous Met. Soc. China 2012, 22, 983–990. [Google Scholar] [CrossRef]
- Jüntgen, H. Activated carbon as catalyst support: A review of new research results. Fuel 1986, 65, 1436–1446. [Google Scholar] [CrossRef]
- Zee, F.P.V.D.; Bisschops, I.A.E.; Lettinga, G.; Field, J.A.J.E.S. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environ. Sci. Technol. 2003, 37, 402. [Google Scholar]
- Ghafari, S.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A. Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater. 2009, 163, 650–656. [Google Scholar] [CrossRef]
Level | Independent Variables and Range | |||
---|---|---|---|---|
Initial pH (X1) | Al Scrap Dosage (g L−1) (X2) | Al/C Mass Ratio (X3) | Reaction Time (min) (X4) | |
−1 | 8 | 50 | 0.20 | 150 |
0 | 10 | 75 | 0.35 | 180 |
1 | 12 | 100 | 0.50 | 210 |
Sources of Variation | Sum of Squares | Degree of Freedom | Mean of Squares | F-Value | p |
---|---|---|---|---|---|
Model | 2391.05 | 14 | 170.79 | 13.88 | <0.0001 |
X1 | 0.057 | 1 | 0.057 | 4.67 × 10−3 | 0.9465 |
X2 | 568.98 | 1 | 568.98 | 46.25 | <0.0001 |
X3 | 1040.67 | 1 | 1040.67 | 84.59 | <0.0001 |
X4 | 218.03 | 1 | 218.03 | 17.72 | 0.0009 |
X1X2 | 42.64 | 1 | 42.64 | 3.47 | 0.0838 |
X1X3 | 24.8 | 1 | 24.8 | 2.02 | 0.1775 |
X1X4 | 89.78 | 1 | 89.78 | 7.3 | 0.0172 |
X2X3 | 9.55 | 1 | 9.55 | 0.78 | 0.3932 |
X2X4 | 53.95 | 1 | 53.95 | 4.39 | 0.0549 |
X3X4 | 4.95 | 1 | 4.95 | 0.4 | 0.5361 |
X12 | 87.18 | 1 | 87.18 | 7.09 | 0.0186 |
X22 | 110.69 | 1 | 110.69 | 9 | 0.0096 |
X32 | 11.03 | 1 | 11.03 | 0.9 | 0.3598 |
X42 | 170.6 | 1 | 170.6 | 13.87 | 0.0023 |
Residual | 172.24 | 14 | 12.3 | ||
Lack of fit | 134.86 | 10 | 13.49 | 1.44 | 0.3864 |
Pure error | 37.38 | 4 | 9.34 | ||
Total error | 2563.29 | 28 |
p | AP | S.D. | R2 | Radj2 | F | PLOF | CV (%) |
---|---|---|---|---|---|---|---|
<0.0001 s | 15.459 | 3.51 | 0.9328 | 0.8656 | 13.88 | 0.3864 ns | 9.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Huang, D.; Du, H. Pretreatment of Rubber Additives Processing Wastewater by Aluminum–Carbon Micro-Electrolysis Process: Process Optimization and Mechanism Analysis. Water 2022, 14, 582. https://doi.org/10.3390/w14040582
Zhu L, Huang D, Du H. Pretreatment of Rubber Additives Processing Wastewater by Aluminum–Carbon Micro-Electrolysis Process: Process Optimization and Mechanism Analysis. Water. 2022; 14(4):582. https://doi.org/10.3390/w14040582
Chicago/Turabian StyleZhu, Ling, Daikuan Huang, and Hao Du. 2022. "Pretreatment of Rubber Additives Processing Wastewater by Aluminum–Carbon Micro-Electrolysis Process: Process Optimization and Mechanism Analysis" Water 14, no. 4: 582. https://doi.org/10.3390/w14040582
APA StyleZhu, L., Huang, D., & Du, H. (2022). Pretreatment of Rubber Additives Processing Wastewater by Aluminum–Carbon Micro-Electrolysis Process: Process Optimization and Mechanism Analysis. Water, 14(4), 582. https://doi.org/10.3390/w14040582