Buffalo Pound Lake—Modelling Water Resource Management Scenarios of a Large Multi-Purpose Prairie Reservoir
Abstract
:1. Introduction
Buffalo Pound Lake
2. Methods
2.1. Study Site
2.2. Model Set-Up
2.3. Data & Calibration
2.4. Scenarios
Scenario Input Files
3. Results and Discussion
3.1. Model Calibration
3.2. Model Simulations
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castelletti, A.; Yajima, H.; Giuliani, M.; Soncini-Sessa, R.; Weber, E. Planning the Optimal Operation of a Multioutlet Water Reservoir with Water Quality and Quantity Targets. J. Water Resour. Plan. Manag. 2014, 140, 496–510. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.; Sun, S.; Liu, H.; Xia, Q.; Zong, Q. Optimal control of reservoir release temperature through selective withdrawal intake at hydropower dam. Water Sci. Technol. Water Supply 2017, 17, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.K.; Sadeghian, A.; Lindenschmidt, K.-E.; Rinke, K.; Morales-Marin, L. Impacts of Varying Dam Outflow Elevations on Water Temperature, Dissolved Oxygen, and Nutrient Distributions in a Large Prairie Reservoir. Environ. Eng. Sci. 2019, 37, 78–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, M.; Boehrer, B.; Rinke, K. Minimizing environmental impact whilst securing drinking water quantity and quality demands from a reservoir. River Res. Appl. 2019, 35, 365–374. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, X.; Wang, L.; Chen, Y. Analysis of agricultural pollution by flood flow impact on water quality in a reservoir using a three-dimensional water quality model. J. Hydroinform. 2013, 15, 1061–1072. [Google Scholar] [CrossRef]
- Mamani Larico, A.J.; Zúñiga Medina, S.A. Application of WASP model for assessment of water quality for eutrophication control for a reservoir in the Peruvian Andes. Lakes Reserv. Res. Manag. 2019, 24, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Ziemińska-Stolarska, A.; Kempa, M. Modeling and monitoring of hydrodynamics and surface water quality in the sulejów dam reservoir, poland. Water 2021, 13, 296. [Google Scholar] [CrossRef]
- Jeznach, L.C.; Hagemann, M.; Park, M.-H.; Tobiason, J.E. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir. J. Environ. Manag. 2017, 201, 241–251. [Google Scholar] [CrossRef]
- Morales-Marín, L.A.; Wheater, H.S.; Lindenschmidt, K.E. Assessment of nutrient loadings of a large multipurpose prairie reservoir. J. Hydrol. 2017, 550, 166–185. [Google Scholar] [CrossRef]
- Deus, R.; Brito, D.; Mateus, M.; Kenov, I.; Fornaro, A.; Neves, R.; Alves, C.N. Impact evaluation of a pisciculture in the Tucuruí reservoir (Pará, Brazil) using a two-dimensional water quality model. J. Hydrol. 2013, 487, 1–12. [Google Scholar] [CrossRef]
- Jeznach, L.C.; Jones, C.; Matthews, T.; Tobiason, J.E.; Ahlfeld, D.P. A framework for modeling contaminant impacts on reservoir water quality. J. Hydrol. 2016, 537, 322–333. [Google Scholar] [CrossRef]
- Akomeah, E.; Morales-Marın, L.A.; Carr, M.; Sadeghian, A.; Lindenschmidt, K.E. The impacts of changing climate and streamflow on nutrient speciation in a large Prairie reservoir. J. Environ. Manag. 2021, 288, 112262. [Google Scholar] [CrossRef] [PubMed]
- Shiklomanov, I.A. Appraisal and assessment of world water resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Rajasekaram, V. Integrated analyses of Canada’s Water resources: A system dynamics approach. Can. Water Resour. J. 2004, 29, 223–250. [Google Scholar] [CrossRef]
- Wheater, H.; Gober, P. Water security in the Canadian Prairies: Science and management challenges. Philosophical transactions. Ser. A Math. Phys. Eng. Sci. 2013, 371, 20120409. [Google Scholar] [CrossRef]
- Martz, L.; Bruneau, J.; Rolfe, J. Climate Change and Water: SSRB (South Saskatchewan River Basin) Final Technical Report; University of Saskatchewan: Saskatoon, SK, Canada, 2007. [Google Scholar]
- Patrick, R.J. Enhancing water security in Saskatchewan, Canada: An opportunity for a water soft path. Water Int. 2011, 36, 748–763. [Google Scholar] [CrossRef]
- Gober, P.; Wheater, H.S. Socio-hydrology and the science-policy interface: A case study of the Saskatchewan River basin. Hydrol. Earth Syst. Sci. 2014, 18, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Diamond, L. Comparative Approaches in Lake Management Planning (Chandos and Buffalo Pound Lake, Canada). Landsc. J. 1984, 3, 61–71. [Google Scholar] [CrossRef]
- Davis, E.; Sauer, E.K. Water Quality Deterioration During Interbasin Transfer in Saskatchewan. Can. Water Resour. J. 1988, 13, 50–59. [Google Scholar] [CrossRef] [Green Version]
- McGowan, S.; Leavitt, P.; Hall, R. A Whole-Lake Experiment to Determine the Effects of Winter Droughts on Shallow Lakes. Ecosystems 2005, 8, 694–708. [Google Scholar] [CrossRef]
- Kehoe, M.; Chun, K.; Baulch, H. Who Smells? Forecasting Taste and Odor in a Drinking Water Reservoir. Environ. Sci. Technol. 2015, 49, 10984. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, N.; Akomeah, E.; Davis, J.-M.; Baulch, H.; Lindenschmidt, K.-E. Water quality modeling of a prairie river-lake system. Environ. Sci. Pollut. Res. Int. 2018, 25, 31190–31204. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, E.; Baulch, H.M. Winter in two phases: Long-term study of a shallow reservoir in winter. Limnol. Oceanogr. 2021, 66, 1335–1352. [Google Scholar] [CrossRef]
- Barica, J. Water Quality Problems Associated with High Productivity of Prairie Lakes in Canada: A Review. Water Qual. Bull. 1987, 12, 107–115. [Google Scholar]
- Donald, D.B.; Parker, B.R.; Davies, J.-M.; Leavitt, P.R. Nutrient sequestration in the Lake Winnipeg watershed. J. Great Lakes Res. 2015, 41, 630–642. [Google Scholar] [CrossRef]
- North, R.L.; Davies, J.-M.; Doig, L.E.; Lindenschmidt, K.-E.; Hudson, J.J. Lake Diefenbaker: The prairie jewel. J. Great Lakes Res. 2015, 41, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Acharya, M.; Kells, J.A. Conveyance capacity investigations for the Upper Qu’Appelle River Channel. In Proceedings of the 17th Canadian Hydrotechnical Conference, Edmonton, AB, Canada, 17–19 August 2015. [Google Scholar]
- Parsons, G.F.; Thorp, T.; Kulshreshtha, S.; Gates, C. Upper Qu’Appelle Water Supply Project: Economic Impact & Sensitivity Analysis; Clifton Associates Ltd.: Regina, SK, Canda, 2012; p. 101. [Google Scholar]
- Lindenschmidt, K.-E.; Davies, J.-M. Winter flow testing of the Upper Qu’Appelle River. In Proceedings of the 17th CRIPE Workshop on the Hydraulics of Ice Covered Rivers, Edmonton, AB, Canada, 21–24 July 2013; pp. 312–328. [Google Scholar]
- Lindenschmidt, K.-E.; Carstensen, D. The upper Qu’Appelle water supply project in Saskatchewan, Canada: Upland canal ice study. Osterr. Wasser Abfallwirtsch. 2015, 67, 230–239. [Google Scholar] [CrossRef]
- Terry, J.A.; Lindenschmidt, K.-E. Sensitivity of boundary data in a shallow prairie lake model. Can. Water Resour. J. 2020, 45, 204–215. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Climate Normals 1981–2010 Station Data for Moose Jaw A Station. Available online: http://climate.weather.gc.ca (accessed on 21 November 2014).
- Water Security Agency. Dams & Reservoirs. Available online: https://www.wsask.ca/lakes-rivers/dams-reservoirs/ (accessed on 3 October 2021).
- Sauchyn, D.J.; Barrow, E.M.; Hopkinson, R.F.; Leavitt, P.R. Aridity on the Canadian Plains. Géographie Phys. Et Quat. 2002, 56, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Chun, K.P.; Wheater, H.S.; Nazemi, A.; Khaliq, M.N. Precipitation downscaling in Canadian Prairie Provinces using the LARS-WG and GLM approaches. Can. Water Resour. J. 2013, 38, 311–332. [Google Scholar] [CrossRef]
- Buffalo Pound Water Administration Board. Annual Report 2015. Available online: https://www.buffalopoundwtp.ca/images/docs/2015_buffalo_pound_annual_report.pdf (accessed on 19 July 2017).
- Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.2, User Manual, Parts 1–5; Department of Civil and Environmental Engineering, Portland State University: Portland, OR, USA, 2020. [Google Scholar]
- Terry, J.A.; Sadeghian, A.; Lindenschmidt, K.-E. Modelling Dissolved Oxygen/Sediment Oxygen Demand under Ice in a Shallow Eutrophic Prairie Reservoir. Water 2017, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Vandergucht, D.M.; Perez-Valdivia, C.; Davies, J.-M. Qu’Appelle Nutrient Mass Balance Report 2013–2016; Report WQ201812-01; Water Security Agency: Moose Jaw, SK, Canada, 2018.
- Terry, J.A.; Sadeghian, A.; Baulch, H.M.; Chapra, S.C.; Lindenschmidt, K.-E. Challenges of modelling water quality in a shallow prairie lake with seasonal ice cover. Ecol. Model. 2018, 384, 43–52. [Google Scholar] [CrossRef]
- Newbold, J.D.; Elwood, J.W.; O’Neill, R.V.; Winkle, W.V. Measuring Nutrient Spiralling in Streams. Can. J. Fish. Aquat. Sci. 1981, 38, 860–863. [Google Scholar] [CrossRef]
- Ensign, S.H.; Doyle, M.W. Nutrient spiraling in streams and river networks. J. Geophys. Res. Biogeosci. 2006, 111, G04009. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E. Winter Flow Testing of the Upper Qu’Appelle River; Lambert Academic Publishing: Saarbrucken, Germany, 2014. [Google Scholar]
- House, W.A. Geochemical cycling of phosphorus in rivers. Appl. Geochem. 2003, 18, 739–748. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Jürgens, M.D.; Williams, R.J.; Neal, C.; Davies, J.J.L.; Barrett, C.; White, J. Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: The Hampshire Avon and Herefordshire Wye. J. Hydrol. 2005, 304, 51–74. [Google Scholar] [CrossRef]
- Bowes, M.J.; House, W.A.; Hodgkinson, R.A. Phosphorus dynamics along a river continuum. Sci. Total Environ. 2003, 313, 199–212. [Google Scholar] [CrossRef]
- Butler, B.A.; Ford, R.G. Evaluating Relationships Between Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) in a Mining-Influenced Watershed. Mine Water Environ. 2018, 37, 18–30. [Google Scholar] [CrossRef]
- Rohlfs, A.-M.; Mitrovic, S.M.; Williams, S.; Hitchcock, J.N.; Rees, G.N. Dissolved organic carbon delivery from managed flow releases in a montane snowmelt river. Aquat. Sci. 2016, 78, 793–807. [Google Scholar] [CrossRef]
- Hernes, P.J.; Spencer, R.G.M.; Dyda, R.Y.; Pellerin, B.A.; Bachand, P.A.M.; Bergamaschi, B.A. The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed. Geochim. Et Cosmochim. Acta 2008, 72, 5266–5277. [Google Scholar] [CrossRef]
- Fulweiler, R.W.; Nixon, S.W. Export of Nitrogen, Phosphorus, and Suspended Solids from a Southern New England Watershed to Little Narragansett Bay. Biogeochemistry 2005, 76, 567–593. [Google Scholar] [CrossRef]
- Terry, J.A.; Mc Benskin, C.; Eastoe, E.F.; Haygarth, P.M. Temporal dynamics between cattle in-stream presence and suspended solids in a headwater catchment. Environ. Sci. Processes Impacts 2014, 16, 157–1577. [Google Scholar] [CrossRef] [PubMed]
- Perks, M.T.; Owen, G.J.; Benskin, C.M.H.; Jonczyk, J.; Deasy, C.; Burke, S.; Reaney, S.M.; Haygarth, P.M. Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments. Sci. Total Environ. 2015, 523, 178–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassanzadeh, E.; Strickert, G.; Morales-Marin, L.; Noble, B.; Baulch, H.; Shupena-Soulodre, E.; Lindenschmidt, K.-E. A framework for engaging stakeholders in water quality modeling and management: Application to the Qu’Appelle River Basin, Canada. J. Environ. Manag. 2019, 231, 1117–1126. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E.; Akomeah, E.; Baulch, H.; Boyer, L.; Davies, J.-M.; Hassanzadeh, E.; Marin, L.M.; Strickert, G.; Wauchope, M. Interfacing Stakeholder Involvement into a Surface Water-Quality Modelling System for Water Management and Policy Development. In New Trends in Urban Drainage Modelling; Springer: Berlin/Heidelberg, Germany, 2019; pp. 312–316. [Google Scholar]
Coefficient | Description | Value | Units | |
TSED | Sediment temperature | 10.3 | °C | |
CBHE | Coefficient of bottom heat exchange | 0.3 | W m−2 | |
SOD | Zero-order sediment oxygen demand | 0.1–1.2 (1.2) | g O2 m−2 day−1 | |
PO4R | Sediment release rate of phosphorus (fraction of SOD) | 0.001 | ||
NH4R | Sediment release rate of ammonium (fraction of SOD) | 0.001 | - | |
NH4DK | Ammonium decay rate | 0.12 | day−1 | |
NO3DK | Nitrate decay rate | 0.1 | day−1 | |
LDOMDK | Labile DOM decay rate | 0.1 (0.25) | day−1 | |
RDOMDK | Refractory DOM decay rate | 0.001 (0.012) | day−1 | |
LRDDK | Labile to refractory DOM decay rate | 0.01 (0.001) | day−1 | |
LPOMDK | Labile POM decay rate | 0.08 (0.32) | day−1 | |
RPOMDK | Refractory POM decay rate | 0.001 (0.012) | day−1 | |
LRPDK | Labile to refractory POM decay rate | 0.01 | day−1 | |
SSS | Suspended solids settling rate | 1.0 | m day−1 | |
EXSS | Extinction due to inorganic suspended solids | 0.01 | m−1/(g m−3) | |
EXOM | Extinction due to organic suspended solids | 0.01 | m−1/(g m−3) | |
EXH20 | Light extinction coefficient for pure water | 0.25 | m−1 | |
BETA | Fraction of incident solar radiation absorbed at the water surface | 0.55 | - | |
WSC | Wind shelter coefficient | 0.9 | °C | |
Algal Coefficients | Diatoms | Greens | Cyanobacteria | |
AG | Maximum algal growth rate, day−1 | 1.5 (2.5) | 2.0 (1.0) | 0.5 (0.9) |
AM | Maximum algal mortality rate, day−1 | 0.1 | 0.1 (0.15) | 0.1 |
AS | Algal settling rate, m day−1 | 0.2 (0.02) | 0.1 (0.15) | 0.02 (0.1) |
AHSP | Algal half-saturation for phosphorus limited growth, g m−3 | 0.003 | 0.003 | 0.003 |
AHSN | Algal half-saturation for nitrogen limited growth, g m−3 | 0.014 | 0.014 | 0 * (0.01) |
AT1 | Lower temperature for algal growth, °C | 2.0 | 10.0 | 10.0 |
AT2 | Lower temperature for maximum algal growth, °C | 8.0 | 30.0 | 35.0 |
AT3 | Upper temperature for maximum algal growth, °C | 15.0 | 35.0 | 40.0 |
AT4 | Upper temperature for algal growth, °C | 24.0 | 40.0 | 50.0 |
ACHLA | Ratio between algal biomass and chlorophyll a in terms of mg algae/µg chl a | 0.05 | 0.04 | 0.1 |
Observations | Adjusted R Square | Standard Error | p-Value (Flow) | p-Value (Intercept) | |
---|---|---|---|---|---|
TSS (TSS = 24.600 ∗ Flow − 3.880) | 40 | 0.567 | 61.756 | <0.001 | 0.808 |
TP (ΔTP = 0.025 ∗ Flow − 0.008) | 40 | 0.540 | 0.067 | <0.001 | 0.655 |
PO43−-P (ΔPO43−-P= 0.007 ∗ Flow − 0.002) | 8 | 0.511 | 0.019 | <0.05 | 0.828 |
DOC (ΔDOC = −0.262 ∗ Flow + 2.064) | 40 | 0.133 | 1.798 | <0.05 | <0.001 |
TDS (ΔTDS = −42.700 ∗ Flow + 331.88) | 40 | 0.123 | 303.886 | <0.05 | <0.001 |
NH4-N (ΔNH4-N = −0.389 ∗ Flow + 3.256) | 8 | 0.051 | 2.722 | 0.286 | 0.080 |
TN (ΔTN = 0.023 ∗ Flow + 0.003) | 40 | 0.032 | 0.278 | 0.138 | 0.969 |
NOx (ΔNOx = −0.002 ∗ Flow − 0.01) | 23 | −0.030 | 0.046 | 0.551 | 0.610 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terry, J.; Davies, J.-M.; Lindenschmidt, K.-E. Buffalo Pound Lake—Modelling Water Resource Management Scenarios of a Large Multi-Purpose Prairie Reservoir. Water 2022, 14, 584. https://doi.org/10.3390/w14040584
Terry J, Davies J-M, Lindenschmidt K-E. Buffalo Pound Lake—Modelling Water Resource Management Scenarios of a Large Multi-Purpose Prairie Reservoir. Water. 2022; 14(4):584. https://doi.org/10.3390/w14040584
Chicago/Turabian StyleTerry, Julie, John-Mark Davies, and Karl-Erich Lindenschmidt. 2022. "Buffalo Pound Lake—Modelling Water Resource Management Scenarios of a Large Multi-Purpose Prairie Reservoir" Water 14, no. 4: 584. https://doi.org/10.3390/w14040584
APA StyleTerry, J., Davies, J. -M., & Lindenschmidt, K. -E. (2022). Buffalo Pound Lake—Modelling Water Resource Management Scenarios of a Large Multi-Purpose Prairie Reservoir. Water, 14(4), 584. https://doi.org/10.3390/w14040584