Assessing Numerical Model Skill at Simulating Coastal Flooding Using Field Observations of Deposited Debris and Photographic Evidence
Abstract
:1. Introduction
2. Storm Surge Modelling
3. High-Water-Mark Surveys and Photographic and Video Evidence
4. Assessment of Model Skill
4.1. Comparison with High-Water-Mark Survey Data
4.2. Comparison with Photographic and Video Evidence
5. Discussion and Conclusions
5.1. Synthesis
5.2. Limitations and Future Research Needs
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemmen, D.S.; Warren, F.J.; James, T.S.; Mercer Clarke, C.S.L. (Eds.) Canada’s Marine Coasts in a Changing Climate; Government of Canada: Ottawa, ON, Canada, 2016; ISBN 978-0-660-05052-2.
- Bernatchez, P.; Fraser, C.; Lefaivre, D.; Dugas, S. Integrating Anthropogenic Factors, Geomorphological Indicators and Local Knowledge in the Analysis of Coastal Flooding and Erosion Hazards. Ocean. Coast. Manag. 2011, 54, 621–632. [Google Scholar] [CrossRef]
- Environment Canada. Impacts of Sea-Level Rise and Climate Change on the Coastal Zone of Southeastern New Brunswick; Environment Canada: Ottawa, ON, Canada, 2006; ISBN 0-662-43947-3.
- Murphy, E.; Lyle, T.; Wiebe, J.; Hund, S.V.; Davies, M.; Williamson, D. Coastal Flood Risk Assessment Guidelines for Building and Infrastructure Design; National Research Council Canada: Ottawa, ON, Canada, 2020; ISBN 978-0-660-36745-3.
- Apollonio, C.; Bruno, M.F.; Iemmolo, G.; Molfetta, M.G.; Pellicani, R. Flood Risk Evaluation in Ungauged Coastal Areas: The Case Study of Ippocampo (Southern Italy). Water 2020, 12, 1466. [Google Scholar] [CrossRef]
- Daigle, R. Sea-Level Rise and Flooding Estimates for New Brunswick Coastal Sections Based on IPCC 5th Assessment Report; R.J. Daigle Enviro: Moncton, NB, Canada, 2017. [Google Scholar]
- Aubé, M.; Hébert, C.; Simard, I. Analyse Des Risques d’inondation et d’érosion Dans Les Régions de Grande-Anse, Maisonnette, Bertrand et Caraquet; Institut de Recherche sur les Zones Côtières Inc. & Geomediatix Innovations Inc.: Shippagan, NB, Canada, 2016. [Google Scholar]
- Didier, D.; Bernatchez, P.; Boucher-Brossard, G.; Lambert, A.; Fraser, C.; Barnett, R.; Van-Wierts, S. Coastal Flood Assessment Based on Field Debris Measurements and Wave Runup Empirical Model. J. Mar. Sci. Eng. 2015, 3, 560–590. [Google Scholar] [CrossRef]
- Hébert, C.; Aubé, M. Évaluation d’options d’adaptation Aux Changements Climatiques: Restauration Des Dunes à Le Goulet; Institut de Recherche sur les Zones Côtières Inc.: Shippagan, NB, Canada, 2015. [Google Scholar]
- Robichaud, A.; Simard, I.; Doiron, A.; Chelbi, M. Infrastructures à Risque Dans Trois Municipalités de La Péninsule Acadienne. 2011. Atlantic Climate Adaptation Solutions Association. Available online: https://atlanticadaptation.ca/en/islandora/object/acasa%253A653 (accessed on 27 May 2021).
- Natural Resources Canada. Federal Flood Damage Estimation Guidelines for Buildings and Infrastructure-Version 1.0; Government of Canada: Ottawa, ON, Canada, 2021.
- Rangel-Buitrago, N.; Anfuso, G. Risk Assessment of Storms in Coastal Zones: Case Studies from Cartagena (Colombia) and Cadiz (Spain); Springer: Heidelberg, Germany, 2015; ISBN 978-3-319-15843-3. [Google Scholar]
- Webster, T.L.; Forbes, D.L.; MacKinnon, E.; Roberts, D. Flood-Risk Mapping for Storm-Surge Events and Sea-Level Rise Using Lidar for Southeast New Brunswick. Can. J. Remote Sens. 2006, 32, 194–211. [Google Scholar] [CrossRef]
- Creach, A.; Chevillot-miot, E.; Mercier, D.; Pourinet, L. Vulnerability to Coastal Flood Hazard of Residential Buildings on Noirmoutier Isalnd (France). J. Maps 2016, 12, 371–381. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Buonocore, B.; Pappone, G. Coastal Inundation Risk Assessment Due to Subsidence and Sea Level Rise in a Mediterranean Alluvial Plain (Volturno Coastal Plain–Southern Italy). Estuar. Coast. Shelf Sci. 2017, 198, 597–609. [Google Scholar] [CrossRef]
- Didier, D.; Baudry, J.; Bernatchez, P.; Dumont, D.; Sadegh, M.; Bismuth, E.; Bandet, M.; Dugas, S.; Sévigny, C. Multihazard Simulation for Coastal Flood Mapping: Bathtub versus Numerical Modelling in an Open Estuary, Eastern Canada. J. Flood Risk Manag. 2019, 12, e12505. [Google Scholar] [CrossRef]
- Barnard, P.L.; van Ormondt, M.; Erikson, L.H.; Eshleman, J.; Hapke, C.; Ruggiero, P.; Adams, P.N.; Foxgrover, A.C. Development of the Coastal Storm Modeling System (CoSMoS) for Predicting the Impact of Storms on High-Energy, Active-Margin Coasts. Nat. Hazards 2014, 74, 1095–1125. [Google Scholar] [CrossRef]
- Resio, D.T.; Westerink, J.J. Modeling the Physics of Storm Surges. Phys. Today 2008, 61, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Muis, S.; Verlaan, M.; Winsemius, H.C.; Aerts, J.C.J.H.; Ward, P.J. A Global Reanalysis of Storm Surges and Extreme Sea Levels. Nat. Commun. 2016, 7, 11969. [Google Scholar] [CrossRef] [Green Version]
- Ferrarin, C.; Roland, A.; Bajo, M.; Umgiesser, G.; Cucco, A.; Davolio, S.; Buzzi, A.; Malguzzi, P.; Drofa, O. Tide-Surge-Wave Modelling and Forecasting in the Mediterranean Sea with Focus on the Italian Coast. Ocean. Model. 2013, 61, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Postacchini, M.; Lalli, F.; Memmola, F.; Bruschi, A.; Bellafiore, D.; Lisi, I.; Zitti, G.; Brocchini, M. A Model Chain Approach for Coastal Inundation: Application to the Bay of Alghero. Estuar. Coast. Shelf Sci. 2019, 219, 56–70. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency. Guidance for Flood Risk Analysis and Mapping: Coastal Water Levels; Federal Emergency Management Agency: Washington, DC, USA, 2016.
- Valorēs the Reality of the Acadian Peninsula. Available online: https://adaptationpa.ca/en/adaptation-pa/the-reality-of-the-acadian-peninsula (accessed on 6 May 2021).
- Fisheries and Oceans Canada Canadian Tides and Water Levels Data Archive. Available online: https://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/twl-mne/index-eng.htm# (accessed on 16 July 2019).
- Statistics Canada Census Profile. 2016 Census. Statistics Canada Catalogue No. 98-316-X2016001. Available online: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E (accessed on 7 May 2021).
- Kim, J.; Murphy, E.; Nistor, I.; Ferguson, S.; Provan, M. Numerical Analysis of Storm Surges on Canada’s Western Arctic Coastline. J. Mar. Sci. Eng. 2021, 9, 326. [Google Scholar] [CrossRef]
- Melton, G.; Gall, M.; Mitchell, J.T.; Cutter, S.L. Hurricane Katrina Storm Surge Delineation: Implications for Future Storm Surge Forecasts and Warnings. Nat. Hazards 2010, 54, 519–536. [Google Scholar] [CrossRef]
- Jardine, D.E.; Wang, X.; Fenech, A.L. Highwater Mark Collection after Post Tropical Storm Dorian and Implications for Prince Edward Island, Canada. Water 2021, 13, 3201. [Google Scholar] [CrossRef]
- Harper, J.R.; Henry, R.F.; Stewart, G.G. Maximum Storm Surge Elevations in the Tuktoyaktuk Region of the Canadian Beaufort Sea. Arctic 1988, 41, 48–52. [Google Scholar] [CrossRef]
- MacLeod, R.F.; Dallimore, S.R. Assessment of Storm Surge History as Recorded by Driftwood in the Mackenzie Delta and Tuktoyaktuk Coastlands, Arctic Canada. Front. Earth Sci. 2021, 9, 698660. [Google Scholar] [CrossRef]
- Hervouet, J.M. Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method; John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, 2007; ISBN 978-0-470-03558-0. [Google Scholar]
- Provan, M.; Ferguson, S.; Murphy, E. Storm Surge Contributions to Flood Hazards on Canada’s Atlantic Coast. J. Flood Risk Manag. 2022. Submitted. Available online: https://www.mdpi.com/journal/water/instructions#references (accessed on 27 May 2021).
- Canadian Hydrographic Service Non-Navigational (NONNA-100) Bathymetric Data. Available online: https://open.canada.ca/data/en/dataset/d3881c4c-650d-4070-bf9b-1e00aabf0a1d (accessed on 15 July 2019).
- GEBCO Compilation Group GEBCO 2019 Grid. 2019. Available online: https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e (accessed on 23 July 2019).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://doi.org/10.24381/cds.adbb2d47 (accessed on 9 December 2019).
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Foreman, M.G.G. Manual for Tidal Heights Analysis and Prediction; Department of Fisheries and Oceans, Institue of Ocean Sciences: Sidney, BC, Canada, 1977. [Google Scholar]
- Canadian Hydrographic Service Nautical Charts. Available online: https://www.charts.gc.ca/charts-cartes/nautical-marines-eng.html (accessed on 17 August 2021).
- Government of New Brunswick 2018 Digital Elevation Model. Available online: https://geonb.snb.ca/nbdem/ (accessed on 5 May 2020).
- Government of New Brunswick SNB 2018 LiDAR AOI 2. Available online: https://geonb.snb.ca/li/ (accessed on 1 June 2020).
- Government of New Brunswick Wetlands. Available online: http://www.snb.ca/geonb1/e/DC/RW.asp (accessed on 19 August 2020).
- Government of New Brunswick Forest. Available online: http://www.snb.ca/geonb1/e/DC/forest.asp (accessed on 5 December 2019).
- Government of New Brunswick Non-Forest. Available online: http://www.snb.ca/geonb1/e/DC/non-forest.asp (accessed on 5 December 2019).
- Chin, D.A. Water Resources Engineering, 3rd ed.; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2013; ISBN 0-13-283321-2. [Google Scholar]
- Houghtalen, R.J.; Akan, A.O.; Hwang, N.H.C. Fundamentals of Hydraulic Engineering Systems, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Leica Geosystems Leica Viva GS15 Data Sheet. Available online: https://leica-geosystems.com/-/media/files/leicageosystems/products/datasheets/leica_viva_gs15_ds.ashx?la=de-de (accessed on 21 January 2022).
- Government of Canada GPS·H. Available online: https://webapp.geod.nrcan.gc.ca/geod/tools-outils/gpsh.php (accessed on 5 November 2021).
- Doucet, M. Inondation Du 21 Décembre 2010 (Le Goulet) (Haut-Shippagan). YouTube. Available online: https://www.youtube.com/watch?v=GaL_tjc6sbM (accessed on 14 May 2021).
- Braudrick, C.A.; Grant, G.E. When Do Logs Move in Rivers? Water Resour. Res. 2000, 36, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Orr, M.; Zimmer, M.; Jelinski, D.E.; Mews, M. Wrack Deposition on Different Beach Types: Spatial and Temporal Variation in the Pattern of Subsidy. Ecology 2005, 86, 1496–1507. [Google Scholar] [CrossRef]
- Oldham, C.; McMahon, K.; Brown, E.; Bosserelle, C.; Lavery, P. A Preliminary Exploration of the Physical Properties of Seagrass Wrack That Affect Its Offshore Transport, Deposition, and Retention on a Beach. Limnol. Oceanogr. Fluids Environ. 2014, 4, 120–135. [Google Scholar] [CrossRef]
- Murphy, E.; Nistor, I.; Cornett, A.; Wilson, J.; Pilechi, A. Fate and Transport of Coastal Driftwood: A Critical Review. Mar. Pollut. Bull. 2021, 170, 112649. [Google Scholar] [CrossRef]
- Brodie, K.L.; Palmsten, M.L.; Hesser, T.J.; Dickhudt, P.J.; Raubenheimer, B.; Ladner, H.; Elgar, S. Evaluation of Video-Based Linear Depth Inversion Performance and Applications Using Altimeters and Hydrographic Surveys in a Wide Range of Environmental Conditions. Coast. Eng. 2018, 136, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Perugini, E.; Soldini, L.; Palmsten, M.L.; Calantoni, J.; Brocchini, M. Linear Depth Inversion Sensitivity to Wave Viewing Angle Using Synthetic Optical Video. Coast. Eng. 2019, 152, 103535. [Google Scholar] [CrossRef]
- Ansari, S.; Rennie, C.D.; Jamieson, E.C.; Seidou, O.; Clark, S.P. Machine Learning Based Surface Velocimetry. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. [Google Scholar]
- Ansari, S.; Rennie, C.D.; Venditti, J.G.; Kwoll, E.; Fairweather, K. Shore-Based Monitoring of Flow Dynamics in a Steep Bedrock Canyon River. E3S Web Conf. 2018, 40, 06025. [Google Scholar] [CrossRef] [Green Version]
Location | Event | Spatial Average Vertical Error (m) (Model-Survey) | Spatial Average Horizontal Error (m) |
---|---|---|---|
PM1 | 6 December 2010 | 0.01 | 5.54 |
LG1 | 6 December 2010 | 0.38 | 11.33 |
LG2 | 6 December 2010 | 0.36 | 15.43 |
SG1 | 6 December 2010 | 0.67 | 6.00 |
SG2 | 6 December 2010 | 0.49 | 4.97 |
SH1 | 6 December 2010 | 0.40 | 6.94 |
PB1 | 21 December 2010 | −0.06 | 2.20 |
PB2 | 21 December 2010 | −0.06 | 2.85 |
PB3 | 21 December 2010 | 0.33 | 4.79 |
PB4 | 21 December 2010 | 0.29 | 5.45 |
PB5 | 21 December 2010 | 0.10 | 5.33 |
BC1 | 21 December 2010 | −0.24 | 2.73 |
BC2 | 21 December 2010 | −0.28 | 7.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferguson, S.; Provan, M.; Murphy, E.; Bérubé, D.; Desrosiers, M.; Robichaud, A.; Kim, J. Assessing Numerical Model Skill at Simulating Coastal Flooding Using Field Observations of Deposited Debris and Photographic Evidence. Water 2022, 14, 589. https://doi.org/10.3390/w14040589
Ferguson S, Provan M, Murphy E, Bérubé D, Desrosiers M, Robichaud A, Kim J. Assessing Numerical Model Skill at Simulating Coastal Flooding Using Field Observations of Deposited Debris and Photographic Evidence. Water. 2022; 14(4):589. https://doi.org/10.3390/w14040589
Chicago/Turabian StyleFerguson, Sean, Mitchel Provan, Enda Murphy, Dominique Bérubé, Marc Desrosiers, André Robichaud, and Joseph Kim. 2022. "Assessing Numerical Model Skill at Simulating Coastal Flooding Using Field Observations of Deposited Debris and Photographic Evidence" Water 14, no. 4: 589. https://doi.org/10.3390/w14040589
APA StyleFerguson, S., Provan, M., Murphy, E., Bérubé, D., Desrosiers, M., Robichaud, A., & Kim, J. (2022). Assessing Numerical Model Skill at Simulating Coastal Flooding Using Field Observations of Deposited Debris and Photographic Evidence. Water, 14(4), 589. https://doi.org/10.3390/w14040589