Specific Way of Controlling Composition of Cannabinoids and Essential Oil from Cannabis sativa var. Finola
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cannabis sativa L. var. Finola
2.1.2. Substrate
2.1.3. Water
2.1.4. Trays
2.2. Methods
2.2.1. Cannabis Plantation
2.2.2. Estimation of the Crop Yield
2.2.3. Preparation of Samples for Analyses (Extraction)
2.2.4. High Pressure Liquid Chromatography (HPLC)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chwastowski, J.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Soroka, J.A.; Tomasik, P.; Witczak, M. Water of increased content of molecular oxygen. Water 2020, 12, 2488. [Google Scholar] [CrossRef]
- Pisulewska, E.; Ciesielski, W.; Jackowska, M.; Gąstoł, M.; Oszczęda, Z.; Tomasik, P. Effect of water treated with low-pressure, low-temperature glow plasma of low frequency on planted peppermint (Mentha piperita). EJPAU Ser. Biotechnol. 2018, 21, 1. [Google Scholar]
- Ciesielska, K.; Ciesielski, W.; Kulawik, D.; Oszczęda, Z.; Tomasik, P. Cultivation of cress involving water treated under different atmospheres with low-temperature, low-pressure glow plasma of low frequency. Water 2020, 12, 2152. [Google Scholar] [CrossRef]
- Ciesielska, K.; Ciesielski, W.; Girek, T.; Kołoczek, H.; Oszczęda, Z.; Tomasik, P. Reaction of Lavandula angustifolia Mill. to water treated with low-temperature, low-pressure glow plasma of low frequency. Water 2020, 12, 3168. [Google Scholar] [CrossRef]
- Ciesielski, W.; Gąstoł, M.; Kulawik, D.; Oszczęda, Z.; Pisulewska, E.; Tomasik, P. Specific controlling essential oil composition of basil (Ocimum basilicum L.) involving low-temperature, low-pressure glow plasma of low frequency. Water 2020, 12, 3332. [Google Scholar] [CrossRef]
- Ciesielska, K.; Ciesielski, W.; Girek, T.; Oszczęda, Z.; Tomasik, P. Effect of watering of selected seasoning herbs with water treated with low-temperature, low-pressure glow plasma of low frequency. Water 2020, 12, 3526. [Google Scholar] [CrossRef]
- Pavlovic, R.; Panseri, S.; Giupponi, L.; Leoni, V.; Citti, C.; Cattaneo, C.; Cavaletto, M.; Giorgi, A. Phytochemical and ecological analysis of two varieties of hemp (Cannabis sativa L.) grown in a mountain environment of Italian Alps. Front. Plant Sci. 2019, 10, 1265. [Google Scholar] [CrossRef]
- Salentijn, E.M.J.; Petit, J.; Trindade, L.M. The complex interactions between flowering behavior and fiber quality in hemp. Front. Plant Sci. 2019, 10, 614. [Google Scholar] [CrossRef]
- Green, G. The Cannabis Breeder’s Bible; Green Candy Press: San Francisco, CA, USA, 2005; pp. 15–16. ISBN 9781931160278. [Google Scholar]
- Florian, M.L.; Kronkright, D.P.; Norton, R.E. The Conservation of Artifacts Made from Plant Materials; Getty Publications: Los Angeles, CA, USA, 1991; p. 49. ISBN 978-0-89236-160-1. [Google Scholar]
- Chandra, S.; Lata, H.; El Sohly, M.A. Cannabis sativa L.—Botany and Biotechnology; Springer: Berlin, Germany, 2017; p. 54. ISBN 978-3-319-54564-6. [Google Scholar]
- Markowska, J.; Polak, E.; Drabent, A.; Żak, A. Cannabis sativa Cannabis sativa L.—Varietes, properties, applications. Żywn. Nauk. Technol. Jakość 2021, 28, 90–105. (In Polish) [Google Scholar]
- Keller, N.M. The Legalization of Industrial Hemp and What It Could Mean for Indiana’s Biofuel Industr. Indiana Int. Comp. Law Rev. 2013, 23, 555–589. [Google Scholar] [CrossRef] [Green Version]
- Erickson, B. USDA releases hemp production requirements. C&EN Glob. Enterp. 2019, 97, 17. [Google Scholar] [CrossRef]
- Novak, J.; Zitterl-Eglseer, K.; Deans, S.G.; Franz, C.M. Essential oils of different cultivars of Cannabis sativa L. and their antimicrobial activity. Flavour Fragr. J 2001, 16, 259–262. [Google Scholar]
- Nutrition Facts for Hemp Seeds (Shelled) per 100 g Serving. Conde Nast, Custom Analysis. 2014. Available online: https://www.researchgate.net/publication/340265718_Hemp_all_you_need_to_know_about (accessed on 12 January 2022).
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Seeds, Hemp Seed, Hulled. FoodData Central. USDA. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170148/nutrients (accessed on 3 February 2021).
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.; Moreno, T.; Catchpole, O.; Fenton, T.; Lagutin, K.; MacKenzie, A.; Mitchell, K.; Scott, D. Extraction of hemp seed using near-critical CO2, propane and dimethyl ether. J. Supercrit. Fluids 2012, 173, 105218. [Google Scholar]
- Williams, D. Industrial Hemp as a Modern Commodity Crop; John Wiley & Sons: Hoboken, NJ, USA, 2020; p. 30. [Google Scholar]
- Pellati, F.; Borgonetti, V.; Brighenti, V.; Biagi, M.; Benvenuti, S.; Corsi, L. Cannabis sativa L. and nonpsychoactive cannabinoids: Their chemistry and role against oxidative stress, inflammation, and cancer. Biomed. Res. Int. 2018, 4, 1691428. [Google Scholar] [CrossRef] [Green Version]
- Fadel, D.; Assaad, N.; Alghazal, G.; Hamouche, Z.; Lazari, D. “Finola” cannabis cultivation for cannabinoids production in Thessaloniki-Greece. J. Agric. Sci. 2020, 12, 172–181. [Google Scholar] [CrossRef]
- Białopiotrowicz, T.; Ciesielski, W.; Domański, J.; Doskocz, M.; Fiedorowicz, M.; Grąż, K.; Kołoczek, H.; Kozak, A.; Oszczęda, Z.; Tomasik, P. Structure and physicochemical properties of water treated with low-temperature low frequency glow plasma. Curr. Phys. Chem. 2017, 6, 312–320. [Google Scholar] [CrossRef]
- Chwastowski, J.; Ciesielska, K.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczęda, Z.; Tomasik, P.; Witczak, M. Structure and physicochemical properties of water treated under nitrogen with low temperature glow plasma. Water 2020, 12, 1314. [Google Scholar] [CrossRef]
- Ciesielska, A.; Ciesielski, W.; Khachatryan, K.; Kołoczek, H.; Kulawik, D.; Oszczeda, Z.; Soroka, J.A.; Tomasik, P. Structure and physicochemical properties of water treated under carbon dioxide with low-temperature low-pressure glow plasma of low frequency. Water 2020, 12, 1920. [Google Scholar] [CrossRef]
- Oszczeda, Z.; Elkin, I.; Strek, W. Equipment for Treatment of Water with Plasma. Polish Patent PL 216025 B1, 28 February 2014. [Google Scholar]
- Reszke, E.; Yelkin, I.; Oszczęda, Z. Plasming Lamp with Power Supply. Polish Patent PL 227530 B1, 26 October 2017. [Google Scholar]
- Zivovinovic, S.; Alder, R.; Allenspach, M.D.; Steuer, S. Determination of cannabinoids in Cannabis sativa L. samples for recreational, medical, and forensic purposes by reversed-phase liquid chromatography-ultraviolet detection. J. Anal. Sci. Technol. 2018, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Biokonopia. Available online: https://www.biokonopia.pl/img/cbdring.jpg (accessed on 7 January 2022).
- European Food Safety Authority (EFSA). Scientific opinion on the risk for human health related to the presence of tetrahydrocannabinol (THC) in milk and other food of animal origin. EFSA J. 2015, 13, 4141. [Google Scholar]
- Abioye, A.; Ayodele, O.; Marinkovic, A.; Patidar, R.; Akinwekomi, A.; Senyaolu, A. Δ9-Tetrahydrocannabivarin (THCV): A commentary on potential therapeutic benefit for the management of obesity and diabetes. J. Cannabis Res. 2020, 2, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Sanz, G. Can you pass the acid test? Critical review and novel therapeutic perspectives of Δ9-tetrahydrocannabolic acid A. Cannabis Cannabinoid Res. 2016, 1, 124–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirikantaramas, S.; Taura, F.; Tanaka, Y.; Ishikawa, Y.; Morimoto, S.; Shoyama, Y. Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol. 2005, 46, 1578–1582. [Google Scholar] [CrossRef]
- American Chemical Society. Δ8-tetrahydrocannabinol. Mol. Week Arch. 2021, 4. Available online: https://www.acs.org/content/acs/en/molecule-of-the-week/archive/t/delta8-.tetrahydrocannabinol.html?cid=home_motw (accessed on 12 January 2022).
Time (min) | Mobile Phase | |
---|---|---|
A | B | |
0.0 | 30 | 70 |
2.0 | 30 | 70 |
4.5 | 28.7 | 71.3 |
6.0 | 5 | 95 |
8.6 | 5 | 95 |
9.4 | 5 | 95 |
10.0 | 5 | 95 |
Water | No. of Germinated Seeds in 5 Trays | Average Finola Height [cm] a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
Nontreated | 7 | 3.7 | 6.5 | 12.2 | 19.8 | 27.3 | 35.5 | 44.0 | 46.4 | 48.1 | 48.8 | 49.8 | 49.8 |
LPGPA | 7 | 4.5 | 7.3 | 14.8 | 42 | 32 | 40 | 59 | 63 | 65 | 65 | 66 | 66 |
LPGPN | 5 | 3.8 | 15.8 | 28.6 | 52 | 58 | 80 | 88 | 93 | 94 | 95 | 95 | 96 |
LPGPC | 7 | 4 | 13.9 | 33.0 | 57.3 | 93.8 | 132.5 | 145.5 | 148 | 149.3 | 149.5 | 150 | 150.5 |
Peak Number | Retention Time (min) | Compound | Content (9%) of Component in the Oil from the Plant Watered with Water a | |||
---|---|---|---|---|---|---|
Nontreated | LPGPA | LPGPN | LPGPC | |||
1 | 2.637 | CBD A | 9.61 | 6.27 | 5.53 | 7.34 |
2 | 3.173 | CBD C | 2.65 | 1.66 | 1.63 | 1.56 |
3 | 3.877 | CBD V | 54.95 | 51.68 | 26.59 | 60.95 |
4 | 3.973 | CDG A | 4.81 | 3.34 | 3.09 | 3.98 |
5 | 4.531 | CBG | 3.01 | 1.95 | 1.60 | 0.26 |
6 | 5.369 | CBD | 4.38 | 2.98 | 2.74 | 3.62 |
7 | 6.074 | CBN | 2.79 | 2.83 | 2.15 | 2.81 |
8 | 7.038 | THC V | 0.27 | 0.23 | 0.73 | 0.00 |
9 | 7.567 | Δ9-THC A | 0.34 | 0.29 | 0.58 | 0.66 |
10 | 7.870 | Δ9-THC | 9.36 | 23.22 | 48.89 | 10.65 |
11 | 8.132 | Δ8-THC | 7.84 | 5.5 | 6.48 | 8.16 |
Total numer of components | 11 | 11 | 11 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciesielski, W.; Domagała, I.; Garcia, B.; Girek, T.; Oszczęda, Z.; Szczuka, E.; Tomasik, P. Specific Way of Controlling Composition of Cannabinoids and Essential Oil from Cannabis sativa var. Finola. Water 2022, 14, 688. https://doi.org/10.3390/w14050688
Ciesielski W, Domagała I, Garcia B, Girek T, Oszczęda Z, Szczuka E, Tomasik P. Specific Way of Controlling Composition of Cannabinoids and Essential Oil from Cannabis sativa var. Finola. Water. 2022; 14(5):688. https://doi.org/10.3390/w14050688
Chicago/Turabian StyleCiesielski, Wojciech, Iwona Domagała, Blas Garcia, Tomasz Girek, Zdzisław Oszczęda, Edyta Szczuka, and Piotr Tomasik. 2022. "Specific Way of Controlling Composition of Cannabinoids and Essential Oil from Cannabis sativa var. Finola" Water 14, no. 5: 688. https://doi.org/10.3390/w14050688
APA StyleCiesielski, W., Domagała, I., Garcia, B., Girek, T., Oszczęda, Z., Szczuka, E., & Tomasik, P. (2022). Specific Way of Controlling Composition of Cannabinoids and Essential Oil from Cannabis sativa var. Finola. Water, 14(5), 688. https://doi.org/10.3390/w14050688