A Novel Prediction and Planning Model for the Benefit of Irrigation Water Allocation Based on Deep Learning and Uncertain Programming
Abstract
:1. Introduction
2. The Study System
2.1. Study Area
2.2. Prediction and Planning Model
3. Methodology
3.1. LSTM Prediction Model
3.2. CCP-FFP-IPP Planning Programming
3.3. Crop Water Production Function
4. Objective
- Crop planting area constraints,
- Water distribution restriction,
- Effective precipitation constraints,
- Variable non-negative constraints,
5. Result Analysis
5.1. Forecast of Yield per Unit Area and Crop Water Consumption
5.2. Production Value of the Two Crops
5.3. Production Profit of Winter Wheat
5.4. Production Profit of Summer Corn
5.5. Discussion and Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhang, Y.; Zhang, R.; Li, J.; Zhang, M.; Zhou, S.; Wang, Z. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain. Sci. Total Environ. 2018, 618, 112–120. [Google Scholar] [CrossRef]
- Zhai, L.-C.; Lü, L.-H.; Dong, Z.-Q.; Zhang, L.-H.; Zhang, J.-T.; Jia, X.-L.; Zhang, Z.-B. The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain. J. Integr. Agric. 2021, 20, 1687–1700. [Google Scholar] [CrossRef]
- Fu, J.; Zhong, P.-A.; Xu, B.; Zhu, F.; Chen, J.; Li, J. Comparison of Transboundary Water Resources Allocation Models Based on Game Theory and Multi-Objective Optimization. Water 2021, 13, 1421. [Google Scholar] [CrossRef]
- Rivera, A.; Gunda, T.; Hornberger, G.M. Minimizing irrigation water demand: An evaluation of shifting planting dates in Sri Lanka. Ambio 2018, 47, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Feng, J. Optimal allocation of regional water resources based on multi-objective dynamic equilibrium strategy. Appl. Math. Modelling 2021, 90, 1183–1203. [Google Scholar] [CrossRef]
- Shen, X.; Wu, X.; Xie, X.; Wei, C.; Li, L.; Zhang, J. Synergetic Theory-Based Water Resource Allocation Model. Water Resour. Manag. 2021, 35, 2053–2078. [Google Scholar] [CrossRef]
- El Bilali, A.; Taleb, A. Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment. J. Saudi Soc. Agric. Sci. 2020, 19, 439–451. [Google Scholar] [CrossRef]
- Sundararajan, K.; Garg, L.; Srinivasan, K.; Kashif Bashir, A.; Kaliappan, J.; Pattukandan Ganapathy, G.; Kumaran Selvaraj, S.; Meena, T. A Contemporary Review on Drought Modeling Using Machine Learning Approaches. Comput. Modeling Eng. Sci. 2021, 128, 447–487. [Google Scholar] [CrossRef]
- Peng, Y.; Xiao, Y.; Fu, Z.; Dong, Y.; Zheng, Y.; Yan, H.; Li, X. Precision irrigation perspectives on the sustainable water-saving of field crop production in China: Water demand prediction and irrigation scheme optimization. J. Clean. Prod. 2019, 230, 365–377. [Google Scholar] [CrossRef]
- Li, M.; Sun, H.; Liu, D.; Singh, V.P.; Fu, Q. Multi-scale modeling for irrigation water and cropland resources allocation considering uncertainties in water supply and demand. Agric. Water Manag. 2021, 246, 106687. [Google Scholar] [CrossRef]
- Li, J.; Shang, S.; Jiang, H.; Song, J.; Rahman, K.U.; Adeloye, A.J. Simulation-based optimization for spatiotemporal allocation of irrigation water in arid region. Agric. Water Manag. 2021, 254, 106952. [Google Scholar] [CrossRef]
- Hassan, W.; Manzoor, T.; Jaleel, H.; Muhammad, A. Demand-based water allocation in irrigation systems using mechanism design: A case study from Pakistan. Agric. Water Manag. 2021, 256, 107075. [Google Scholar] [CrossRef]
- Imron, F. Optimization of irrigation water allocation by using linear programming: Case study on Belitang irrigation system. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 653, p. 012023. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, Q.; Guo, P. A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan. Int. J. Environ. Res. Public Health 2019, 16, 1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Li, X.; Guo, P.; Huo, Z. An improved interval-based fuzzy credibility-constrained programming approach for supporting optimal irrigation water management under uncertainty. Agric. Water Manag. 2020, 238, 106185. [Google Scholar] [CrossRef]
- Cheng, K.; Wei, S.; Ren, Y.; Fu, Q. Optimal allocation of agricultural water resources under the background of China’s agricultural water price reform-a case study of Heilongjiang province. Appl. Math. Model. 2021, 97, 636–649. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, H.; Ren, C.; Sun, D.; Yang, J. Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty. Agric. Water Manag. 2020, 239, 106264. [Google Scholar] [CrossRef]
- Yao, L.; Su, Z.; Hou, S. Robust programming for basin-level water allocation with uncertain water availability and policy-driven scenario analysis. Complex Intell. Syst. 2021, 1–21. [Google Scholar] [CrossRef]
- Xu, W.; Zhong, Z.; Proverbs, D.; Xiong, S.; Zhang, Y. Enhancing the Resilience of the Management of Water Resources in the Agricultural Supply Chain. Water 2021, 13, 1619. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Gong, X. Risk-based agricultural water allocation under multiple uncertainties. Agric. Water Manag. 2020, 233, 106105. [Google Scholar] [CrossRef]
- Zhang, W.J.; Tan, Q.; Zhang, T.Y. A risk-averse stochastic quadratic model with recourse for supporting irrigation water management in uncertain and nonlinear environments. Agric. Water Manag. 2021, 244, 106431. [Google Scholar] [CrossRef]
- Cai, Y.; Cai, J.; Chen, D.; Xie, Y.; Feng, J. Development of an integrated prediction-optimization modeling approach for coupled risk management of water and energy nexus systems. Sci. Total Environ. 2021, 781, 146744. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L.; Archontoulis, S.V. A CNN-RNN Framework for Crop Yield Prediction. Front. Plant Sci. 2019, 10, 1750. [Google Scholar] [CrossRef]
- VINCENT, D.E.A.P.M.D. Crop Yield Prediction Using Deep Reinforcement Learning Model for Sustainable Agrarian Applications. IEEE Access 2020, 8, 86886–86901. [Google Scholar] [CrossRef]
- Meng, L.; Liu, H.; Ustin, S.L.; Zhang, X. Predicting Maize Yield at the Plot Scale of Different Fertilizer Systems by Multi-Source Data and Machine Learning Methods. Remote Sens. 2021, 13, 3760. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Huber, I.; Archontoulis, S.V. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 2021, 11, 1606. [Google Scholar] [CrossRef]
- Tummala, S.; Pravallika, K.; Karuna, G.; Anuradha, K.; Srilakshmi, V.; Kosaraju, S.; Bobba, P.; Singh, S. Deep Neural Network Model for Proficient Crop Yield Prediction. E3S Web Conf. 2021, 309, 01031. [Google Scholar] [CrossRef]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sensors 2019, 19, 4363. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wu, J.; Wang, X.; Ma, L. Economic and environmental sustainability of maize-wheat rotation production when substituting mineral fertilizers with manure in the North China Plain. J. Clean. Prod. 2020, 271, 122683. [Google Scholar] [CrossRef]
- Anyang Statistival Yearbook. Available online: http://tjj.anyang.gov.cn/sjfx/tjsj/index_2.html (accessed on 15 June 2021).
- Baoding Statistical Yearbook. Available online: http://www.hetj.gov.cn/hetj/tjsj/jjnj/ (accessed on 15 June 2021).
- Jinan Statistival Yearbook. Available online: http://jntj.jinan.gov.cn/col/col18253/index.html (accessed on 15 June 2021).
- Weifang Statistival Yearbook. Available online: http://tjj.weifang.gov.cn/TJYW/TJSJ/ (accessed on 15 June 2021).
- Zhengzhou Statistival Yearbook. Available online: http://tjj.zhengzhou.gov.cn/tjyb/index.jhtml (accessed on 15 June 2021).
- Xurong Mei, Q.L.; Rongchang, Y. National Science and Technology Basic Work Special Project Atlas of Growth Periods of Major Crops in China; Hangzhou Science and Technology Press: Hangzhou, China, 2016; p. 145. [Google Scholar]
- Aboutalebi, M.; Torres-Rua, A.; Allen, N. Spatial and Temporal Analysis of Precipitation and Effective Rainfall Using Gauge Observations, Satellite, and Gridded Climate Data for Agricultural Water Management in the Upper Colorado River Basin. Remote Sens. 2018, 10, 2058. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Naqvi, S.; Akram, T.; Umar, G.; Shahzad, A.; Sial, M.; Khaliq, S.; Kamran, M. LSTM Neural Network Based Forecasting Model for Wheat Production in Pakistan. Agronomy 2019, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Li, Y.P.; Huang, G.H. A fuzzy-stochastic simulation-optimization model for planning electric power systems with considering peak-electricity demand: A case study of Qingdao, China. Energy 2016, 98, 190–203. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.P.; Huang, G.H.; Zhou, Y. A robust approach for planning electric power systems associated with environmental policy analysis. Electr. Power Syst. Res. 2013, 95, 99–111. [Google Scholar] [CrossRef]
- Shaozhong Kang, J.S.; Xiying, Z.; Ling, T.; Jinglei, W.; Sien, L. Water Requirements and Water Consumption Management of Major Crops in Northern China; China Water Conservancy and Hydropower Press: Beijing, China, 2018. [Google Scholar]
- Yinhuan, F.; Ping, G.; Shiqi, F.; Mo, L. Optimal water resources planning based on interval-parameter two-stage stochastic programming. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2014, 30, 8. [Google Scholar] [CrossRef]
- Li, S. China Agricultural Product Price Survey Yearbook 2021; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Rui, Z.; Zhengying, W.; Yubin, Z. Time Series Prediction of Tomato Yield Based on LSTM Recurrent Neural Network Water. Sav. Irrig. 2018, 5, 5. [Google Scholar]
Study City | Longitude (°) | Dimension (°) | Annual Average Temperature (°C) | Annual Precipitation (mm) |
---|---|---|---|---|
Anyang | 113°38′~114°59′ | 35°41′~36°21′ | 12.9 | 598.1 |
Zhengzhou | 112°42′~114°14′ | 34°16′~34°58′ | 15.6 | 542.2 |
Weifang | 118°10′~120°01′ | 35°41′~37°26′ | 12.9 | 605.8 |
Jinan | 116°21′~117°93′ | 36°02′~37°54′ | 14.2 | 548.7 |
Baoding | 113°40′~116°20′ | 38°10′~40°00′ | 13.4 | 498.9 |
Study City | Sowing Date | Overwinter Date | Rejuvenation Date | Jointing Date | Flowering Date | Harvest Date |
---|---|---|---|---|---|---|
Anyang | 11 October (285) | 11 December (346) | 1 March (60) | 1 April (91) | 11 May (131) | 11 June (162) |
Zhengzhou | 11 October (285) | 11 December (346) | 1 March (60) | 21 March (80) | 1 May (121) | 11 June (162) |
Weifang | 11 October (285) | 11 December (346) | 11 March (70) | 1 April (91) | 11 May (131) | 11 June (162) |
Jinan | 11 October (285) | 11 December (346) | 11 March (70) | 1 April (91) | 11 May (131) | 11 June (162) |
Baoding | 1 October (275) | 11 December (346) | 11 March (70) | 11 April (101) | 21 May (141) | 21 June (162) |
Study City | Sowing Date | Jointing Date | Heading Date | Harvest Date |
---|---|---|---|---|
Anyang | 11 June (162) | 21 July (202) | 11 August (223) | 21 September (264) |
Zhengzhou | 11 June (162) | 11 July (202) | 11 August (223) | 21 September (264) |
Weifang | 21 June (172) | 21 July (202) | 11 August (223) | 1 October (274) |
Jinan | 21 June (172) | 21 July (202) | 11 August (223) | 21 September (264) |
Baoding | 21 June (172) | 1 August (213) | 11 August (223) | 1 October (274) |
Year | Effective Precipitation from September to May | Effective Precipitation from June to September | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Anyang | Zhengzhou | Weifang | Jinan | Baoding | Anyang | Zhengzhou | Weifang | Jinan | Baoding | |
1981 | 36.7 | 69.2 | 82.6 | 87.5 | 31.7 | 300.6 | 256.5 | 202.7 | 144.5 | 198.9 |
1982 | 60. 6 | 131.3 | 87.5 | 106.4 | 24.2 | 389.4 | 287.0 | 301.9 | 269.8 | 332.2 |
1983 | 128.1 | 250.6 | 163.9 | 156.6 | 94.2 | 170.6 | 450.7 | 228.1 | 212.5 | 197.34 |
1984 | 153.3 | 105.9 | 144.6 | 107.7 | 70.3 | 363.2 | 420.7 | 285.7 | 184.8 | 143.2 |
1985 | 92.3 | 247.3 | 147.3 | 109.0 | 31.2 | 262.2 | 265.8 | 274.2 | 358.6 | 484.0 |
1986 | 99.0 | 138.9 | 87.4 | 65.1 | 43.2 | 100.5 | 122.6 | 175.1 | 177.5 | 180.2 |
1987 | 123.5 | 200.3 | 157.2 | 135.8 | 86.9 | 231.5 | 205.1 | 496.4 | 237.3 | 224.2 |
1988 | 153.4 | 144.1 | 105.7 | 99.5 | 120.3 | 292.4 | 209.2 | 337.4 | 253.4 | 472.6 |
* | * | * | * | * | * | * | * | * | * | * |
2017 | 174.9 | 239.1 | 165.3 | 108.6 | 54.6 | 287.9 | 238.5 | 297.4 | 335.6 | 292.7 |
2018 | 129.4 | 163.2 | 145.3 | 165.2 | 162.4 | 338.2 | 244.9 | 477.3 | 464.6 | 219.2 |
2019 | 93.9 | 80.8 | 64.5 | 61.7 | 52.6 | 200.0 | 321.6 | 421.7 | 274.1 | 256.0 |
Average Value | 105.5 | 151.6 | 131.7 | 112.3 | 82.7 | 286.5 | 283.3 | 350.3 | 278.3 | 267.0 |
Standard Deviation | 36.08 | 55.10 | 45.24 | 37.12 | 42.46 | 95.35 | 87.49 | 120.96 | 93.95 | 112.24 |
Study City | Winter Wheat | Summer Corn | ||||
---|---|---|---|---|---|---|
a1 | b1 | c1 | a1 | b1 | c1 | |
Anyang | −0.0293 | 32.9 | −2674.5 | −0.0657 | 53.6 | −3302.5 |
Zhengzhou | −0.0607 | 53.5 | −4360.5 | −0.1740 | 138.6 | −21,426.0 |
Weifang | −0.0333 | 36.1 | −4245.0 | −0.2293 | 186.0 | −28,890.0 |
Jinan | −0.0553 | 65.9 | −1355.8 | −0.0640 | 54.0 | −4941.0 |
Baoding | −0.0413 | 40.7 | −4521.0 | −0.1333 | 116.0 | −14,838.0 |
Study City | Anyang | Zhengzhou | Weifang | Jinan | Baoding |
---|---|---|---|---|---|
Max value | 3.20 | 1.76 | 3.87 | 2.16 | 4.01 |
Average value | 3.08 | 1.73 | 3.58 | 2.12 | 3.69 |
Min value | 3.00 | 1.63 | 3.33 | 2.07 | 3.34 |
Standard deviation | 0.06 | 0.04 | 0.17 | 0.03 | 0.27 |
Interval parameter | [2.94, 3.00, 3.07] [3.14, 3.20, 3.27] | [1.58, 1.63, 1.67] [1.71, 1.76, 1.81] | [3.15, 3.32, 3.49] [3.69, 3.86, 4.03] | [2.04, 2.07, 2.10] [2.13, 2.16, 2.19] | [3.06, 3.34, 3.62] [3.73, 4.01, 4.29] |
Study City | Anyang | Zhengzhou | Weifang | Jinan | Baoding |
---|---|---|---|---|---|
Max value | 2.44 | 1.58 | 3.90 | 2.11 | 4.61 |
Average value | 2.29 | 1.49 | 3.64 | 2.05 | 4.40 |
Min value | 2.01 | 1.35 | 3.44 | 1.92 | 4.16 |
Standard deviation | 0.14 | 0.07 | 0.15 | 0.06 | 0.17 |
Interval parameter | [1.87, 2.01, 2.15] [2.29, 2.43, 2.57] | [1.28, 1.35, 1.43] [1.51, 1.58, 1.66] | [3.28, 3.44, 3.59] [3.75, 3.90, 4.05] | [1.86, 1.92, 1.98] [2.05, 2.11, 2.17] | [4.00, 4.16, 4.33] [4.46, 4.61, 4.78] |
Study City | Winter Wheat (mm) | Summer Corn (mm) | ||||
---|---|---|---|---|---|---|
Dry Year | Normal Year | Wet Year | Dry Year | Normal Year | Wet Year | |
Anyang | [36.68, 75.22] | (75.22, 135.83) | [135.83, 183.72] | [100.52, 206.43] | (206.43, 366.61) | [366.14, 553.48] |
Zhengzhou | [54.90, 105.34] | (105.34, 197.90) | [197.90, 279.66] | [92.16, 209.85] | (209.85, 356.83) | [356.83, 450.70] |
Weifang | [51.12, 81.14] | (81.14, 143.50) | [143.50, 182.20] | [66.98, 199.39] | (199.39, 357.23) | [357.23, 522.24] |
Jinan | [41.76, 93.71] | (93.71, 169.71) | [169.71, 277.48] | [135.94, 248.73] | (248.73, 451.94) | [451.94, 623.82] |
Baoding | [22.04, 47.04] | (47.04, 118.38) | [118.38, 197.74] | [108.42, 172.69] | (172.69, 361.25) | [361.25, 533.66] |
Year | Anyang | Zhengzhou | Weifang | Jinan | Baoding | |||||
---|---|---|---|---|---|---|---|---|---|---|
Wheat | Corn | Wheat | Corn | Wheat | Corn | Wheat | Corn | Wheat | Corn | |
MAE | 121.09 | 231.62 | 75.27 | 83.92 | 99.04 | 98.05 | 145.19 | 185.03 | 61.56 | 189.26 |
2020 | 6464.75 | 6600.20 | 4828.50 | 4842.59 | 6150.17 | 6407.73 | 6018.43 | 5927.71 | 6252.85 | 5784.50 |
2021 | 6574.71 | 6523.99 | 4832.67 | 4824.77 | 6013.05 | 6344.41 | 6025.69 | 5994.35 | 6287.26 | 5855.43 |
2022 | 6527.11 | 6485.03 | 4846.65 | 4807.97 | 6038.37 | 6424.87 | 5997.88 | 6020.74 | 6295.11 | 5884.25 |
Site | Year | Wheat ($ 108) | Corn ($ 108) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 0.9 | 0.8 | 0.7 | 1 | 0.9 | 0.8 | 0.7 | ||
Anyang | 2021 | [7.74, 8.25] | [7.75, 8.23] | [7.77, 8.22] | [7.78, 8.20] | [5.63, 6.83] | [5.67, 6.79] | [5.71, 6.75] | [5.75, 6.71] |
2022 | [7.87, 8.39] | [7.89, 8.38] | [7.90, 8.36] | [7.92, 8.34] | [5.56, 6.75] | [5.60, 6.71] | [5.64, 6.67] | [5.68, 6.63] | |
2023 | [7.81, 8.33] | [7.83, 8.32] | [7.85, 8.30] | [7.86, 8.28] | [5.53, 6.71] | [5.57, 6.67] | [5.61, 6.63] | [5.65, 6.59] | |
Zhengzhou | 2021 | [3.14, 3.39] | [3.15, 3.38] | [3.16, 3.37] | [3.16, 3.36] | [2.78, 3.25] | [2.80, 3.24] | [2.82, 3.22] | [2.83, 3.20] |
2022 | [3.14, 3.39] | [3.15, 3.39] | [3.16, 3.38] | [3.17, 3.37] | [2.77, 3.24] | [2.79, 3.23] | [2.80, 3.21] | [2.82, 3.20] | |
2023 | [3.15, 3.41] | [3.16, 3.40] | [3.17, 3.39] | [3.18, 3.38] | [2.77, 3.23] | [2.80, 3.22] | [2.80,3.20] | [2.81,3.19] | |
Weifang | 2021 | [8.16, 9.47] | [8.20, 9.43] | [8.24, 9.39] | [8.28, 9.35] | [9.34, 10.62] | [9.38,10.57] | [9.43,10.53] | [9.47,10.49] |
2022 | [7.97, 9.26] | [8.02, 9.22] | [8.06, 9.18] | [8.10, 9.14] | [9.25, 10.51] | [9.29, 10.47] | [9.33, 10.43] | [9.37, 10.39] | |
2023 | [8.00, 9.30] | [8.05, 9.26] | [8.09, 9.22] | [8.13, 9.18] | [9.37, 10.64] | [9.41, 10.60] | [9.45, 10.56] | [9.49, 10.52] | |
Jinan | 2021 | [4.96, 5.19] | [4.97, 5.18] | [4.98, 5.17] | [4.98, 5.17] | [4.84, 5.31] | [4.85, 5.30] | [4.87, 5.28] | [4.88, 5.27] |
2022 | [4.97, 5.19] | [4.97, 5.19] | [4.98, 5.18] | [4.99, 5.17] | [4.89, 5.37] | [4.91, 5.35] | [4.92, 5.34] | [4.93, 5.33] | |
2023 | [4.94, 5.17] | [4.95, 5.16] | [4.95, 5.16] | [4.97, 5.15] | [4.91, 5.40] | [4.92, 5.38] | [4.94, 5.37] | [4.96, 5.35] | |
Baoding | 2021 | [8.33, 9.99] | [8.39, 9.92] | [8.47, 9.85] | [8.54, 9.78] | [10.23, 11.33] | [10.27, 11.29] | [10.31, 11.24] | [10.35, 11.20] |
2022 | [8.38, 10.04] | [8.44, 9.97] | [8.51, 9.90] | [8.58, 9.83] | [10.34, 11.47] | [10.39, 11.43] | [10.43, 11.38] | [10.48, 11.34] | |
2023 | [8.38, 10.05] | [8.45, 9.99] | [8.52, 9.91] | [8.59, 9.85] | [10.40, 11.52] | [10.44, 11.48] | [10.48, 11.44] | [10.53, 11.40] |
City | λ | 2020 ($ 108) | 2021 ($ 108) | 2022 ($ 108) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Dry Year | Normal Year | Wet Year | Dry Year | Normal Year | Wet Year | Dry Year | Normal Year | Wet Year | ||
Anyang | 1 | [6.87, 7.83] | [6.94, 7.90] | [7.05, 7.94] | [6.89, 7.92] | [6.96, 7.98] | [7.08, 8.03] | [6.90, 7.89] | [6.97, 7.95] | [7.08, 8.00] |
0.9 | [6.88, 7.82] | [6.95, 7.88] | [7.07, 7.93] | [6.90, 7.90] | [6.98, 7.96] | [7.09, 8.01] | [6.91, 7.87] | [6.98, 7.93] | [7.10, 7.98] | |
0.8 | [6.89, 7.80] | [6.97, 7.86] | [7.08, 7.91] | [6.92, 7.88] | [6.99, 7.95] | [7.11, 7.99] | [6.93, 7.86] | [7.00, 7.92] | [7.11, 7.97] | |
0.7 | [6.91, 7.79] | [6.98, 7.85] | [7.10, 7.90] | [6.93, 7.87] | [7.01, 7.93] | [7.12, 7.98] | [6.94, 7.84] | [7.01, 7.90] | [7.13, 7.95] | |
Zhengzhou | 1 | [2.96, 3.33] | [3.01, 3.38] | [3.11, 3.40] | [2.96, 3.33] | [3.01, 3.38] | [3.11, 3.40] | [2.97, 3.34] | [3.02, 3.39] | [3.12, 3.41] |
0.9 | [2.97, 3.32] | [3.02, 3.37] | [3.11, 3.39] | [2.97, 3.32] | [3.02, 3.37] | [3.12, 3.39] | [2.98, 3.33] | [3.03, 3.38] | [3.13, 3.40] | |
0.8 | [2.97, 3.31] | [3.03, 3.36] | [3.12, 3.38] | [2.98, 3.31] | [3.03, 3.36] | [3.13, 3.38] | [2.99, 3.32] | [3.04, 3.37] | [3.13, 3.39] | |
0.7 | [2.98, 3.30] | [3.04, 3.35] | [3.13, 3.37] | [2.99, 3.30] | [3.04, 3.35] | [3.13, 3.37] | [3.00, 3.31] | [3.05, 3.36] | [3.14, 3.38] | |
Weifang | 1 | [7.14, 8.93] | [7.20, 9.00] | [7.33, 9.05] | [6.96, 8.72] | [7.02, 8.79] | [7.15, 8.84] | [6.99, 8.76] | [7.05, 8.83] | [7.19, 8.88] |
0.9 | [7.18, 8.89] | [7.24, 8.96] | [7.37, 9.01] | [6.99, 8.68] | [7.06, 8.75] | [7.19, 8.80] | [7.03, 8.72] | [7.09, 8.79] | [7.22, 8.84] | |
0.8 | [7.21, 8.85] | [7.28, 8.92] | [7.41, 8.97] | [7.03, 8.64] | [7.09, 8.71] | [7.22, 8.76] | [7.06, 8.68] | [7.13, 8.75] | [7.26, 8.80] | |
0.7 | [7.25, 8.81] | [7.31, 8.88] | [7.45, 8.93] | [7.07, 8.60] | [7.13, 8.67] | [7.26, 8.72] | [7.10, 8.64] | [7.16, 8.71] | [7.30, 8.76] | |
Jinan | 1 | [4.29, 4.88] | [4.36, 4.93] | [4.46, 5.00] | [4.29, 4.88] | [4.36, 4.93] | [4.46, 5.01] | [4.28, 4.86] | [4.35, 4.91] | [4.45, 4.99] |
0.9 | [4.30, 4.87] | [4.36, 4.92] | [4.46, 4.99] | [4.30, 4.87] | [4.37, 4.93] | [4.46, 5.00] | [4.28, 4.86] | [4.35, 4.91] | [4.45, 4.98] | |
0.8 | [4.30, 4.86] | [4.37, 4.91] | [4.47, 4.99] | [4.31, 4.87] | [4.37, 4.92] | [4.47, 4.99] | [4.29, 4.85] | [4.36, 4.90] | [4.46, 4.97] | |
0.7 | [4.31, 4.86] | [4.38, 4.91] | [4.48, 4.98] | [4.31, 4.86] | [4.38, 4.91] | [4.48, 4.99] | [4.30, 4.84] | [4.37, 4.89] | [4.47, 4.97] | |
Baoding | 1 | [7.35, 9.44] | [7.40, 9.53] | [7.55, 9.63] | [7.40, 9.50] | [7.45, 9.59] | [7.60, 9.69] | [7.41, 9.51] | [7.46, 9.60] | [7.61, 9.70] |
0.9 | [7.41, 9.37] | [7.47, 9.46] | [7.62, 9.56] | [7.46, 9.43] | [7.51, 9.52] | [7.66, 9.62] | [7.47, 9.44] | [7.52, 9.53] | [7.67, 9.63] | |
0.8 | [7.47, 9.31] | [7.53, 9.40] | [7.68, 9.50] | [7.52, 9.36] | [7.57, 9.45] | [7.73, 9.55] | [7.53, 9.38] | [7.58, 9.47] | [7.74, 9.56] | |
0.7 | [7.53, 9.24] | [7.59, 9.33] | [7.74, 9.43] | [7.58, 9.30] | [7.64, 9.39] | [7.79, 9.48] | [7.59, 9.31] | [7.65, 9.40] | [7.80, 9.50] |
City | λ | 2020 ($108) | 2021 ($108) | 2022 ($108) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Dry Year | Normal Year | Wet Year | Dry Year | Normal Year | Wet Year | Dry Year | Normal Year | Wet Year | ||
Anyang | 1 | [5.41, 6.78] | [5.54, 6.84] | [5.64, 6.84] | [5.35, 6.70] | [5.48, 6.76] | [5.57, 6.76] | [5.32, 6.66] | [5.45, 6.72] | [5.54, 6.72] |
0.9 | [5.44, 6.74] | [5.58, 6.80] | [5.68, 6.80] | [5.38, 6.66] | [5.61, 6.72] | [5.61, 6.72] | [5.35, 6.63] | [5.49, 6.68] | [5.58, 6.68] | |
0.8 | [5.48, 6.70] | [5.62, 6.76] | [5.72, 6.76] | [5.42, 6.62] | [5.56, 6.68] | [5.65, 6.68] | [5.39, 6.59] | [5.53, 6.64] | [5.62, 6.64] | |
0.7 | [5.52, 6.66] | [5.66, 6.72] | [5.76, 6.72] | [5.46, 6.59] | [5.60, 6.64] | [5.69, 6.64] | [5.43, 6.55] | [5.56, 6.60] | [5.65, 6.60] | |
Zhengzhou | 1 | [2.60, 3.21] | [2.70, 3.26] | [2.79, 3.26] | [2.59, 3.20] | [2.69, 3.25] | [2.78, 3.25] | [2.58, 3.19] | [2.68, 3.24] | [2.77, 3.24] |
0.9 | [2.62, 3.20] | [2.72, 3.24] | [2.80, 3.24] | [2.61, 3.18] | [2.71, 3.23] | [2.80, 3.23] | [2.60, 3.17] | [2.70, 3.22] | [2.78, 3.22] | |
0.8 | [2.63, 3.18] | [2.73, 3.23] | [2.82, 3.23] | [2.62, 3.17] | [2.72, 3.22] | [2.81, 3.22] | [2.61, 3.16] | [2.71, 3.21] | [2.80, 3.21] | |
0.7 | [2.65, 3.16] | [2.75, 3.21] | [2.84, 3.21] | [2.64, 3.15] | [2.74, 3.20] | [2.82, 3.20] | [2.63, 3.14] | [2.73, 3.19] | [2.82, 3.19] | |
Weifang | 1 | [8.85, 10.50] | [9.13, 10.63] | [9.36, 10.63] | [8.76, 10.40] | [9.04, 10.53] | [9.27, 10.53] | [8.87, 10.53] | [9.16, 10.66] | [9.38, 10.66] |
0.9 | [8.89, 10.47] | [9.17, 10.59] | [9.40, 10.59] | [8.80, 10.36] | [9.08, 10.49] | [9.31, 10.49] | [8.91, 10.49] | [9.20, 10.62] | [9.42, 10.62] | |
0.8 | [8.93, 10.42] | [9.22, 10.55] | [9.44, 10.55] | [8.84, 10.32] | [9.12, 10.45] | [9.35, 10.45] | [8.95, 10.45] | [9.24, 10.58] | [9.47, 10.58] | |
0.7 | [8.96, 10.38] | [9.25, 10.51] | [9.48, 10.51] | [8.87, 10.28] | [9.16, 10.41] | [9.39, 10.41] | [8.99, 10.41] | [9.28, 10.54] | [9.51, 10.54] | |
Jinan | 1 | [4.61, 5.27] | [4.74, 5.32] | [4.85, 5.32] | [4.65, 5.32] | [4.79,5.38] | [4.90, 5.38] | [4.67, 5.34] | [4.81, 5.41] | [4.92, 5.41] |
0.9 | [4.62, 5.25] | [4.76, 5.31] | [4.86, 5.31] | [4.67, 5.31] | [4.81, 5.37] | [4.91, 5.37] | [4.69, 5.33] | [4.82, 5.39] | [4.94, 5.39] | |
0.8 | [4.64, 5.24] | [4.77, 5.29] | [4.87, 5.29] | [4.68, 5.29] | [4.82, 5.35] | [4.93, 5.35] | [4.70, 5.32] | [4.84, 5.38] | [4.95, 5.38] | |
0.7 | [4.65, 5.22] | [4.79, 5.28] | [4.89, 5.28] | [4.70, 5.28] | [4.84, 5.34] | [4.94, 5.34] | [4.72, 5.30] | [4.85, 5.36] | [4.96, 5.36] | |
Baoding | 1 | [9.87, 11.23] | [10.04, 11.35] | [10.24, 11.35] | [9.99, 11.37] | [10.16, 11.48] | [10.37, 11.48] | [10.04, 11.43] | [10.21, 11.54] | [10.42, 11.54] |
0.9 | [9.91, 11.19] | [10.08, 11.30] | [10.28, 11.30] | [10.03, 11.33] | [10.20, 11.44] | [10.41, 11.44] | [10.08, 11.38] | [10.25, 11.50] | [10.46, 11.50] | |
0.8 | [9.95, 11.15] | [10.12, 11.26] | [10.32, 11.26] | [10.07, 11.29] | [10.24, 11.40] | [10.45, 11.40] | [10.12, 11.34] | [10.29, 11.46] | [10.50, 11.46] | |
0.7 | [9.99, 11.11] | [10.16, 11.22] | [10.36, 11.22] | [10.11, 11.25] | [10.29, 11.36] | [10.49, 11.36] | [10.16, 11.30] | [10.33, 11.41] | [10.54, 11.41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, W.; Wei, Z.; Zhang, L. A Novel Prediction and Planning Model for the Benefit of Irrigation Water Allocation Based on Deep Learning and Uncertain Programming. Water 2022, 14, 689. https://doi.org/10.3390/w14050689
Jia W, Wei Z, Zhang L. A Novel Prediction and Planning Model for the Benefit of Irrigation Water Allocation Based on Deep Learning and Uncertain Programming. Water. 2022; 14(5):689. https://doi.org/10.3390/w14050689
Chicago/Turabian StyleJia, Weibing, Zhengying Wei, and Lei Zhang. 2022. "A Novel Prediction and Planning Model for the Benefit of Irrigation Water Allocation Based on Deep Learning and Uncertain Programming" Water 14, no. 5: 689. https://doi.org/10.3390/w14050689
APA StyleJia, W., Wei, Z., & Zhang, L. (2022). A Novel Prediction and Planning Model for the Benefit of Irrigation Water Allocation Based on Deep Learning and Uncertain Programming. Water, 14(5), 689. https://doi.org/10.3390/w14050689