Impact of Climate Change on Hydrometeorology and Droughts in the Bilate Watershed, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. The SWAT Hydrological Model
2.3.1. Model Setup
2.3.2. Sensitivity Analysis, Calibration, and Validation of SWAT Model
2.4. Climate Models and RCPs Emission Scenarios
2.5. Drought Analysis
3. Results
3.1. SWAT Calibration and Validation
3.2. Climate Change Impact Assessment
3.2.1. Baseline Hydroclimatic Variables
3.2.2. Climate Change Impacts on Hydroclimatology
- A.
- Maximum and Minimum Temperatures
- B.
- Rainfall
- C.
- Evapotranspiration
- D.
- Streamflow
3.2.3. Climate Change Impact on Drought Characteristics
- A.
- Drought Duration
- B.
- Drought Magnitude
- C.
- Drought Intensity
4. Discussion
4.1. Impacts of Climate Change on Hydroclimatology
- A.
- Temperature
- B.
- Rainfall
- C.
- Evapotranspiration
- D.
- Streamflow
4.2. Impact of Climate Change on Drought Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaghefi, S.S.A.; Mousavi, S.J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. J. Hydrol. Process. 2013, 28, 2018–2032. [Google Scholar] [CrossRef]
- IPCC Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; pp. 1–151.
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Sci. Rep. 2019, 9, 11376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christy, J.R.; Norris, W.B.; McNider, R.T. Surface Temperature Variations in East Africa and Possible Causes. J. Clim. 2009, 22, 3342–3356. [Google Scholar] [CrossRef] [Green Version]
- Alahacoon, N.; Edirisinghe, M.; Simwanda, M.; Perera, E.; Nyirenda, V.R.; Ranagalage, M. Rainfall Variability and Trends over the African Continent Using TAMSAT Data (1983–2020): Towards Climate Change Resilience and Adaptation. Remote Sens. 2021, 14, 96. [Google Scholar] [CrossRef]
- Orke, Y.; Li, M.-H. Hydroclimatic Variability in the Bilate Watershed, Ethiopia. Climate 2021, 9, 98. [Google Scholar] [CrossRef]
- Lambe, B.T.; Kundapura, S. Analysis of meteorological variability and tendency over Bilate basin of Rift Valley Lakes basins in Ethiopia. Arab. J. Geosci. 2021, 14, 1–22. [Google Scholar] [CrossRef]
- Arnell, N.W.; Lowe, J.A.; Challinor, A.J.; Osborn, T.J. Global and regional impacts of climate change at different levels of global temperature increase. Clim. Chang. 2019, 155, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Zisopoulou, K.; Zisopoulos, D.; Panagoulia, D. Water Economics: An In-Depth Analysis of the Connection of Blue Water with Some Primary Level Aspects of Economic Theory I. Water 2022, 14, 103. [Google Scholar] [CrossRef]
- IPCC. IPCC Climate Change 2007: The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2007; p. 333. [Google Scholar]
- Boko, M.; Niang, I.; Nyong, A.; Vogel, C.; Githeko, A.; Medany, M.; Osman Elasha, B.; Tabo, R.; Yanda, P. Climate change: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. J. Environ. Qual. 2007, 37, 433–467. [Google Scholar]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R.; Wörman, A. Climate Change Impact on Agricultural Water Resources Variability in the Northern Highlands of Ethiopia. In Nile River Basin; Springer: Dordrecht, The Netherlands, 2011; pp. 241–265. [Google Scholar] [CrossRef]
- Mimura, N.; Pulwarty, R.S.; Elshinnawy, I.; Redsteer, M.H.; Huang, H.Q.; Nkem, J.N.; Rodriguez, R.A.S.; Moss, R.; Vergara, W.; Darby, L.S. Adaptation planning and implementation. In Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2015; pp. 869–898. [Google Scholar]
- Gebre, S.; Tadele, K.; Mariam, B. Potential impacts of climate change on the hydrology and water resources availability of Didessa Catchment, Blue Nile River Basin, Ethiopia. J. Geol. Geosci. 2015, 4, 193. [Google Scholar] [CrossRef]
- Viste, E.; Korecha, D.; Sorteberg, A. Recent drought and precipitation tendencies in Ethiopia. Theor. Appl. Climatol. 2013, 112, 535–551. [Google Scholar] [CrossRef] [Green Version]
- Liou, Y.-A.; Mulualem, G.M. Spatio–temporal Assessment of Drought in Ethiopia and the Impact of Recent Intense Droughts. Remote Sens. 2019, 11, 1828. [Google Scholar] [CrossRef] [Green Version]
- Ayele, H.S.; Li, M.-H.; Tung, C.-P.; Liu, T.-M. Impact of Climate Change on Runoff in the Gilgel Abbay Watershed, the Upper Blue Nile Basin, Ethiopia. Water 2016, 8, 380. [Google Scholar] [CrossRef] [Green Version]
- Aragie, E.A. Climate Change, Growth and Poverty in Ethiopia. The Robert S. 2013. Available online: https://www.files.ethz.ch/isn/165446/ccaps%20working%20paper%20no.%203.pdf (accessed on 5 November 2021).
- IPCC. The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2011; pp. 2–15. [Google Scholar]
- Amsalu, A.; Adem, A. Assessment of Climate Change-Induced Hazards, Impacts and Responses in the Southern Lowlands of Ethiopia; Forum for Social Studies (FSS): Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Girmay, G.; Moges, A.; Muluneh, A. Assessment of Current and Future Climate Change Impact on Soil Loss Rate of Agewmariam Watershed, Northern Ethiopia. Air Soil Water Res. 2021, 14, 117862212199584. [Google Scholar] [CrossRef]
- Taye, M.T.; Dyer, E.; Hirpa, F.A.; Charles, K. Climate Change Impact on Water Resources in the Awash Basin, Ethiopia. Water 2018, 10, 1560. [Google Scholar] [CrossRef] [Green Version]
- Enyew, B.; Van Lanen, H.; Van Loon, A. Assessment of the impact of climate change on hydrological drought in Lake Tana catchment, Blue Nile basin, Ethiopia. J. Geol. Geosci. 2014, 3, 174. [Google Scholar]
- Tadese, M.; Kumar, L.; Koech, R. Long-Term Variability in Potential Evapotranspiration, Water Availability and Drought under Climate Change Scenarios in the Awash River Basin, Ethiopia. Atmosphere 2020, 11, 883. [Google Scholar] [CrossRef]
- Abebe, E.; Kebede, A. Assessment of climate change impacts on the water resources of megech river catchment, Abbay Basin, Ethiopia. OJMH 2017, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Roth, V.; Lemann, T.; Zeleke, G.; Subhatu, A.T.; Nigussie, T.K.; Hurni, H. Effects of climate change on water resources in the upper Blue Nile Basin of Ethiopia. Heliyon 2018, 4, e00771. [Google Scholar] [CrossRef] [Green Version]
- Worqlul, A.W.; Dile, Y.T.; Ayana, E.K.; Jeong, J.; Adem, A.A.; Gerik, T. Impact of Climate Change on Streamflow Hydrology in Headwater Catchments of the Upper Blue Nile Basin, Ethiopia. Water 2018, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Dile, Y.T.; Berndtsson, R.; Setegn, S.G. Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin—Upper Blue Nile Basin of Ethiopia. PLoS ONE 2013, 8, e79296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andargachew, M.; Fantahun, A.; Melke, A.; Abegaz, F. Impact of climate change on hydrological responses of Gumara catchment, in the Lake Tana Basin—Upper Blue Nile Basin of Ethiopia. Int. J. Water Resour. Environ. Eng. 2017, 9, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.; Cherie, N. SWAT modeling of the impact of future climate change on the hydrology and the water resources in the upper Blue Nile River basin, Ethiopia. In Proceedings of the 6th International Conference on Water Resources and Environment Research, ICWRER, Koblenz, Germany, 3–8 June 2013; pp. 488–523. [Google Scholar]
- Mulu, G.F.; Moges, M.A.; Bihonegn, B.G. Evaluating the Impacts of Climate Change on the Stream Flow Events in Range of Scale of Watersheds, in the Upper Blue Nile Basin. In Proceedings of the International Conference on Advances of Science and Technology, Bahir Dar, Ethiopia, 2–4 August 2019; pp. 169–192. [Google Scholar]
- Beyene, T.; Lettenmaier, D.P.; Kabat, P. Hydrologic impacts of climate change on the Nile River Basin: Implications of the 2007 IPCC scenarios. Clim. Chang. 2009, 100, 433–461. [Google Scholar] [CrossRef]
- Menna, B.Y. Simulation of Hydro Climatological Impacts Caused by Climate Change: The Case of Hare Watershed, Southern Rift Valley of Ethiopia. J. Waste Water Treat. Anal. 2017, 8, 276. [Google Scholar] [CrossRef]
- Musie, M.; Sen, S.; Srivastava, P. Application of CORDEX-AFRICA and NEX-GDDP datasets for hydrologic projections under climate change in Lake Ziway sub-basin, Ethiopia. J. Hydrol. Reg. Stud. 2020, 31, 100721. [Google Scholar] [CrossRef]
- Molla, D.D.; Tegaye, T.A.; Fletcher, C.G. Simulated surface and shallow groundwater resources in the Abaya-Chamo Lake basin, Ethiopia using a spatially-distributed water balance model. J. Hydrol. Reg. Stud. 2019, 24, 100615. [Google Scholar] [CrossRef]
- Hussen, B.; Mekonnen, A.; Pingale, S.M. Integrated water resources management under climate change scenarios in the sub-basin of Abaya-Chamo, Ethiopia. Model. Earth Syst. Environ. 2018, 4, 221–240. [Google Scholar] [CrossRef]
- Wodaje, G.G.; Eshetu, Z.; Argaw, M. Temporal and spatial variability of rainfall distribution and evapotranspiration across altitudinal gradient in the Bilate River Watershed, Southern Ethiopia. J. AJEST 2016, 10, 167–180. [Google Scholar]
- Tekle, A. Assessment of climate change impact on water availability of Bilate watershed, Ethiopian Rift Valley Basin. In Proceedings of the AFRICON 2015, Addis Ababa, Ethiopia, 14–17 September 2015; pp. 1–5. [Google Scholar]
- Girma, M.M.A.; Seleshi, B. Irrigation Practices in Ethiopia: Characteristics of Selected Irrigation Schemes; IWMI: Addis Ababa, Ethiopia, 2007; Volume 124. [Google Scholar]
- Alemseged, T.H.; Tom, R. Evaluation of regional climate model simulations of rainfall over the Upper Blue Nile basin. Atmos. Res. 2015, 161, 57–64. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 2011, 109, 33. [Google Scholar] [CrossRef] [Green Version]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef] [Green Version]
- van Huijgevoort, M.H.J.; Hazenberg, P.; van Lanen, H.A.J.; Uijlenhoet, R. A generic method for hydrological drought identification across different climate regions. Hydrol. Earth Syst. Sci. 2012, 16, 2437–2451. [Google Scholar] [CrossRef] [Green Version]
- Dalezios, N.R.; Blanta, A.; Spyropoulos, N.V.; Tarquis, A.M. Risk identification of agricultural drought for sustainable Agroecosystems. Nat. Hazards Earth Syst. Sci. 2014, 14, 2435–2448. [Google Scholar] [CrossRef] [Green Version]
- Dogan, S.; Berktay, A.; Singh, V.P. Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey. J. Hydrol. 2012, 470, 255–268. [Google Scholar] [CrossRef]
- Bayissa, Y.; Maskey, S.; Tadesse, T.; Van Andel, S.J.; Moges, S.A.; Van Griensven, A.; Solomatine, D. Comparison of the Performance of Six Drought Indices in Characterizing Historical Drought for the Upper Blue Nile Basin, Ethiopia. Geosciences 2018, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Zargar, A.; Sadiq, R.; Naser, G.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. In The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Jain, V.K.; Pandey, R.P.; Jain, M.; Byun, H.-R. Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather Clim. Extrem. 2015, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI). Water Resour. Manag. 2006, 21, 821–833. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2008, 23, 881–897. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. The drought indices calculator (DrinC). In Proceedings of the 8th International Conference of EWRA: Water Resources Management in an Interdisciplinary and Changing Context, Porto, Portugal, 26–29 June 2013. [Google Scholar]
- Abraham, T.; Liu, Y.; Tekleab, S.; Hartmann, A. Quantifying the regional water balance of the Ethiopian Rift Valley Lake basin using an uncertainty estimation framework. J. Hydrol. Earth Syst. Sci. Discuss. 2021, 2021, 1–25. [Google Scholar]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil and Water Assessment Tool (SWAT) Theoretical Documentation, Version 2005; Grassland Soil and Water Research Laboratory: Temple, TX, USA, 2005; Available online: https://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed on 7 September 2021).
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. J. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Abraham, L.Z.; Roehrig, J.; Chekol, D.A. Climate Change Impact on Lake Ziway Watershed Water Availability, Ethiopia; Institute for Technology in the Tropics, University of Applied Science: Cologne, Germany, 2006. [Google Scholar]
- Gadissa, T.; Nyadawa, M.; Behulu, F.; Mutua, B. The Effect of Climate Change on Loss of Lake Volume: Case of Sedimentation in Central Rift Valley Basin, Ethiopia. Hydrology 2018, 5, 67. [Google Scholar] [CrossRef] [Green Version]
- Elias, G.; Gebeyehu, E. Impact of climate change on Lake Chamo Water Balance, Ethiopia. Int. J. Water Resour. Environ. Eng. 2017, 9, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Bekele, D.; Alamirew, T.; Kebede, A.; Zeleke, G.; Melesse, A.M. Modeling Climate Change Impact on the Hydrology of Keleta Watershed in the Awash River Basin, Ethiopia. Environ. Model. Assess. 2018, 24, 95–107. [Google Scholar] [CrossRef]
- Getahun, Y.S.; Li, M.-H.; Chen, P.-Y. Assessing Impact of Climate Change on Hydrology of Melka Kuntrie Subbasin, Ethiopia with Ar4 and Ar5 Projections. Water 2020, 12, 1308. [Google Scholar] [CrossRef]
- Thiemann, S.; Förch, G. Water resources assessment in the Bilate river catchment-precipitation variability. In Proceedings of the Lake Abaya Research Symposium, Arba Minch, Ethiopia, 4–7 June 2005; pp. 53–78. [Google Scholar]
- Wagesho, N. Catchment dynamics and its impact on runoff generation: Coupling watershed modelling and statistical analysis to detect catchment responses. Int. J. Water Resour. Environ. Eng. 2014, 6, 73–87. [Google Scholar]
- Wolde-Georgis, T.; Aweke, D.; Hagos, Y. The Case of Ethiopia Reducing the Impacts of Environmental Emergencies through Early Warning and Preparedness: The Case of the 1997–98 El Niño; National Meteorological Service Agency (NMSA): Addis Ababa, Ethiopia, 2000; pp. 1–73.
- Land and Water Development Division—FAO, UNESCO Digital Soil Map of the World and Derived Soil Properties; FAO: Rome, Italy, 2003.
- Lin, W.; Chou, W.; Lin, C.; Huang, P.; Tsai, J. WinBasin: Using improved algorithms and the GIS technique for automated watershed modelling analysis from digital elevation models. Int. J. Geogr. Inf. Sci. 2008, 22, 47–69. [Google Scholar] [CrossRef]
- Imran, R.M.; Rehman, A.; Khan, M.M.; Jamil, M.R.; Abbas, U.; Mahmood, R.S.; Mahmood, S.A.; Haq, E.U.; Ehsan, R.M. Delineation of Drainage Network and Estimation of Total Discharge using Digital Elevation Model (DEM). Int. J. Innov. Sci. Technol. 2019, 1, 50–61. [Google Scholar] [CrossRef]
- Tewabe, D.; Fentahun, T. Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia. Cogent Environ. Sci. 2020, 6, 1778998. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Bray, M.; Islam, T. Selection of classification techniques for land use/land cover change investigation. Adv. Space Res. 2012, 50, 1250–1265. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. large area hydrologic modeling and assessment part i: Odel development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H. Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island Watersheds. Sustainability 2018, 10, 2057. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liang, Z.; Liu, T.; Yang, J. Impact of Climate Change on Hydrologic Extremes in the Upper Basin of the Yellow River Basin of China. Adv. Meteorol. 2016, 2016, 1404290. [Google Scholar] [CrossRef]
- Sharannya, T.; Mudbhatkal, A.; Mahesha, A. Assessing climate change impacts on river hydrology–A case study in the Western Ghats of India. J. Earth Syst. Sci. 2018, 127, 78. [Google Scholar] [CrossRef] [Green Version]
- Troin, M.; Caya, D.; Velázquez, J.A.; Brissette, F. Hydrological response to dynamical downscaling of climate model outputs: A case study for western and eastern snowmelt-dominated Canada catchments. J. Hydrol. Reg. Stud. 2015, 4, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE Appl. Eng. 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, R.H.; Hjelmfelt, A.T., Jr.; Zevenbergen, A.W. Runoff probability, storm depth, and curve numbers. J. Irrig. Drain. Eng. 1985, 111, 330–340. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage; Paper 56; ARPAV (2000), La Caratterizzazione Climatica della Regione Veneto, Quaderni per; FAO–Food and Agriculture Organisation of the United Nations: Rome, Italy, 2000; Available online: http://www.fao.org/docrep (accessed on 15 September 2021).
- Kaviya, B. Runoff estimation using swat model in brahmani-baitarani river basin. Int. J. Biot. Trends Technol. 2013, 3, 1–16. [Google Scholar]
- Wodaje, G.G.; Asfaw, Z.E.; Denboba, M.A. Impacts and uncertainties of climate change on stream flow of the Bilate River (Ethiopia), using a CMIP5 general circulation models ensemble. IJWREE 2021, 13, 64–75. [Google Scholar]
- Abbaspour, K.C. SWAT Calibration Uncertainty Program User Manual; Swiss Federal Institute of Aquatic Science and Technology, Eawag Zurich: Dübendorf, Switzerland, 2013; pp. 1–100. [Google Scholar]
- Cibin, R.; Sudheer, K.P.; Chaubey, I. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrol. Process. 2010, 24, 1133–1148. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT Calibration and Uncertainty Programs: A User Manual; Swiss Federal Institute of Aquatic Science and Technology, Eawag Zurich: Dübendorf, Switzerland, 2008; Volume 20, pp. 1–100. [Google Scholar]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Shope, C.L.; Maharjan, G.R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y.S.; Peiffer, S.; et al. Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea. Hydrol. Earth Syst. Sci. 2014, 18, 539–557. [Google Scholar] [CrossRef] [Green Version]
- Tegegne, G.; Park, D.K.; Kim, Y.-O. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. J. Hydrol. Reg. Stud. 2017, 14, 49–66. [Google Scholar] [CrossRef]
- Golmohammadi, G.; Prasher, S.; Madani, A.; Rudra, R. Evaluating Three Hydrological Distributed Watershed Models: MIKE-SHE, APEX, SWAT. Hydrology 2014, 1, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Brands, S.; Herrera, S.; Fernández, J.; Gutiérrez, J.M. How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? J. Clim. Dyn. 2013, 41, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Christensen, O.B.; Déqué, M.; Fernandez, J.; Hänsler, A.; et al. Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef] [Green Version]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Clim. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Raneesh, K.; Thampi, S. Bias correction for RCM predictions of precipitation and temperature in the Chaliyar River Basin. J. WAF 2013, 1, 1–6. [Google Scholar]
- Svoboda, M.D.; Fuchs, B.A. Handbook of Drought Indicators and Indices; World Meteorological Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Karamouz, M.; Rasouli, K.; Nazif, S. Development of a Hybrid Index for Drought Prediction: Case Study. J. Hydrol. Eng. 2009, 14, 617–627. [Google Scholar] [CrossRef]
- Kirono, D.G.; Round, V.; Heady, C.; Chiew, F.H.; Osbrough, S. Drought projections for Australia: Updated results and analysis of model simulations. J. Weather Clim. Extremes 2020, 30, 100280. [Google Scholar] [CrossRef]
- Musonda, B.; Jing, Y.; Iyakaremye, V.; Ojara, M. Analysis of long-term variations of drought characteristics using standardized precipitation index over Zambia. J. Atmos. 2020, 11, 1268. [Google Scholar] [CrossRef]
- Edossa, D.C.; Babel, M.S.; Das Gupta, A. Drought analysis in the Awash river basin, Ethiopia. J. Water Resour. Manag. 2010, 24, 1441–1460. [Google Scholar] [CrossRef]
- Tabari, H.; Abghari, H.; Hosseinzadeh Talaee, P. Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. J. Hydrol. Process 2011, 26, 3351–3361. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. Inform. 2014, 8, 697–709. [Google Scholar] [CrossRef]
- Tapoglou, E.; Vozinaki, A.E.; Tsanis, I. Climate change impact on the frequency of hydrometeorological extremes in the island of crete. J. Water 2019, 11, 587. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Zhang, Y.; Ren, X.; Yao, Y.; Hao, Z.; Cai, W. Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China. J. Nat. Hazards 2018, 92, 155–172. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A.; et al. Global patterns of drought recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef]
- Suryabhagavan, K.V. GIS-based climate variability and drought characterization in Ethiopia over three decades. Weather Clim. Extrem. 2017, 15, 11–23. [Google Scholar] [CrossRef]
- Thompson, S.A. Hydrology for Water Management; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Edwards, D.R.; Yu, Y.; Hamidisepehr, A. An assessment of climate change impacts on future water availability and droughts in the Kentucky River Basin. J. Environ. Process. 2017, 4, 477–507. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Hosseini-Moghari, S.; Liu, X.; Gebremicael, T.G.; Leng, G.; Kebede, A.; Xu, X.; Yun, X. Projected Impacts of Climate Change on Drought Patterns Over East Africa. Earth’s Futur. 2020, 8, e2020EF001502. [Google Scholar] [CrossRef]
- Santos, J.F.; Portela, M.M.; Pulido-Calvo, I. Regional Frequency Analysis of Droughts in Portugal. Water Resour. Manag. 2011, 25, 3537–3558. [Google Scholar] [CrossRef]
- Griggs, D.J.; Noguer, M. Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather 2002, 57, 267–269. [Google Scholar] [CrossRef]
- Karl, T.R.; Jones, P.D.; Knight, R.W.; Kukla, G.; Plummer, N.; Razuvayev, V.; Gallo, K.P.; Lindseay, J.; Charlson, R.J.; Peterson, T.C. Asymmetric trends of daily maximum and minimum temperature. J. Nat.Resour. 1993, 185. [Google Scholar]
- Horton, B. Geographical distribution of changes in maximum and minimum temperatures. Atmos. Res. 1995, 37, 101–117. [Google Scholar] [CrossRef]
- Ali, M.A.S.; Noresah, M.S.; Sanjay, G.; Saad, A.M.A.; Shariff, N.M.; Gairola, S. Nature and causes of land degradation and desertification in Libya: Need for sustainable land management. Afr. J. Biotechnol. 2011, 10, 13680–13687. [Google Scholar] [CrossRef] [Green Version]
- Osborne, C.P.; Chuine, I.; Viner, D.; Woodward, F.I. Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ. 2000, 23, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Giri, S.; Mishra, A.; Zhang, Z.; Lathrop, R.G.; Alnahit, A.Q. Meteorological and Hydrological Drought Analysis and Its Impact on Water Quality and Stream Integrity. Sustainability 2021, 13, 8175. [Google Scholar] [CrossRef]
- Rajsekhar, D.; Gorelick, S.M. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow. Sci. Adv. 2017, 3, e1700581. [Google Scholar] [CrossRef] [Green Version]
- Nam, W.-H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Ukkola, A.M.; De Kauwe, M.G.; Roderick, M.L.; Abramowitz, G.; Pitman, A.J. Robust Future Changes in Meteorological Drought in CMIP6 Projections Despite Uncertainty in Precipitation. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Blanco-Gómez, P.; Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J. Impact of Climate Change on Water Balance Components and Droughts in the Guajoyo River Basin (El Salvador). Water 2019, 11, 2360. [Google Scholar] [CrossRef] [Green Version]
- Dawson, B.; Spannagle, M. Ethiopia’s Second National Communication to the United Nations Framework Convention on Climate Change (UNFCCC); Ministry of Environment and Forest (MEF): Addis Ababa, Ethiopia, 2015; pp. 1–235.
- Abraham, T.; Woldemicheala, A.; Muluneha, A.; Abateb, B. Hydrological responses of climate change on Lake Ziway catchment, Central Rift Valley of Ethiopia. J. Earth Sci. Clim. Change 2018, 9, 2. [Google Scholar]
- Chaemiso, S.E.; Abebe, A.; Pingale, S.M. Assessment of the impact of climate change on surface hydrological processes using SWAT: A case study of Omo-Gibe river basin, Ethiopia. Model. Earth Syst. Environ. 2016, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Modelling hydrological processes under climate change scenarios in the Jemma sub-basin of upper Blue Nile Basin, Ethiopia. Clim. Risk Manag. 2021, 31, 100272. [Google Scholar] [CrossRef]
- Kueh, M.-T.; Lin, C.Y.; Chuang, Y.-J.; Sheng, Y.-F.; Chien, Y.-Y. Climate variability of heat waves and their associated diurnal temperature range variations in Taiwan. Environ. Res. Lett. 2017, 12, 074017. [Google Scholar] [CrossRef]
- Sunoj, V.S.J.; Prasad, P.V.V.; Ciampitti, I.A.; Maswada, H.F. Narrowing Diurnal Temperature Amplitude Alters Carbon Tradeoff and Reduces Growth in C4 Crop Sorghum. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef]
- Rahman, A.; Kang, S.; Nagabhatla, N.; MacNee, R. Impacts of temperature and rainfall variation on rice productivity in major ecosystems of Bangladesh. Agric. Food Secur. 2017, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.; Fournet, S.; Krysanova, V.; Müller, E.N.; et al. Comparing impacts of climate change on streamflow in four large African river basins. Hydrol. Earth Syst. Sci. 2014, 18, 1305–1321. [Google Scholar] [CrossRef] [Green Version]
- Mohseni Saravi, M.; Safdari, A.; Malekian, A. Intensity-Duration-Frequency and spatial analysis of droughts using the Standardized Precipitation Index. J. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 1347–1383. [Google Scholar]
- Moloro, T.L. Spatio-Temporal Analysis of Rainfall Variability and Meteorological Drought: A Case Study in Bilate River Basin, Southern Rift Valley, Ethiopia. Int. J. Environ. Sci. Nat. Resour. 2018, 14, 76–89. [Google Scholar] [CrossRef]
- Regasa, M.; Nones, M.; Adeba, D. A Review on Land Use and Land Cover Change in Ethiopian Basins. Land 2021, 10, 585. [Google Scholar] [CrossRef]
- Biazin, B.; Sterk, G. Drought vulnerability drives land-use and land cover changes in the Rift Valley dry lands of Ethiopia. Agric. Ecosyst. Environ. 2013, 164, 100–113. [Google Scholar] [CrossRef]
- Gebretekle, H.; Nigusse, A.G.; Demissie, B. Stream flow dynamics under current and future land cover conditions in Atsela Watershed, Northern Ethiopia. J. Acta Geophys. 2021, 1–14. [Google Scholar] [CrossRef]
- Taye, M.; Sahlu, D.; Zaitchik, B.F.; Neka, M. Evaluation of Satellite Rainfall Estimates for Meteorological Drought Analysis over the Upper Blue Nile Basin, Ethiopia. Geosciences 2020, 10, 352. [Google Scholar] [CrossRef]
- Khadr, M. Temporal and spatial analysis of meteorological drought characteristics in the upper Blue Nile river region. Water Policy 2016, 48, 265–276. [Google Scholar] [CrossRef]
- Zhai, J.; Mondal, S.K.; Fischer, T.; Wang, Y.; Su, B.; Huang, J.; Tao, H.; Wang, G.; Ullah, W.; Uddin, J. Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmos. Res. 2020, 246, 105111. [Google Scholar] [CrossRef]
- Mekonen, A.A.; Berlie, A.B.; Ferede, M.B. Spatial and temporal drought incidence analysis in the northeastern highlands of Ethiopia. Geoenviron. Disasters 2020, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Cai, H.; Jiang, T.; Sun, S.; Wang, Y.; Zhao, J.; Yu, X.; Sun, J. Assessment of global drought propensity and its impacts on agricultural water use in future climate scenarios. Agric. For. Meteorol. 2019, 278, 107623. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. WIREs Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2012, 3, 52–58. [Google Scholar] [CrossRef]
Modeling Center (Group) | GCM Name | Short Name |
---|---|---|
Canadian Centre for Climate Modelling and Analysis | CCCma-CanESM2 | CanESM2 |
Institut Pierre-Simon Laplace, France | IPSL-IPSL-CM5A-MR | IPSL-CM5A-MR |
National Institute for Environmental Studies and Japan Agency for Marine-earth Science and Technology (MIROC), Japan | MIROC-MIROC5 | MIROC5 |
Commonwealth Scientific and Industrial Research Organization | CSIRO-MK3-6-0 | CSIRO |
Max Planck Institute for Meteorology, Germany | MPI-M-MPI-ESM-LR | MPI-ESM-LR |
Climate Model | Baseline | RCP4.5 | RCP8.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021–2050 | 2071–2100 | 2021–2050 | 2071–2100 | ||||||||||||
SPI | SDI | RDI | SPI | SDI | RDI | SPI | SDI | RDI | SPI | SDI | RDI | SPI | SDI | RDI | |
MPI-ESM-LR | 6.8 | 9.3 | 8.3 | 7.6 | 10.0 | 9.2 | 7.1 | 9.6 | 8.8 | 7.8 | 10.7 | 9.7 | 8.0 | 10.0 | 9.0 |
MIROC5 | 5.2 | 8.3 | 5.3 | 5.9 | 9.6 | 5.8 | 6.3 | 8.9 | 7.4 | 6.7 | 10.1 | 8.4 | 7.6 | 9.4 | 7.8 |
IPSL-CM5A-MR | 7.3 | 7.7 | 6.8 | 9.1 | 9.7 | 8.8 | 8.8 | 8.7 | 8.5 | 9.4 | 10.3 | 8.7 | 8.9 | 9.3 | 9.3 |
CSIRO | 7.0 | 8.0 | 6.3 | 9.0 | 9.3 | 8.6 | 8.5 | 8.4 | 8.2 | 9.8 | 9.5 | 9.3 | 9.1 | 8.8 | 9.0 |
CanESM2 | 7.4 | 8.3 | 7.9 | 9.0 | 9.5 | 10.2 | 8.4 | 9.0 | 9.1 | 9.0 | 10.0 | 10.1 | 8.8 | 9.2 | 9.6 |
Average | 6.74 | 8.32 | 6.92 | 8.12 | 9.62 | 8.52 | 7.82 | 8.92 | 8.4 | 8.54 | 10.12 | 9.24 | 8.48 | 9.34 | 8.94 |
Climate Model | Baseline | RCP4.5 | RCP8.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021–2050 | 2071–2100 | 2021–2050 | 2071–2100 | ||||||||||||
SPI | SDI | RDI | SPI | SDI | RDI | SPI | SDI | RDI | SPI | SDI | RDI | SPI | SDI | RDI | |
MPI-ESM-LR | −8.1 | −11.1 | −9.5 | −9.2 | −12.7 | −11.6 | −10.8 | −14.1 | −13.6 | −10.3 | −13.3 | −13.3 | −12.8 | −15.1 | −14.3 |
MIROC5 | −7.0 | −9.1 | −7.1 | −8.3 | −11.4 | −8.0 | −10.2 | −12.6 | −12.1 | −9.6 | −12.1 | −11.7 | −12.8 | −14.6 | −13.4 |
IPSL-CM5A-MR | −8.4 | −9.4 | −9.0 | −11.4 | −12.6 | −12.8 | −15.2 | −14.8 | −15.2 | −14.4 | −14.1 | −14.4 | −16.0 | −16.0 | −17.0 |
CSIRO | −8.6 | −10.2 | −9.1 | −11.9 | −12.8 | −12.0 | −14.7 | −14.1 | −14.1 | −13.7 | −13.4 | −13.6 | −16.4 | −15.6 | −16.6 |
CanESM2 | −8.5 | −9.3 | −9.1 | −12.1 | −11.5 | −12.9 | −13.4 | −13.2 | −14.0 | −12.7 | −12.4 | −13.2 | −15.1 | −14.1 | −15.5 |
Average | −8.1 | −9.8 | −8.8 | −10.6 | −12.2 | −11.5 | −12.9 | −13.8 | −13.8 | −12.1 | −13.1 | −13.2 | −14.6 | −15.1 | −15.4 |
Climate Model | Baseline | RCP 4.5 | RCP 8.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021–2050 | 2071–2100 | 2021–2050 | 2071–2100 | ||||||||||||
SPI | SDI | RDI | SPI | SDI | RDI | SPI | SDI | RDI | SPI | SDI | RDI | SPI | SDI | RDI | |
MPI-ESM-LR | −1.18 | −1.19 | −1.15 | −1.21 | −1.24 | −1.27 | −1.53 | −1.48 | −1.55 | −1.33 | −1.24 | −1.37 | −1.60 | −1.50 | −1.58 |
MIROC5 | −1.35 | −1.09 | −1.34 | −1.39 | −1.18 | −1.38 | −1.61 | −1.42 | −1.62 | −1.45 | −1.20 | −1.39 | −1.69 | −1.56 | −1.72 |
IPSL-CM5A-MR | −1.15 | −1.22 | −1.32 | −1.25 | −1.30 | −1.45 | −1.73 | −1.70 | −1.78 | −1.54 | −1.38 | −1.66 | −1.81 | −1.73 | −1.82 |
CSIRO | −1.23 | −1.27 | −1.45 | −1.32 | −1.37 | −1.39 | −1.72 | −1.69 | −1.76 | −1.40 | −1.42 | −1.45 | −1.82 | −1.77 | −1.84 |
CanESM2 | −1.15 | −1.12 | −1.15 | −1.36 | −1.21 | −1.26 | −1.60 | −1.48 | −1.53 | −1.40 | −1.24 | −1.32 | −1.72 | −1.54 | −1.62 |
Average | −1.21 | −1.18 | −1.28 | −1.31 | −1.26 | −1.35 | −1.64 | −1.55 | −1.65 | −1.42 | −1.30 | −1.44 | −1.73 | −1.62 | −1.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orke, Y.A.; Li, M.-H. Impact of Climate Change on Hydrometeorology and Droughts in the Bilate Watershed, Ethiopia. Water 2022, 14, 729. https://doi.org/10.3390/w14050729
Orke YA, Li M-H. Impact of Climate Change on Hydrometeorology and Droughts in the Bilate Watershed, Ethiopia. Water. 2022; 14(5):729. https://doi.org/10.3390/w14050729
Chicago/Turabian StyleOrke, Yoseph Arba, and Ming-Hsu Li. 2022. "Impact of Climate Change on Hydrometeorology and Droughts in the Bilate Watershed, Ethiopia" Water 14, no. 5: 729. https://doi.org/10.3390/w14050729
APA StyleOrke, Y. A., & Li, M. -H. (2022). Impact of Climate Change on Hydrometeorology and Droughts in the Bilate Watershed, Ethiopia. Water, 14(5), 729. https://doi.org/10.3390/w14050729