The Potential of Oxygenates to Increase the Risk of Exposure to Polycyclic Aromatic Hydrocarbons through Groundwater Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leaching Columns
2.2. Gas Chromatography-Mass Spectrometry Analysis of Leachates
3. Results and Discussion
3.1. Effect of Ethanol on the Leaching of Polycyclic Aromatic Hydrocarbons
3.2. Implications for Groundwater Quality and Exposure Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USA Goverment. 42 U.S. Code. In Air Pollution Prevention and Control; United States Government: Washington, DC, USA, 2013; Chapter 85. [Google Scholar]
- RFA. Accelerating Industry Innovation: 2012 Ethanol Industry Outlook; Renewable Fuels Association: St. Louis, MO, USA, 2012. [Google Scholar]
- Stephanes, R. Ordinance No. 143 of 27 June 2007; Ministry of Agriculture, Livestock and Supply: Brasilia, Brazil, 2007.
- Cassuto, D.N.; Gueiros, C.; Cassuto, D.N.; Gueiros, C. The Evolution of the Brazilian Regulation of Ethanol and Possible Lessons for the United States. Wis. Int. Law J. 2013, 30, 477. [Google Scholar]
- Oddone, D.; Amaral, A.; Kury, F.; Cecchi, J.C.; Amorelli, D. Fuel Production and Supply Opportunities in Brazil; National Agency of Petroleum, Natural Gas and Biofuels: Rio de Janeiro, Brazil, 2017.
- Inal, F.; Senkan, S.M. Effects of oxygenate additives on polycyclic aromatic hydrocarbons(pahs) and soot formation. Combust. Sci. Technol. 2002, 174, 1–19. [Google Scholar] [CrossRef]
- Golea, D.; Rezgui, Y.; Guemini, M.; Hamdane, S. Reduction of PAH and Soot Precursors in Benzene Flames by Addition of Ethanol. J. Phys. Chem. A 2012, 116, 3625–3642. [Google Scholar] [CrossRef] [PubMed]
- Dandajeh, A.H.; Talibi, M.; Ladommatos, N.; Hellier, P. Influence of Combustion Characteristics and Fuel Composition on Exhaust PAHs in a Compression Ignition Engine. Energies 2019, 12, 2575. [Google Scholar] [CrossRef] [Green Version]
- Corseuil, H.X.; Kaipper, B.I.A.; Fernandes, M. Cosolvency effect in subsurface systems contaminated with petroleum hydrocarbons and ethanol. Water Res. 2004, 38, 1449–1456. [Google Scholar] [CrossRef]
- Alvarez, P.J.; Hunt, C.S. The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation. Rev. Latinoam. Microbiol. 2002, 44, 83–104. [Google Scholar]
- Powers, S.E.; Hunt, C.S.; Heermann, S.E.; Corseuil, H.X.; Rice, D.; Alvarez, P.J.J. The transport and fate of ethanol and BTEX in groundwater contaminated by gasohol. Crit. Rev. Environ. Sci. Technol. 2001, 31, 79–123. [Google Scholar] [CrossRef]
- Lovanh, N.; Hunt, C.S.; Alvarez, P.J.J. Effect of ethanol on BTEX biodegradation kinetics: Aerobic continuous culture experiments. Water Res. 2002, 36, 3739–3746. [Google Scholar] [CrossRef]
- Snape, I.; Harvey, P.M.; Ferguson, S.H.; Rayner, J.L.; Revill, A.T. Investigation of evaporation and biodegradation of fuel spills in Antarctica I. A chemical approach using GC–FID. Chemosphere 2005, 61, 1485–1494. [Google Scholar] [CrossRef]
- Wang, Z.; Fingas, M.; Blenkinsopp, S.; Sergy, G.; Landriault, M.; Sigouin, L.; Foght, J.; Semple, K.; Westlake, D.W.S. Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J. Chromatogr. A 1998, 809, 89–107. [Google Scholar] [CrossRef]
- Freitas, J.G.; Mocanu, M.T.; Zoby, J.L.G.; Molson, J.W.; Barker, J.F. Migration and fate of ethanol-enhanced gasoline in groundwater: A modelling analysis of a field experiment. J. Contam. Hydrol. 2011, 119, 25–43. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.J.; Peake, E.; Mohtadi, M.F. Oil spills on land as potential sources of groundwater contamination. Environ. Int. 1980, 3, 107–120. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Ochonogor, A. Groundwater contamination by polycyclic aromatic hydrocarbon due to diesel spill from a telecom base station in a Nigerian City: Assessment of human health risk exposure. Environ. Monit. Assess. 2018, 190, 249. [Google Scholar] [CrossRef] [PubMed]
- Brindha, K.; Elango, L. PAHs contamination in groundwater from a part of metropolitan city, India: A study based on sampling over a 10-year period. Environ. Earth Sci. 2014, 71, 5113–5120. [Google Scholar] [CrossRef]
- Ndimele, P.E.; Saba, A.O.; Ojo, D.O.; Ndimele, C.C.; Anetekhai, M.A.; Erondu, E.S. Remediation of Crude Oil Spillage. In The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem; Ndimele, P.E., Ed.; Academic Press: Cambridge, MA, USA, 2018; Chapter 24; pp. 369–384. [Google Scholar] [CrossRef]
- IARC. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2002; Volume 82. [Google Scholar]
- IARC. Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42. In IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1987; Supplement 7. [Google Scholar]
- Jeffrey Lewis, R. Naphthalene animal carcinogenicity and human relevancy: Overview of industries with naphthalene-containing streams. Regul. Toxicol. Pharmacol. 2012, 62, 131–137. [Google Scholar] [CrossRef]
- LaVoie, E.J.; Bedenko, V.; Tulley-Freller, L.; Hoffmann, D. Tumor-initiating activity and metabolism of polymethylated phenanthrenes. Cancer Res. 1982, 42, 4045. [Google Scholar]
- Engst, W.; Landsiedel, R.; Hermersdörfer, H.; Doehmer, J.; Glatt, H. Benzylic hydroxylation of 1-methylpyrene and 1-ethylpyrene by human and rat cytochromes P450 individually expressed in V79 Chinese hamster cells. Carcinogenesis 1999, 20, 1777–1785. [Google Scholar] [CrossRef]
- Bendadani, C.; Meinl, W.; Monien, B.H.; Dobbernack, G.; Glatt, H. The carcinogen 1-methylpyrene forms benzylic DNA adducts in mouse and rat tissues in vivo via a reactive sulphuric acid ester. Arch. Toxicol. 2014, 88, 815–821. [Google Scholar] [CrossRef]
- Bendadani, C.; Steinhauser, L.; Albert, K.; Glatt, H.; Monien, B.H. Metabolism and excretion of 1-hydroxymethylpyrene, the proximate metabolite of the carcinogen 1-methylpyrene, in rats. Toxicology 2016, 366–367, 43–52. [Google Scholar] [CrossRef]
- Margitfalvi, J.L.; Gőbölös, S.; Tálas, E.; Borbáth, I. 33—Modification of Pt-Re/Al2O3 Naphtha Reforming Catalysts by Tin Tetraethyl Using Controlled Surface Reaction to Reduce the Yield of Benzene and Aromatics. In Studies in Surface Science and Catalysis; Eguchi, K., Machida, M., Yamanaka, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 172, pp. 177–180. [Google Scholar]
- Corma, A.; Martínez, A. Zeolites in Refining and Petrochemistry. In Studies in Surface Science and Catalysis; Ĉejka, J., van Bekkum, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 157, pp. 337–366. [Google Scholar]
- Moreno, J.A.; Poncelet, G. n-Butane Isomerization over Al-Promoted Sulfated Zirconias. Influence of the Sulfate Content. In Studies in Surface Science and Catalysis; Gaigneaux, E., De Vos, D.E., Grange, P., Jacobs, P.A., Martens, J.A., Ruiz, P., Poncelet, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 143, pp. 1003–1010. [Google Scholar]
- Eze, M.O.; George, S.C. Ethanol-blended petroleum fuels: Implications of co-solvency for phytotechnologies. RSC Adv. 2020, 10, 6473–6481. [Google Scholar] [CrossRef]
- USEPA. Separatory Funnel Liquid-Liquid Extraction; Method 3510C; United States Environmental Protection Agency: Washington, DC, USA, 1996.
- Al-Baldawi, I.A.; Abdullah, S.R.S.; Anuar, N.; Suja, F.; Mushrifah, I. Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol. Eng. 2015, 74, 463–473. [Google Scholar] [CrossRef]
- USEPA. Semivolatile Organic Compounds by GC/MS; Method 8270D; United States Environmental Protection Agency: Washington, DC, USA, 1998.
- Flannery, E.N.; George, S.C. Assessing the syngeneity and indigeneity of hydrocarbons in the ~1.4Ga Velkerri Formation, McArthur Basin, using slice experiments. Org. Geochem. 2014, 77, 115–125. [Google Scholar] [CrossRef]
- Gerdes, K.R.; Suppes, G.J. Miscibility of Ethanol in Diesel Fuels. Ind. Eng. Chem. Res. 2001, 40, 949–956. [Google Scholar] [CrossRef]
- Adam, G.; Gamoh, K.; Morris, D.G.; Duncan, H. Effect of alcohol addition on the movement of petroleum hydrocarbon fuels in soil. Sci. Total Environ. 2002, 286, 15–25. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, J.E.; Tiemann, M. MTBE in Gasoline: Clean Air and Drinking Water Issues; Congressional Research Service, The Library of Congress: Washington, DC, USA, 2004; Available online: https://digitalcommons.unl.edu/crsdocs/26/ (accessed on 4 February 2022).
Trimethylnaphthalenes | E5 | E10 | C2 Alkylphenanthrenes | E5 | E10 |
---|---|---|---|---|---|
1,3,7-TMN | 2.6 | 84.3 | 9 + 2 + 1-EP + 3,6-DMP | 6.2 | 97.7 |
1,3,6-TMN | 2.4 | 81.7 | 3,5 + 2,6-DMP | 7.7 | 98.7 |
1,3,5 + 1,4,6-TMN | 2.6 | 85.7 | 2,7-DMP | 4.3 | 86.0 |
2,3,6-TMN | 2.6 | 86.1 | 1,3 + 3,9 + 3,10 + 2,10-DMP | 7.6 | 95.2 |
1,2,7-TMN | 1.5 | 98.1 | 1,6 + 2,9 + 2,5-DMP | 5.1 | 70.7 |
1,6,7-TMN | 2.9 | 96.4 | 1,7-DMP | 5.2 | 81.9 |
1,2,6-TMN | 2.7 | 99.0 | 2,3 + 1,9 + 4,9 + 4,10-DMP | ND | 98.3 |
1,2,4-TMN | ND | 97.8 | |||
1,2,5-TMN | ND | 96.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eze, M.O.; George, S.C. The Potential of Oxygenates to Increase the Risk of Exposure to Polycyclic Aromatic Hydrocarbons through Groundwater Contamination. Water 2022, 14, 739. https://doi.org/10.3390/w14050739
Eze MO, George SC. The Potential of Oxygenates to Increase the Risk of Exposure to Polycyclic Aromatic Hydrocarbons through Groundwater Contamination. Water. 2022; 14(5):739. https://doi.org/10.3390/w14050739
Chicago/Turabian StyleEze, Michael O., and Simon C. George. 2022. "The Potential of Oxygenates to Increase the Risk of Exposure to Polycyclic Aromatic Hydrocarbons through Groundwater Contamination" Water 14, no. 5: 739. https://doi.org/10.3390/w14050739
APA StyleEze, M. O., & George, S. C. (2022). The Potential of Oxygenates to Increase the Risk of Exposure to Polycyclic Aromatic Hydrocarbons through Groundwater Contamination. Water, 14(5), 739. https://doi.org/10.3390/w14050739