Modeling and Risk Analysis of Dam-Break Flooding in a Semi-Arid Montane Watershed: A Case Study of the Yabous Dam, Northeastern Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dam Characteristics
2.1.1. Geographic Location and Dam Characteristics
2.1.2. Aspect and Slope Features
2.1.3. Relief and Hydrographic Network
2.2. Data Collection, Processing, and Modeling Approach
2.2.1. Data Processing
2.2.2. Dam Dimensions
2.2.3. Flood History
2.2.4. Geometric Data
2.2.5. Geological/Geotechnical Data
2.2.6. Hydraulic Data
2.3. HEC-RAS Flood Model
2.3.1. One-Dimensional HEC-RAS Modeling
2.3.2. Dam Break Scenario
2.3.3. Estimation of Dam Breach Parameters
2.4. Other Consistency Tests
3. Results
3.1. Estimate of Dam Breach Parameters
3.1.1. Breach Width
3.1.2. Breach Time
3.1.3. Flow Peak
3.2. Analysis of Dam-Breach Flood Scenario
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Derdous, O.; Djemili, L.; Bouchehed, H.; Tachi, S.E. A GIS based approach for the prediction of the dam break flood hazard—A case study of Zardezas reservoir—Skikda, Algeria. J. Water Land Dev. 2015, 27, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Boussekine, M.; Djemili, L. Modelling approach for gravity dam break analysis. J. Water Land Dev. 2016, 30, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Berghout, A.; Meddi, M. Sediment transport modelling in Wadi Chemora during flood flow events. J. Water Land Dev. 2016, 31, 23–31. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.; Wu, C.; Dong, J.; Ma, X.; Song, J. Semi-analytical model for predicting peak discharge of dam-break flood. Hydrol. Processes 2016, 30, 3682–3691. [Google Scholar] [CrossRef]
- Luino, F.; Tosatti, G.; Bonaria, V. Dam Failures in the 20th Century: Nearly 1000 Avoidable victims in Italy Alone. J. Environ. Sci. Eng. 2014, 3, 19–31. [Google Scholar]
- Gaagai, A.; Boudoukha, A.; Benaabidate, L. Failure simulation of Babar dam—Algeria and its impact on the valley downstream section. J. Water Land Dev. 2020, 44, 75–89. [Google Scholar] [CrossRef]
- Negm, A.; Bouderbala, A.; Chenchouni, H.; Barcelo, D. Water Resources in Algeria—Part I: Assessment of Surface and Groundwater; The Handbook of Environmental Chemistry Series; Springer: Cham, Germany, 2020. [Google Scholar] [CrossRef]
- Schreider, S.Y.; Smith, D.I.; Jakeman, A.J. Climate Change Impacts on Urban Flooding. Clim. Change 2000, 47, 91–115. [Google Scholar] [CrossRef]
- Nassopoulos, H.; Dumas, P.; Hallegatte, S. Adaptation to an uncertain climate change: Cost benefit analysis and robust decision making for dam dimensioning. Clim. Change 2012, 114, 497–508. [Google Scholar] [CrossRef]
- Arar, A.; Chenchouni, H. How could geomatics promote our knowledge for environmental management in Eastern Algeria. J. Environ. Sci. Technol. 2012, 5, 291–305. [Google Scholar] [CrossRef] [Green Version]
- ShahiriParsa, A.; Noori, M.; Heydari, M.; Rashidi, M. Floodplain zoning simulation by using HEC-RAS and CCHE2D models in the Sungai Maka river. Air Soil Water Res. 2016, 9, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Gaagai, A. Etude de L’évolution de la Qualité des Eaux du Barrage de Babar (Sud-Est Algérien) et L’impact de la Rupture de la Digue sur L’environnement. Ph.D. Thesis, University of Batna 2, Batna, Algeria, 2017. [Google Scholar] [CrossRef]
- Fluixá-Sanmartín, J.; Morales-Torres, A.; Escuder-Bueno, I.; Paredes-Arquiola, J. Quantification of climate change impact on dam failure risk under hydrological scenarios: A case study from a Spanish dam. Nat. Hazards Earth Syst. Sci. 2019, 19, 2117–2139. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.S.; You, G.J.Y. An assessment of long-term overtopping risk and optimal termination time of dam under climate change. J. Environ. Manag. 2013, 121, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.W.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.J.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Delenne, C.; Cappelaere, B.; Guinot, V. Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations, Reliab. Eng. Syst. Saf. 2012, 107, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Dias, D.; Pan, Q. Probabilistic stability analysis of an embankment dam considering soil spatial variability. Comput. Geotech. 2019, 113, 93–103. [Google Scholar] [CrossRef]
- Singh, V.P.; Scarlatos, P.D. Analysis of Gradual Earth-Dam Failure. J. Hydraul. Eng. 1988, 114, 21–42. [Google Scholar] [CrossRef]
- Israa, D.A.; Qassem, H.J.; Jasim, M.A. Sensitivity Analysis for Dam Breach Parameters Using Different Approaches for Hamrin Dam. Diyala J. Eng. Sci. 2021, 14, 90–97. [Google Scholar] [CrossRef]
- Pektas, A.O.; Erdik, T. Peak discharge prediction due to embankment dam break by using sensitivity analysis-based ANN. KSCE J. Civ. Eng. 2014, 18, 1868–1876. [Google Scholar] [CrossRef]
- Xanthopoulos, T.; Koutitas, C. Numerical simulation of two-dimensional flood wave propagation due to dam failure. J. Hydraul. Res. 1976, 14, 321–331. [Google Scholar] [CrossRef]
- Hervouet, J.M. A high-resolution 2-D dam-break model using parallelization. Hydrol. Processes 2000, 14, 2211–2230. [Google Scholar] [CrossRef]
- Wahl, T.L. Uncertainty of predictions of embankment dam breach parameters. J. Hydraul. Eng. 2004, 130, 389. [Google Scholar] [CrossRef]
- Sadrolashrafi, S.S.; Thamer, A.M.; Ahmad, R.B.M.; MajidK, K.; Amir, S. Integrated modeling for flood hazard mapping using watershed modeling system. Am. J. Eng. Appl. Sci. 2008, 1, 149–156. [Google Scholar] [CrossRef]
- Mao, J.; Wang, S.; Ni, J.; Xi, C.; Wang, J. Management System for Dam-Break Hazard Mapping in a Complex Basin Environment. ISPRS Int. J. Geo-Inf. 2017, 6, 162. [Google Scholar] [CrossRef] [Green Version]
- Gee, M.; Brunner, G. Dam Break Flood Routing Using HEC-RAS and NWS-FLDWAV Conference. World Water Environ. Resour. Congr. 2005, 3, 6. [Google Scholar] [CrossRef]
- Albu, L.M.; Enea, A.; Iosub, M.; Breabăn, L.G. Dam breach size comparison for flood simulations. A HEC-RAS based, gis approach for Drăcșani Lake, Sitna River, Romania. Water 2020, 12, 1090. [Google Scholar] [CrossRef]
- Hafnaoui, M.A.; Madi, M.; Hachemi, A.; Farhi, Y. El Bayadh city against flash floods: Case study. Urban Water J. 2020, 17, 390–395. [Google Scholar] [CrossRef]
- Tamm, O.; Tamm, T. Verification of a robust method for sizing and siting the small hydropower run-of-river plant potential by using GIS. Renew. Energy 2020, 155, 153–159. [Google Scholar] [CrossRef]
- Oudni, A.; Dinar, H. Caractérisation Géologique et Géotechnique de la Cuvette du Barrage Tagharist. Master’s Thesis, University of Oum El Bouaghi, Oum El Bouaghi, Algeria, 2016. [Google Scholar]
- Chenchouni, H. Statuts de protection et de conservation des oiseaux recensés dans les Aurès et ses alentours (nord-est algérien). In Actes du Séminaire International sur la Biodiversité Faunistique en Zones Arides et Semi-Arides; Ouargla University: Ouargla, Algeria, 2010; pp. 56–75. [Google Scholar]
- USACE. HEC-RAS Version 4.1 [Hydraulic Reference Manual]; Army Corps of Engineers Hydrologic Engineering Center, U.S. Army Corps of Engineers: Davis, CA, USA, 2008; Available online: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Applications_Guide_March2008.pdf (accessed on 13 January 2022).
- Hu, H.H.; Walton, R. Advanced guidance on use of steady HEC-RAS. World Environ. Water Resour. Congr. 2008, 4, 12–16. [Google Scholar] [CrossRef]
- Haltas, I.; Tayfur, G.; Elci, S. Two-dimensional numerical modeling of flood wave propagation in an urban area due to Urkmez dam-break, Izmir, Turkey. Nat. Hazards 2016, 81, 2103–2119. [Google Scholar] [CrossRef] [Green Version]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Brunner, G.W. HEC-RAS: River Analysis System User’s Manual Version 5.0. 2016. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Reference%20Manual.pdf (accessed on 12 January 2022).
- Zellou, B.; Rahali, H. Assessment of reduced-complexity landscape evolution model suitability to adequately simulate flood events in complex flow conditions. Nat. Hazards 2016, 86, 1–29. [Google Scholar] [CrossRef]
- Zainalfikry, M.K.; Ab Ghani, A.; Zakaria, N.A.; Chan, N.W. HEC-RAS One-Dimensional Hydrodynamic Modelling for Recent Major Flood Events in Pahang River. In Proceedings of AICCE’19; Mohamed Nazri, F., Ed.; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2020; Volume 53. [Google Scholar] [CrossRef]
- Vozinaki, A.E.K.; Morianou, G.G.; Alexakis, D.D.; Tsanis, I.K. Comparing 1D and combined 1D/2D hydraulic simulations using high resolution topographic data a case study of the Koiliaris basin. Greece Hydrol. Sci. J. 2016, 62, 642–646. [Google Scholar] [CrossRef]
- Ahmad, B.; Hassan, Z.A. Flood map of Tupai River using combined 1D and 2D modelling. In Proceedings of the 3rd International Conference on Managing Rivers in the 21st Century: Sustainable Solutions for Global Crisis of Flooding, Pollution and Water Scarcity, Penang, Malaysia, 6–9 December 2011. [Google Scholar]
- Leow, C.S.; Abdullah, R.; Zakaria, N.A.; Ghani, A.; Chang, C.K. Modelling urban river catchment: A case study in Malaysia. Proc. Inst. Civ. Eng. Water Manag. 2008, 162, 25–34. [Google Scholar] [CrossRef]
- Dasallas, L.; Kim, Y.; An, H. Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water 2019, 11, 2048. [Google Scholar] [CrossRef] [Green Version]
- Brunner, G. HEC-RAS River Analysis System Hydraulic Reference Manual Version 5.0; USACE CEC: Davis, CA, USA, 2016. [Google Scholar]
- Horritt, M.; Bates, P. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 2002, 268, 87–99. [Google Scholar] [CrossRef]
- Timbadiya, P.V.; Patel, P.L.; Porey, P.D. One-dimensional hydrodynamic modelling of flooding and stage hydrographs in the lower Tapi River in India. Curr. Sci. 2014, 106, 708–716. [Google Scholar]
- Pramanik, N.; Panda, R.K.; Sen, D. One dimensional hydrodynamic modeling of river flow using DEM extracted river cross-sections. J. Water Resour. Manag. 2010, 24, 835–852. [Google Scholar] [CrossRef]
- Patel, S.B.; Mehta, D.J.; Yadav, S.M. One dimensional hydrodynamic flood modeling for Ambica River, South Gujarat. J. Emerg. Technol. Innov. Res. 2018, 5, 595–601. [Google Scholar]
- Kostecki, S.; Banasiak, R. The Catastrophe of the Niedów Dam—The Causes of the Dam’s Breach, Its Development, and Consequences. Water 2021, 13, 3254. [Google Scholar] [CrossRef]
- Yerramilli, S. Potential Impact of Climate Changes on the Inundation Risk Levels in a Dam Break Scenario. ISPRS Int. J. Geo-Inf. 2013, 2, 110–134. [Google Scholar] [CrossRef]
- Brunner, G.W. Using HEC-RAS for Dam Break Studies. 2014. Available online: https://www.hec.usace.army.mil/publications (accessed on 2 February 2020).
- Mihu-Pintilie, A.; Cîmpianu, C.I.; Stoleriu, C.C.; Pérez, M.N.; Paveluc, L.E. Using High-Density LiDAR Data and 2D Streamflow Hydraulic Modeling to Improve Urban Flood Hazard Maps: A HEC-RAS Multi-Scenario Approach. Water 2019, 11, 1832. [Google Scholar] [CrossRef] [Green Version]
- Menéndez-Pidal, I.; Martín, J.A.H.; Alonso-Muñoyerro, J.M.; Sanz, E. Real-Time Data and Flood Forecasting in Tagus Basin. A Case Study: Rosarito and El Burguillo Reservoirs from 8–12 March 2018. Water 2020, 12, 1004. [Google Scholar] [CrossRef] [Green Version]
- Arseni, M.; Rosu, A.; Calmuc, M.; Calmuc, V.; Iticescu, C.; Georgescu, L.P. Development of Flood Risk and Hazard Maps for the Lower Course of the Siret River, Romania. Sustainability 2020, 12, 6588. [Google Scholar] [CrossRef]
- Urziča, A.; Mihu-Pintilie, A.; Stoleriu, C.C.; Cîmpianu, C.I.; Hu¸tanu, E.; Pricop, C.I.; Grozavu, A. Using 2D HEC-RAS Modeling and Embankment Dam Break Scenario for Assessing the Flood Control Capacity of a MultiReservoir System (NE Romania). Water 2021, 13, 57. [Google Scholar] [CrossRef]
- Sammen, S.S.; Mohamed, T.A.; Ghazali, A.H.; Sidek, L.M.; El-Shafie, A. An evaluation of existent methods for estimation of embankment dam breach parameters. Nat. Hazards 2017, 87, 545–566. [Google Scholar] [CrossRef]
- MacDonald, T.C.; Langridge-Monopolis, J. Breaching characteristics of dam failures. J. Hydraul. Eng. 1984, 110, 567–586. [Google Scholar] [CrossRef]
- Von Thun, J.L.; Gillette, D.R. Guidance on Breach Parameters; Unpublished internal document; U.S. Bureau of Reclamation: Denver, CO, USA, 1990. [Google Scholar]
- Froehlich, D.C. Embankment dam breach parameters and their uncertainties. J. Hydraul. Eng. 2008, 134, 1708–1721. [Google Scholar] [CrossRef]
- Froehlich, D.C. Peak Outflow from Breached Embankment Dam. J. Water Resour. Plan. Manag. 1995, 121, 90–97. [Google Scholar] [CrossRef]
- Andreadakis, E.; Diakakis, M.; Vassilakis, E.; Deligiannakis, G.; Antoniadis, A.; Andriopoulos, P.; Spyrou, N.I.; Nikolopoulos, E.I. Unmanned Aerial Systems-Aided Post-Flood Peak Discharge Estimation in Ephemeral Streams. Remote Sens. 2020, 12, 4183. [Google Scholar] [CrossRef]
- Kastridis, A.; Theodosiou, G.; Fotiadis, G. Investigation of Flood Management and Mitigation Measures in Ungauged NATURA Protected Watersheds. Hydrology 2021, 8, 170. [Google Scholar] [CrossRef]
- Prettenthaler, F.; Amrusch, P.; Habsburg-Lothringen, C. Estimation of an absolute flood damage curve based on an Austrian case study under a dam breach Scenario. Nat. Hazards Earth Syst. Sci. 2010, 10, 881–894. [Google Scholar] [CrossRef]
- McMahon, G.F. Developing dam-break flood zone ordinance. J. Water Resour. Plan. Manag. Div. 1981, 1072, 461–476. [Google Scholar] [CrossRef]
- Core Team, R. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org. (accessed on 16 January 2022).
- Bellos, V.; Tsakiris, V.K.; Kopsiaftis, G.; Tsakiris, G. Propagating Dam Breach Parametric Uncertainty in a River Reach Using the HEC-RAS Software. Hydrology 2020, 7, 72. [Google Scholar] [CrossRef]
- Shahrim, M.F.; Ros, F.C. Estimation of breach outflow hydrograph using selected regression breach equations. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 012129. [Google Scholar] [CrossRef]
- Chanson, H. Application of the method of characteristics to the dam break wave problem. J. Hydraul. Res. 2009, 47, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Chen, Y.; Wu, C.; Peng, Y.; Ma, X.; Song, J. Analytical solution of dam-break flood wave propagation in a dry sloped channel with an irregular-shaped cross-section. J. Hydro-Environ. Res. 2017, 14, 93–104. [Google Scholar] [CrossRef]
- Gallegos, H.A.; Schubert, J.E.; Sanders, B.F. Structural damage prediction in a high-velocity urban dam-break flood: Field-scale assessment of predictive skill. J. Eng. Mech. 2012, 138, 1249–1262. [Google Scholar] [CrossRef]
- Gaagai, A.; Boudoukha, A.; Boumezbeur, A.; Benaabidate, L. Hydrochemical characterization of surface water in the Babar watershed (Algeria) using environmetric techniques and time series analysis. Int. J. River Basin Manag. 2017, 15, 361–372. [Google Scholar] [CrossRef]
- Tamm, T.; Noges, T.; Jarvet, A.; Bouraoui, F. Contributions of DOC from Surface and Groundflow into Lake Vortsjarv (Estonia). Hydrobiologia 2008, 599, 213–220. [Google Scholar] [CrossRef]
- Aouissi, H.A.; Ababsa, M.; Gaagai, A.; Bouslama, Z.; Farhi, Y.; Chenchouni, H. Does melanin-based plumage coloration reflect health status of free-living birds in urban environments? Avian Res. 2021, 12, 45. [Google Scholar] [CrossRef]
- Aouissi, H.A.; Petrişor, A.I.; Ababsa, M.; Boştenaru-Dan, M.; Tourki, M.; Bouslama, Z. Influence of Land Use on Avian Diversity in North African Urban Environments. Land 2021, 10, 434. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Goulart, F.F.; Ranieri, B.D.; Coelho, M.S.; Dales, K.; Boesche, N.; Bustamante, M.; Carvalho, F.A.; Carvalho, D.C.; Dirzo, R.; et al. Ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Nat. Conserv. 2016, 14, 35–45. [Google Scholar] [CrossRef]
- Leigh, C.; Bush, A.; Harrison, E.T.; Ho, S.S.; Luke, L.; Rolls, R.J.; Ledger, M.E. Ecological effects of extreme climatic events on riverine ecosystems: Insights from A ustralia. Freshw. Biol. 2015, 60, 2620–2638. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, S.; Kong, X.; Zheng, W.; Feng, W.; Zhang, X.; Yuan, R.; Song, X.; Sprenger, M. Interaction of Surface Water and Groundwater Influenced by Groundwater Over-Extraction, Waste Water Discharge and Water Transfer in Xiong’an New Area, China. Water 2019, 11, 539. [Google Scholar] [CrossRef] [Green Version]
- Bastos, R.F.; Lippi, D.L.; Gaspar, A.L.B.; Yogui, G.T.; Frédou, T.; Garcia, A.M.; Ferreira, B.P. Ontogeny drives allochthonous trophic support of snappers: Seascape connectivity along the mangrove-seagrass-coral reef continuum of a tropical marine protected area. Estuar. Coast. Shelf Sci. 2022, 264, 107591. [Google Scholar] [CrossRef]
- Gholizadeh, M. Effects of floods on macroinvertebrate communities in the Zarin Gol River of northern Iran: Implications for water quality monitoring and biological assessment. Ecol. Processes 2021, 10, 46. [Google Scholar] [CrossRef]
- Čuda, J.; Rumlerová, Z.; Brůna, J.; Skálová, H.; Pyšek, P. Floods affect the abundance of invasive Impatiens glandulifera and its spread from river corridors. Divers. Distrib. 2017, 23, 342–354. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; FitzGerald, G.J.; Clark, M.; Hou, X.Y. Health impacts of floods. Prehospital Disaster Med. 2010, 25, 265–272. [Google Scholar] [CrossRef]
- Ahern, M.; Kovats, R.S.; Wilkinson, P.; Few, R.; Matthies, F. Global health impacts of floods: Epidemiologic evidence. Epidemiol. Rev. 2005, 27, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Hatje, V.; Pedreira, R.M.; de Rezende, C.E.; Schettini, C.A.F.; de Souza, G.C.; Marin, D.C.; Hackspacher, P.C. The environmental impacts of one of the largest tailing dam failures worldwide. Sci. Rep. 2017, 7, 10706. [Google Scholar] [CrossRef]
- Xiong, Y. A Dam Break Analysis Using HEC-RAS. J. Water Resour. Prot. 2011, 3, 370–379. [Google Scholar] [CrossRef]
- Dewals, B.; Erpicum, S.; Detrembleur, S.; Archambeau, P.; Pirotton, M. Failure of dams arranged in series or in complex. Nat. Hazards 2011, 56, 917–939. [Google Scholar] [CrossRef] [Green Version]
- Bencedira, S.; Bechiri, O. Degradation of fuchsine acid using the HP2W15Mo3Co2.5O62, 20H2O/H2O2 system: Effect of organic and inorganic additives. Euro-Mediterr. J. Environ. Integr. 2021, 6, 60. [Google Scholar] [CrossRef]
- Clague, J.J.; Evans, S.G. A Review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat. Sci. Rev. 2000, 19, 1763–1783. [Google Scholar] [CrossRef]
- Al-Riffai, M.; Nistor, I. Impact and analysis of geotechnical processes on earth fill dam breaching. Nat. Hazards 2010, 55, 15–27. [Google Scholar] [CrossRef]
- Al-Riffai, M.; Nistor, I.; Vanapalli, S.K.; Orendorff, B. Overtopping of earth embankments: Sensitivity analysis on dam breach parameters using two numerical models. In Proceedings of the 60th Canadian Geotechnical Conference, Ottawa, ON, Canada, 21–24 October 2007; pp. 1213–1220. [Google Scholar]
- Minguez, R.; Delgado, F.; Escuder, I.; de Membrillera, M.G. Reliability assessment of granular filters in embankment dams. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 1019–1037. [Google Scholar] [CrossRef]
- Zhang, L.; Gelet, R.; Marot, D.; Smith, M.; Konrad, J.M. A method to assess the suffusion susceptibility of low permeability core soils in compacted dams based on construction data. Eur. J. Environ. Civ. Eng. 2018, 23, 626–644. [Google Scholar] [CrossRef]
- Zhong, Q.M.; Chen, I.S.S.; Mei, I.S.A.; Cao, I.W. Numerical simulation of landslide dam breaching due to overtopping. Landslides 2017, 8, 321–332. [Google Scholar] [CrossRef]
- Neilsen, M.L. Global sensitivity analysis of dam erosion models. In Proceedings of the 10th International Conference on Scientific Computing, Las Vegas, NV, USA, 22–25 July 2013. [Google Scholar]
- Singh, K.P.; Snorrason, A. Sensitivity of outflow peaks and flood stages to the selection of dam breach parameters and simulation models. J. Hydrol. 1984, 68, 295–310. [Google Scholar] [CrossRef]
- Dewals, B.J.; Archambeau, P.; Erpicum, S.; Detrembleur, S.; Pirotton, M. Sensitivity analysis of the peak outflow induced by the breaching of embankment dams. In Proceedings of the 14th German Dam Symposium & 7th ICOLD European Club Dam Symposium, Munich, Germany, 17–19 September 2007; Rutschmann, P., Ed.; Technische Universität München: Munich, Germany, 2007; pp. 86–92. [Google Scholar]
Prediction Methods for Dam Breach Parameters | Flow Parameters | |||
---|---|---|---|---|
Width (m) | Slope | Flood Time (h) | Q (m3/s) | |
Macdonald and Langridge-Monopolis (1984) | 14 | 0.5 | 1.10 | 4400.2 |
Von Thun and Gillete (1990) | 54 | 0.5 | 0.47 | 8767.9 |
Froehlich (1995) | 26 | 1.4 | 0.42 | 7841.1 |
Froehlich (2008) | 26 | 1.0 | 0.40 | 7363.0 |
Sites | |||||||
---|---|---|---|---|---|---|---|
Flood Parameters | S1 | S2 | S3 | S4 | S5 | S6 | S7 |
Flood wave parameters | 17,945 | 17,207 | 16,590 | 14,546 | 14,461 | 2877 | 2480 |
Maximum flow ‘Q’ (m3/s) | 8767.87 | 3603.6 | 3732.47 | 2427.49 | 1579.2 | 3265.5 | 3752.6 |
Minimum main channel elevation (m) | 1180.00 | 1153.46 | 1137.28 | 1100.65 | 1100.13 | 972.38 | 968.78 |
Water surface elevation (m) | 1194.05 | 1165.89 | 1146.97 | 1107.47 | 1106.98 | 974.17 | 970.44 |
Energy grade line elevation (m) | 1223.87 | 1181.42 | 1155.62 | 1109.45 | 1107.72 | 974.33 | 970.58 |
Energy grade line slope (m/m) | 0.043532 | 0.046506 | 0.036115 | 0.014848 | 0.007767 | 0.009170 | 0.007981 |
Velocity (m/s) | 38.57 | 30.98 | 22.34 | 11.23 | 7.78 | 3.38 | 3.09 |
Surface (m2) | 990.72 | 1394.43 | 1757.35 | 1102.46 | 1139.24 | 2598.03 | 2560.41 |
Width (m) | 129.96 | 213.85 | 357.17 | 354.88 | 312.54 | 2088.05 | 1376.86 |
Height (m) | 14.05 | 12.43 | 9.69 | 6.82 | 6.85 | 1.79 | 1.66 |
Froude Number | 2.75 | 2.84 | 2.38 | 1.44 | 1.01 | 0.89 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaagai, A.; Aouissi, H.A.; Krauklis, A.E.; Burlakovs, J.; Athamena, A.; Zekker, I.; Boudoukha, A.; Benaabidate, L.; Chenchouni, H. Modeling and Risk Analysis of Dam-Break Flooding in a Semi-Arid Montane Watershed: A Case Study of the Yabous Dam, Northeastern Algeria. Water 2022, 14, 767. https://doi.org/10.3390/w14050767
Gaagai A, Aouissi HA, Krauklis AE, Burlakovs J, Athamena A, Zekker I, Boudoukha A, Benaabidate L, Chenchouni H. Modeling and Risk Analysis of Dam-Break Flooding in a Semi-Arid Montane Watershed: A Case Study of the Yabous Dam, Northeastern Algeria. Water. 2022; 14(5):767. https://doi.org/10.3390/w14050767
Chicago/Turabian StyleGaagai, Aissam, Hani Amir Aouissi, Andrey E. Krauklis, Juris Burlakovs, Ali Athamena, Ivar Zekker, Abderrahmane Boudoukha, Lahcen Benaabidate, and Haroun Chenchouni. 2022. "Modeling and Risk Analysis of Dam-Break Flooding in a Semi-Arid Montane Watershed: A Case Study of the Yabous Dam, Northeastern Algeria" Water 14, no. 5: 767. https://doi.org/10.3390/w14050767
APA StyleGaagai, A., Aouissi, H. A., Krauklis, A. E., Burlakovs, J., Athamena, A., Zekker, I., Boudoukha, A., Benaabidate, L., & Chenchouni, H. (2022). Modeling and Risk Analysis of Dam-Break Flooding in a Semi-Arid Montane Watershed: A Case Study of the Yabous Dam, Northeastern Algeria. Water, 14(5), 767. https://doi.org/10.3390/w14050767