An Overview of Polymer-Supported Catalysts for Wastewater Treatment through Light-Driven Processes
Abstract
:1. Introduction
2. Polymer-Supported Photocatalysis Fundamentals
2.1. Reaction Mechanism
2.2. Photocatalysts
2.2.1. Titanium Dioxide
2.2.2. Zinc Oxide
2.2.3. Iron (III) Oxide
2.2.4. Tungsten Oxide
2.2.5. Strontium Titanate
2.3. Immobilization Techniques
2.3.1. Immobilization on the Surface
2.3.2. Immobilization in the Matrix
2.4. Operation Parameters Effect
2.4.1. Polymer Load
2.4.2. Photocatalyst Dosage
2.4.3. pH Value
2.4.4. Composite Load
2.4.5. Pollutant Concentration
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
TiO2/PDMS sponge | Sugar Template | [RhB]0 = {2.5, 5, 10} mg/L 71 μgTiO2/mg sponge 1000 W/m2 xenon lamp t = 1 h | [RhB]0 = 5 mg/L 80% removal (k = 0.027 min−1) | [63] |
C-TiO2/PDMS | Mixing | [RhB]0 = {4, 7, 10, 13, 16, 19} mg/L 500 W UV lamp pH = 3 t = 3 h | [RhB]0 = 13 mg/L 86% removal (k = 0.011 min−1) | [73] |
TiO2/PANI powder | In situ polymerization | [BPA]0 = {1, 5, 10, 15, 20, 30} ppm UV lamp pH = 10 t = 80 min | [BPA]0 = 5 ppm 99.7% removal (k = 0.046 min−1) | [67] |
ZnO/PANI powder | In situ polymerization | [MBZ]0 = {10, 20, 30, 40} mg/L 31 W/m2 UV lamp or 26.5 W/m2 xenon lamp pH = 7 t = 3 h ZnO/Aniline = 20 g/mL | [MBZ]0 = 10 mg/L 97% removal k = 0.025 min−1 for visible k = 0.034 min−1 for UV | [49] |
Ag-ZnO/PANI powder | In situ polymerization | [MG]0 = {0.1, 0.2, 0.3, 0.4, 0.5} g/L Visible light t = 120 min pH = 8 | [MG]0 = 0.2 g/L 98.6% removal (k = 0.036 min−1) | [72] |
Cu2O-ZnO/PANI powder | In situ polymerization | [CR]0 = {30, 50, 80} mg/L 100 W LED light Cu2O-ZnO/Aniline = 10 g/mL t = 30 min pH = 6 | [CR]0 = 30 mg/L 95% removal (k = 0.10 min−1) | [52] |
2.4.6. Radiation Source and Intensity
3. Recent Advances in Polymer-Supported Photocatalysis
- -
- -
- PVA, which possesses hydroxyl groups that form chemical bonds with the hydroxyl groups on the surface of inorganic nanoparticles [60];
- -
- PMDS, because it is constituted of Si-O bonds, which make it resistant to the photooxidative effect of TiO2, unlike polymers consisting of C-C bonds [82];
- -
- Plastic wastes, such as PET bottles and PET or polystyrene (PS) food containers, to revalue a residue [83].
3.1. PANI-Supported Photocatalysis
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
Ag-TiO2/PANI powder | In situ polymerization | [BPA]0 = 5 mg/L T = 25 °C 500 W halogen lamp or 400 W UV lamp t = 55 min for UV and 110 min for visible light irradiation Ag/TiO2 = 2 wt.% | BG = 3 eV 99.7% removal k = 0.034 min−1 for UV k = 0.0285 min−1 for visible light | [75] |
SiO2-TiO2/PANI powder | In situ polymerization | [MB]0 = 10 mg/L 9.2 wt.% PANI 100 W xenon lamp t = 90 min | BG = 3 eV 26% removal (k = 0.003 min−1) | [85] |
ZnO-TiO2/PANI powder | In situ polymerization | [P-Cresol]0 = 100 ppm 25 W UV lamp t = 6 h | 99% removal (k = 0.013 min−1) | [53] |
Ag-ZnO/PANI powder | In situ polymerization | [MG]0 = 200 mg/L Visible light pH = 8 t = 120 min | BG = 2.61 eV 98.6% removal (k = 0.036 min−1) | [72] |
Cu2O-ZnO/PANI powder | In situ polymerization | [CR]0 = 30 mg/L 100 W LED light Cu2O-ZnO/Aniline = 10 g/mL t = 30 min pH = 6 | BG = 2.68 eV 95% removal (k = 0.10 min−1) | [52] |
FeO-ZnO/PANI powder | In situ polymerization | [3-APh]0 = 10 mg/L Sunlight t = 120 min | BG = 1.8 eV 92% removal (k = 0.021 min−1) | [71] |
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
ZnO/PANI powder | In situ polymerization | [MB]0 = [MG]0 = 10−5 M 15 W UV lamp and solar irradiation t = 5 h for solar irradiation and 9 h for UV irradiation [DEG] = 1 M | Solar: 99% removal of both dyes (k = 0.015 min−1) UV: MB removal of 80% (k = 0.003 min−1) MG removal of 90% (k = 0.004 min−1) | [76] |
ZnO/PANI powder | In situ polymerization | [AB25]0 = 30 mg/L 17.6 wt.% PANI 450 W solar irradiation simulator pH = 7 t = 60 min [DEG] = {0.02, 0.024, 0.04} M | [DEG] = 0.04 M 89% removal (k = 0.037 min−1) | [86] |
3.2. PVA-Supported Photocatalysis
- (i)
- For MO degradation, excluding the effects of radiation, reactor configuration and geometry:
- -
- When a photocatalyst is immobilized by the hydrothermal method, if the TiO2:MO ratio is in the order of hundreds, low kinetic constants are achieved. Thus, it is preferable to use ratios in the order of tens;
- -
- To achieve similar kinetic constants, the immobilization of ZnO by the sol–gel procedure requires a smaller amount of photocatalyst to be introduced into the reaction medium. This configuration is followed by hydrothermal TiO2 immobilization and TiO2 immobilization by mixing.
- (ii)
- For MB degradation, excluding the effects of radiation, configuration, and reactor geometry, ZnO immobilization by the sol–gel procedure, when compared with TiO2 immobilization by mixing, yields higher kinetics, while using smaller amounts of photocatalyst;
- (iii)
- For the degradation of RhB, excluding the effects of radiation intensity and reactor geometry, the immobilization of ZnO by the sol–gel procedure yields higher reaction constants compared with the immobilization of TiO2 by mixing, when the same amount of photocatalyst is introduced into the reaction medium.
Pollutant | Composite | Immobilization Technique | Conditions Tested and Results | Reference |
---|---|---|---|---|
MO | TiO2/PVA film | Hydrothermal | 200 W dysprosium lamp 150 → 5.2 × 10−4 min−1 200 → 6.3 × 10−4 min−1 225 → 1.0 × 10−3 min−1 237.5 → 3.3 × 10−4 min−1 | [54] |
TiO2/PVA film | Hydrothermal | 600 W/m2 xenon lamp 2.22 → 1.83 × 10−2 min−1 4.44 → 3.22 × 10−2 min−1 6.66 → 4.61 × 10−2 min−1 8.88 → 5.99 × 10−2 min−1 | [48] | |
TiO2/PVA film | Mixing | 6 0.9 W/m2 UV lamp 66.6 → 1.50 × 10−2 min−1 | [60] | |
ZnO/PVA powder | Mixing | 400 kW/m2 mercury lamp 0.8 → 5.00 × 10−2 min−1 | [67] | |
ZnO/PVA powder | Sol–gel | 400 W halogen–mercury lamp 0.0095 → 8.87 × 10−3 min−1 0.0093 → 1.34 × 10−2 min−1 0.0090 → 1.81 × 10−3 min−1 | [56] | |
MB | TiO2/PVA film | Mixing | 4 × 10 W UV light 25 → 4.0 × 10−3 min−1 | [93] |
ZnO/PVA powder | Sol–gel | 400 W halogen–mercury lamp 0.0095 → 8.9 × 10−3 min−1 0.0093 → 1.3 × 10−2 min−1 0.0090 → 1.8 × 10−3 min−1 | [56] | |
RhB | TiO2/PVA film | Mixing | 18 W LED lamp 2 → 1.7 × 10−6 min−1 6 → 1.7 × 10−6 min−1 10 → 4.0 × 10−7 min−1 20 → 1.2 × 10−5 min−1 40 → 2.2 × 10−5 min−1 | [59] |
ZnO/PVA film | Sol–gel | 700 W/m2 tungsten-halogen Lamp 20.1 → 1.0 × 10−4 min−1 22.5 → 6.0 × 10−4 min−1 24.0 → 2.5 × 10−3 min−1 25.0 → 6.4 × 10−3 min−1 25.6 → 4.5 × 10−3 min−1 26.7 → 2.5 × 10−3 min−1 | [79] |
3.3. PDMS-Supported Photocatalysis
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
TiO2/PDMS hydrophilic film | Polymer Deposition | [MB]0 = 1 ppm 4 W UV lamp t = 60 min Tanneling = {700, 800, 1000} °C | Tanneling = 700 °C 70% removal (k = 0.02 min−1) Tanneling = 800 °C 90% removal (k = 0.038 min−1) Tanneling = 1000 °C 20% removal (k = 0.004 min−1) | [97] |
TiO2/PDMS hydrophilic film | Polymer Deposition | MB UV lamp 33 wt.% TiO2 t = 10 min Tdeposition = {180, 200, 250} °C Tanneling = 800 °C | Tdeposition = 180 °C 71% removal (k = 0.123 min−1) | [101] |
TiO2/PDMS hydrophobic film | Polymer Deposition | [ATTO]0 = 1 μg/L 26 W/m2 UV lamp t = 2 h Tanneling = 500 °C | 90% removal (k = 0.02 min−1) | [42] |
TiO2/PDMS super-hydrophobic coating | Mixing | [MB]0 = 0.01 m M Solar radiation 75 wt.% TiO2 t = 6 d Tcalcination = 120 °C | ~100% removal (k = 0.001 min−1) | [61] |
Oleic Acid 48 W mercury lamp 75 wt.% TiO2 t = 30 min | ~100% removal (k = 0.15 min−1) | |||
SiO2-TiO2/PDMS super-hydrophobic film | Mixing | MB UV lamp t = 30 min Tcalcination = {200, 300, 450} °C | Tcalcination = 200 °C ~100% removal (k = 0.30 min−1) | [85] |
ZnO/PDMS hydrophobic coatings | Mixing | [MB]0 = 10−5 M 6 x 42.8 W/m2 UV lamp t = 90 min | 25% removal (k = 0.015 min−1) | [100] |
ZnO/PDMS super-hydrophobic film | Polymer Deposition | [MB]0 = 12 mg/L 350 W xenon lamp t = 3 h | 99% removal (k = 0.026 min−1) | [99] |
N-ZnO/PDMS hydrophilic film | Polymer Deposition | [MB]0 = 1 ppm Blue LED 33 wt.% PDMS t = 4 h Theat treatment = 800 °C | 50% removal (k = 0.003 min−1) | [14] |
3.4. Plastic Waste as Supports
4. Process Limitations and Future Perspectives
- (i)
- Few studies have explored optimization of the process, regarding the characteristics of the material and the operating conditions, which is a complex subject because the optimal material composition is dependent on the polymer used, the immobilization technique applied, and the pollutant to be remove. However, regarding the radiation source and the pH value, it is of interest to investigate the effectiveness of the process under solar radiation and using the inherent pH of the effluent to minimize operating costs;
- (ii)
- To the best of our knowledge, no study has assessed the importance of the influence of variables on the process objective, to verify which should be controlled more strictly;
- (iii)
- As far as we are aware, no study has evaluated the influence that the immobilization technique has on the characteristics of the material and/or the degradation of the pollutant, and there is little information in the literature that allows this analysis to be carried out;
- (iv)
- To the best of our knowledge, studies that apply waste plastics as supports have only investigated dip-coating as an immobilization technique. Furthermore, PET bottles are usually utilized as reactors, which limits the scale-up ability;
- (v)
- Most studies have focused on the applicability of this process in the treatment of colored effluents, which become an obstacle to its efficiency, as they affect the capacity of the catalyst to absorb radiation;
- (vi)
- Few studies have evaluated the effect of adding other oxidizing agents (such as hydrogen peroxide) to the reaction medium, to promote an acceleration in the photocatalytic process;
- (vii)
- To the best of our knowledge, no study has evaluated the performance of the process in terms of the toxicity of the treated effluent;
- (viii)
- There are lacks in the literature regarding the applications of these materials in the photocatalytic oxidation of real wastewater, or complex mixtures. This is crucial to understand the material’s behavior under real water treatment conditions;
- (ix)
- The operation of these supported catalysts in continuous operation reactors at bench and pilot scale must be considered to elucidate their activity and stability during long-term operation;
- (x)
- Configuring the reactors to optimize the process using supported catalysts, bearing in mind mass transfer limitations as well as light penetration, should be considered.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Ismail, W.N.W.; Mokhtar, S.U. Various Methods for Removal, Treatment, and Detection of Emerging Water Contaminants. In Emerging Contaminants; Nuro, A., Ed.; InterOpen: London, UK, 2021; ISBN 978-1-83962-419-3. [Google Scholar]
- Rathi, B.S.; Kumar, P.S.; Show, P.-L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef] [PubMed]
- Dhangar, K.; Kumar, M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci. Total Environ. 2020, 738, 140320. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef]
- Gmurek, M.; Gomes, J.; Martins, R.C.; Quinta-Ferreira, R.M. Comparison of radical-driven technologies applied for paraben mixture degradation: Mechanism, biodegradability, toxicity and cost assessment. Environ. Sci. Pollut. Res. 2019, 26, 37174–37192. [Google Scholar] [CrossRef] [Green Version]
- Oturan, M.A.; Aaron, J.-J. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Summerfelt, S.T. Ozonation and UV irradiation—An introduction and examples of current applications. Aquac. Eng. 2003, 28, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Zakria, H.S.; Othman, M.H.D.; Kamaludin, R.; Kadir, S.H.S.A.; Kurniawan, T.A.; Jilani, A. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity. RSC Adv. 2021, 11, 6985–7014. [Google Scholar] [CrossRef]
- Singh, S.; Mahalingam, H.; Singh, P.K. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl. Catal. A Gen. 2013, 462–463, 178–195. [Google Scholar] [CrossRef]
- Bagheri, S.; Julkapli, N.M.; Hamid, S.B.A. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis. Sci. World J. 2014, 2014, 727496. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Jyothi, M.S.; Raghu, A.V.; Sadhu, V.; Naveen, S.; Aminabhavi, T.M. Nanocarbons-Supported and Polymers-Supported Titanium Dioxide Nanostructures as Efficient Photocatalysts for Remediation of Contaminated Wastewater and Hydrogen Production. In Environmental Chemistry for a Sustainable World–Nanophotocatalysis and Environmental Applications; Inamuddin, Asiri, A.M., Lichtfouse, E., Eds.; Springer: New York, NY, USA, 2020; Volume 30, pp. 139–169. ISBN 978-3-030-12619-3. [Google Scholar]
- Montallana, A.D.S.; Lai, B.-Z.; Chu, J.P.; Vasquez, M.R., Jr. Enhancement of photodegradation efficiency of PVA/TiO2 nanofiber composites via plasma treatment. Mater. Today Commun. 2020, 24, 101183. [Google Scholar] [CrossRef]
- Park, E.J.; Jeong, B.; Jeong, M.-G.; Kim, Y.D. Synergetic effects of hydrophilic surface modification and N-doping for visible light response on photocatalytic activity of TiO2. Curr. Appl. Phys. 2014, 14, 300–305. [Google Scholar] [CrossRef]
- Tran, V.V.; Nu, T.T.V.; Jung, H.-R.; Chang, M. Advanced Photocatalysts Based on Conducting Polymer/Metal Oxide Composites for Environmental Applications. Polymers 2021, 13, 3031. [Google Scholar] [CrossRef] [PubMed]
- Teoh, W.Y.; Scott, J.A.; Amal, R. Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. J. Phys. Chem. Lett. 2012, 3, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Riaz, U.; Ashraf, S.; Kashyap, J. Enhancement of photocatalytic properties of transitional metal oxides using conducting polymers: A mini review. Mater. Res. Bull. 2015, 71, 75–90. [Google Scholar] [CrossRef]
- Hitam, C.; Jalil, A. A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. J. Environ. Manag. 2020, 258, 110050. [Google Scholar] [CrossRef]
- Mishra, M.; Chun, D.M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015, 498, 126–141. [Google Scholar] [CrossRef]
- Shahrodin, N.S.M.; Jaaafar, J.; Rahmat, A.R.; Yusof, N.; Othman, M.H.D.; Rahman, M.A. Superparamagnetic Iron Oxide as Photocatalyst and Adsorbent in Wastewater Treatment—A Review. Micro Nanosyst. 2020, 12, 4–22. [Google Scholar] [CrossRef]
- Can, F.; Courtois, X.; Duprez, D. Tungsten-Based Catalysts for Environmental Applications. Catalysts 2021, 11, 703. [Google Scholar] [CrossRef]
- Diehl, R.; Brandt, G.; Saije, E. The crystal structure of triclinic WO3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1978, 34, 1105–1111. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Fórizs, B.; Rosseler, O.; Szegedi, Á.; Németh, P.; Király, P.; Tárkányi, G.; Vajna, B.; Varga-Josepovits, K.; László, K.; et al. WO3 photocatalysts: Influence of structure and composition. J. Catal. 2012, 294, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.-L.; Ding, J.; Zhu, Q.; Gao, R.; Yang, X. Tungsten containing materials as heterogeneous catalysts for green catalytic oxidation process. In Catalysis; Spivey, J.J., Han, Y.F., Dooley, K.M., Eds.; Royal Society of Chemistry: London, UK, 2016; Volume 28, pp. 1–27. ISBN 979-1-78262-427-1. [Google Scholar]
- Lu, Y.; Zhang, J.; Wang, F.; Chen, X.; Feng, Z.; Li, C. K2SO4-Assisted Hexagonal/Monoclinic WO3 Phase Junction for Efficient Photocatalytic Degradation of RhB. ACS Appl. Energy Mater. 2018, 1, 2067–2077. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, Y.; Cui, H.; Wang, W.; Shang, Q.; Shi, X.; Cui, G.; Tang, B. Photocatalytic Overall Water Splitting by SrTiO3 with Surface Oxygen Vacancies. Nanomaterials 2020, 10, 2572. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Q.I.; Ahmad, M.; Misra, S.K.; Lohani, M. Efficient Degradation of Methylene Blue Dye Over Highly Reactive Cu Doped Strontium Titanate (SrTiO3) Nanoparticles Photocatalyst Under Visible Light. J. Nanosci. Nanotechnol. 2012, 12, 7181–7186. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, W.; Zhu, G.; Lin, T.; Xu, F.; Huang, F. Black strontium titanate nanocrystals of enhanced solar absorption for photocatalysis. CrystEngComm 2015, 17, 7528–7534. [Google Scholar] [CrossRef]
- Alhaji, M.H.; Sanaullah, K.; Khan, A.; Hamza, A.; Muhammad, A.; Ishola, M.S.; Rigit, A.; Bhawani, S.A. Recent developments in immobilizing titanium dioxide on supports for degradation of organic pollutants in wastewater: A review. Int. J. Environ. Sci. Technol. 2017, 14, 2039–2052. [Google Scholar] [CrossRef]
- Bouarioua, A.; Zerdaoui, M. Photocatalytic activities of TiO2 layers immobilized on glass substrates by dip-coating technique toward the decolorization of methyl orange as a model organic pollutant. J. Environ. Chem. Eng. 2017, 5, 1565–1574. [Google Scholar] [CrossRef]
- Hegemann, D.; Brunner, H.; Oehr, C. Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 208, 281–286. [Google Scholar] [CrossRef]
- Carrino, L.; Moroni, G.; Polini, W. Cold plasma treatment of polypropylene surface: A study on wettability and adhesion. J. Mater. Process. Technol. 2002, 121, 373–382. [Google Scholar] [CrossRef]
- Gomes, J.; Maniezo, B.; Alves, P.; Ferreira, P.; Martins, R.C. Immobilization of TiO2 onto a polymeric support for photocatalytic oxidation of a paraben’s mixture. J. Water Process Eng. 2021, 2021, 102458. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Szabová, R.; Černáková, L.; Wolfová, M.; Černák, M. Coating of TiO2 nanoparticles on the plasma activated polypropylene fibers. Acta Chim. Slovaca 2009, 2, 70–76. [Google Scholar]
- Puma, G.L.; Bono, A.; Krishnaiah, D.; Collin, J.G. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater. 2008, 157, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Mahlambi, M.M.; Ngila, C.J.; Mamba, B. Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles—A Review. J. Nanomater. 2015, 2015, 790173. [Google Scholar] [CrossRef] [Green Version]
- De Filpo, G.; Pantuso, E.; Armentano, K.; Formoso, P.; Di Profio, G.; Poerio, T.; Fontananova, E.; Meringolo, C.; Mashin, A.I.; Nicoletta, F.P. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes. Membranes 2018, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.; Shaw, S.; Cawte, T.; Shanen, E.; Van Heyst, B. An overview of photocatalyst immobilization methods for air pollution remediation. Chem. Eng. J. 2020, 391, 123490. [Google Scholar] [CrossRef]
- Wooh, S.; Encinas, N.; Vollmer, D.; Butt, H.-J. Stable Hydrophobic Metal-Oxide Photocatalysts via Grafting Polydimethylsiloxane Brush. Adv. Mater. 2017, 29, 1604637. [Google Scholar] [CrossRef]
- Liu, J.; Ye, L.; Wooh, S.; Kappl, M.; Steffen, W.; Butt, H.-J. Optimizing Hydrophobicity and Photocatalytic Activity of PDMS-Coated Titanium Dioxide. ACS Appl. Mater. Interfaces 2019, 11, 27422–27425. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Machado, A.V. Preparation of Polymer-Based Nanocomposites by Different Routes. In Nanocomposites: Synthesis, Characterization and Applications; Wang, X., Ed.; Nova Publishers: Hauppauge, NY, USA, 2013; pp. 73–94. ISBN 978-1-62948-226-2. [Google Scholar]
- Adnan, M.M.; Dalod, A.R.M.; Balci, M.H.; Glaum, J.; Einarsrud, M.-A. In Situ Synthesis of Hybrid Inorganic–Polymer Nanocomposites. Polymers 2018, 10, 1129. [Google Scholar] [CrossRef] [Green Version]
- Jangid, N.K.; Jadoun, S.; Yadav, A.; Srivastava, M.; Kaur, N. Polyaniline-TiO2-based photocatalysts for dyes degradation. Polym. Bull. 2021, 78, 4743–4777. [Google Scholar] [CrossRef]
- Guo, Q.; Ghadiri, R.; Weigel, T.; Aumann, A.; Gurevich, E.L.; Esen, C.; Medenbach, O.; Cheng, W.; Chichkov, B.N.; Ostendorf, A. Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers 2014, 6, 2037–2050. [Google Scholar] [CrossRef]
- Yan, W.; Chen, Q.; Meng, X.; Wang, B. Multicycle photocatalytic reduction of Cr(VI) over transparent PVA/TiO2 nanocomposite films under visible light. Sci. China Mater. 2017, 60, 449–460. [Google Scholar] [CrossRef]
- Yan, W.; Chen, Q.; Du, M.; Yang, K.M.; Cai, X.; Meng, X.; Wang, L. Highly Transparent Poly(vinyl alcohol)(PVA)/TiO2 Nanocomposite Films with Remarkable Photocatalytic Performance and Recyclability. J. Nanosci. Nanotechnol. 2018, 18, 5660–5667. [Google Scholar] [CrossRef]
- Asgari, E.; Esrafili, A.; Jafari, A.J.; Kalantary, R.R.; Nourmoradi, H.; Farzadkia, M. The comparison of ZnO/polyaniline nanocomposite under UV and visible radiations for decomposition of metronidazole: Degradation rate, mechanism and mineralization. Process Saf. Environ. Prot. 2019, 128, 65–76. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Lee, H.S.; Lee, C.-G.; Park, S.-J.; Lee, J.; Jung, S.; Shin, G.-A. Application of PANI/TiO2 Composite for Photocatalytic Degradation of Contaminants from Aqueous Solution. Appl. Sci. 2020, 10, 6710. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Z.; Lu, X.; Chen, W.; Cui, Y.; Tang, B.; Wang, J.; Wang, X. Fabrication of PANI@TiO2 nanocomposite and its sunlight-driven photocatalytic effect on cotton fabrics. J. Text. Inst. 2021, 112, 1850–1858. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Mohtar, S.S.; Aziz, F.; Aziz, M.; Ul-Hamid, A. Cu2O/ZnO-PANI ternary nanocomposite as an efficient photocatalyst for the photodegradation of Congo Red dye. J. Environ. Chem. Eng. 2021, 9, 105065. [Google Scholar] [CrossRef]
- Brooms, T.J.; Otieno, B.; Onyango, M.S.; Ochieng, A. Photocatalytic degradation of P-Cresol using TiO2/ZnO hybrid surface capped with polyaniline. J. Environ. Sci. Health Part A 2018, 53, 99–107. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, M.; Chen, F.; Yang, J. Visible light photocatalytic activity of TiO2/D-PVA for MO degradation. Appl. Catal. B Environ. 2009, 90, 249–254. [Google Scholar] [CrossRef]
- Saravanan, R.; Sacari, E.; Gracia, F.; Khan, M.M.; Mosquera, E.; Gupta, V.K. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 2016, 221, 1029–1033. [Google Scholar] [CrossRef]
- El-Dafrawy, S.M.; Tarek, M.; Samra, S.; Hassan, S.M. Synthesis, photocatalytic and antidiabetic properties of ZnO/PVA nanoparticles. Sci. Rep. 2021, 11, 11404. [Google Scholar] [CrossRef] [PubMed]
- Sahu, K.; Rahamn, K.H.; Kar, A.K. Synergic effect of polyaniline and ZnO to enhance the photocatalytic activity of their nanocomposite. Mater. Res. Express 2019, 6, 095304. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Akter, M.; Amin, K.; Younus, M.; Chakraborty, N. Synthesis, Luminescence and Thermal Properties of PVA–ZnO–Al2O3 Composite Films: Towards Fabrication of Sunlight-Induced Catalyst for Organic Dye Removal. J. Polym. Environ. 2018, 26, 3371–3381. [Google Scholar] [CrossRef]
- Lou, L.; Kendall, R.J.; Ramkumar, S. Comparison of hydrophilic PVA/TiO2 and hydrophobic PVDF/TiO2 microfiber webs on the dye pollutant photo-catalyzation. J. Environ. Chem. Eng. 2020, 8, 103914. [Google Scholar] [CrossRef]
- Lei, P.; Wang, F.; Gao, X.; Ding, Y.; Zhang, S.; Zhao, J.; Liu, S.; Yang, M. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. J. Hazard. Mater. 2012, 227–228, 185–194. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.; Gurney, R.S.; Liu, D. Superhydrophobic and photocatalytic PDMS/TiO2 coatings with environmental stability and multifunctionality. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 561, 101–108. [Google Scholar] [CrossRef]
- Hossain, S.; Chun, D.-M. ZnO decorated polydimethylsiloxane sponges as photocatalysts for effective removal of methylene blue dye. Mater. Chem. Phys. 2020, 255, 123589. [Google Scholar] [CrossRef]
- Hickman, R.; Walker, E.; Chowdhury, S. TiO2-PDMS composite sponge for adsorption and solar mediated photodegradation of dye pollutants. J. Water Process Eng. 2018, 24, 74–82. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.; Kumar, E.; Ganeshbabu, M.; Venkatesh, P.S.; Rathnakumar, K. Structural, electrical, and photocatalytic investigations of PANI/ZnO nanocomposites. Ionics 2021, 27, 2967–2977. [Google Scholar] [CrossRef]
- Ghule, L.; Patil, A.; Sapnar, K.; Dhole, S.; Garadkar, K. Photocatalytic degradation of methyl orange using ZnO nanorods. Toxicol. Environ. Chem. 2011, 93, 623–634. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, D.; Zhou, Q.; Wu, Y.; Zhou, X.; Wang, H. Facile Preparation and Characterization of Polyaniline and CeO2 Co-Decorated TiO2 Nanotube Array and its Highly Efficient Photoelectrocatalytic Activity. Nanoscale Res. Lett. 2019, 14, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambaza, S.S.; Maity, A.; Pillay, K. Polyaniline-Coated TiO2 Nanorods for Photocatalytic Degradation of Bisphenol A in Water. ACS Omega 2020, 5, 29642–29656. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Frimmel, F.H.; Abbt-Braun, G. Multi-cycle photocatalytic degradation of bezafibrate by a cast polyvinyl alcohol/titanium dioxide (PVA/TiO2) hybrid film. J. Mol. Catal. A Chem. 2015, 400, 42–48. [Google Scholar] [CrossRef]
- Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A.A.; Amin, M.O.; Madkour, M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 2018, 8, 7104. [Google Scholar] [CrossRef]
- Olad, A.; Nosrati, R. Preparation, characterization, and photocatalytic activity of polyaniline/ZnO nanocomposite. Res. Chem. Intermed. 2012, 38, 323–336. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, G.; Kumar, A.; Naushad, M.; Mola, G.T.; Kumar, A.; Al-Misned, F.A.; El-Serehy, H.A.; Stadler, F.J. Visibly Active FeO/ZnO@PANI Magnetic Nano-photocatalyst for the Degradation of 3-Aminophenol. Top. Catal. 2020, 63, 1302–1313. [Google Scholar] [CrossRef]
- Habtamu, F.; Berhanu, S.; Mender, T. Polyaniline Supported Ag-Doped ZnO Nanocomposite: Synthesis, Characterization, and Kinetics Study for Photocatalytic Degradation of Malachite Green. J. Chem. 2021, 2021, 2451836. [Google Scholar] [CrossRef]
- Lian, Z.; Wei, C.; Gao, B.; Yang, X.; Chan, Y.; Wang, J.; Chen, G.Z.; Koh, K.S.; Shi, Y.; Yan, Y.; et al. Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Adv. 2020, 10, 9210–9225. [Google Scholar] [CrossRef] [Green Version]
- Samadi, M.; Shivaee, H.A.; Zanetti, M.; Pourjavadi, A.; Moshfegh, A. Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers. J. Mol. Catal. A Chem. 2012, 359, 42–48. [Google Scholar] [CrossRef]
- Sambaza, S.; Maity, A.; Pillay, K. Enhanced degradation of BPA in water by PANI supported Ag/TiO2 nanocomposite under UV and visible light. J. Environ. Chem. Eng. 2019, 7, 102880. [Google Scholar] [CrossRef]
- Eskizeybek, V.; Sarı, F.; Gülce, H.; Gülce, A.; Avcı, A. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B Environ. 2012, 119–120, 197–206. [Google Scholar] [CrossRef]
- Sosnin, I.; Vlassov, S.; Akimov, E.G.; Agenkov, V.I.; Dorogin, L.M. Transparent ZnO-coated polydimethylsiloxane-based material for photocatalytic purification applications. J. Coat. Technol. Res. 2020, 17, 573–579. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kang, D.; Jeong, S.; Do, H.T.; Kim, J.H. Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS Omega 2020, 5, 4233–4241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Zhang, J.; Yang, H.; Xu, S.; Jiang, L.; Dan, Y. Preparation and visible light-induced photo-catalytic activity of H-PVA/TiO2 composite loaded on glass via sol–gel method. Appl. Surf. Sci. 2014, 292, 978–985. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Song, Y.; Xu, S.; Jiang, L.; Dan, Y. Visible light photo-catalytic activity of C-PVA/TiO2 composites for degrading rhodamine B. Appl. Surf. Sci. 2015, 324, 645–651. [Google Scholar] [CrossRef]
- Tennakone, K.; Tilakaratne, C.; Kottegoda, I. Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. J. Photochem. Photobiol. A Chem. 1995, 87, 177–179. [Google Scholar] [CrossRef]
- Castellano, M.; Cantù, R.; Mauri, M.; Marsano, E.; Vicini, S. Poly(dimethylsiloxane)/TiO2 Photocatalytic Membranes Obtained by Different Electrospinning Systems. J. Nanosci. Nanotechnol. 2016, 16, 6587–6594. [Google Scholar] [CrossRef]
- De Barros, A.L.; Domingos, A.A.Q.; Fechine, P.B.A.; de Keukeleire, D.; Nascimento, R.F.D. PET as a support material for TiO2 in advanced oxidation processes. J. Appl. Polym. Sci. 2014, 131, 40175. [Google Scholar] [CrossRef]
- Wang, F.; Min, S.X. TiO2/polyaniline composites: An efficient photocatalyst for the degradation of methylene blue under natural light. Chin. Chem. Lett. 2007, 18, 1273–1277. [Google Scholar] [CrossRef]
- Wahyuni, S.; Kunarti, E.S.; Swasono, R.T.; Kartini, I. Characterization and Photocatalytic Activity of TiO2(rod)-SiO2-Polyaniline Nanocomposite. Indones. J. Chem. 2018, 18, 321. [Google Scholar] [CrossRef] [Green Version]
- Gilja, V.; Vrban, I.; Mandić, V.; Žic, M.; Hrnjak-Murgić, Z. Preparation of a PANI/ZnO Composite for Efficient Photocatalytic Degradation of Acid Blue. Polymers 2018, 10, 940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Li, H.; Wu, H.; Wu, Y.; Shang, Y.; Pan, J.; Xiong, X. Fabrication of TiO2@PANI nanobelts with the enhanced absorption and photocatalytic performance under visible light. Mater. Lett. 2016, 172, 52–55. [Google Scholar] [CrossRef]
- Li, S.; Du, C.; Zhao, N.; Zheng, J.; Liu, H.; Wang, Y. Preparation and Application of a New-type of Ordered Macroporous PANI/TiO2 Photocatalyst. Chem. Lett. 2015, 44, 568–570. [Google Scholar] [CrossRef]
- Hegedűs, P.; Szabó-Bárdos, E.; Horváth, O.; Szabó, P.; Horváth, K. Investigation of a TiO2 photocatalyst immobilized with poly(vinyl alcohol). Catal. Today 2017, 284, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chen, W.-F.; Koshy, P.; Sorrell, C.C. Enhanced photocatalytic performance of nanostructured TiO2 thin films through combined effects of polymer conjugation and Mo-doping. J. Mater. Sci. 2019, 54, 5266–5279. [Google Scholar] [CrossRef]
- Sekar, A.D.; Muthukumar, H.; Chandrasekaran, N.I.; Matheswaran, M. Photocatalytic degradation of naphthalene using calcined Fe ZnO/ PVA nanofibers. Chemosphere 2018, 205, 610–617. [Google Scholar] [CrossRef]
- Montallana, A.D.S.; Vasquez, M.R., Jr. Fabrication of PVA/Ag-TiO2 nanofiber mats for visible-light-active photocatalysis. Results Phys. 2021, 25, 104205. [Google Scholar] [CrossRef]
- Nasikhudin; Ismaya, E.P.; Diantoro, M.; Kusumaatmaja, A.; Triyana, K. Preparation of PVA/TiO2 Composites Nanofibers by using Electrospinning Method for Photocatalytic Degradation. In IOP Conference Series, Proceedings of the Materials Science and Engineering, Proceedings of the 4th International Conference of Advanced Materials Science and Technology, Universitas Negeri Malang, Indonesia, 27–28 September 2016; IOP Publishing Ltd.: Bristol, UK, 2017; Volume 202, pp. 1–7. [Google Scholar] [CrossRef]
- Iketani, K.; Sun, R.-D.; Toki, M.; Hirota, K.; Yamaguchi, O. Sol–gel-derived TiO2/poly(dimethylsiloxane) hybrid films and their photocatalytic activities. J. Phys. Chem. Solids 2003, 64, 507–513. [Google Scholar] [CrossRef]
- Sosnin, I.M.; Vlassov, S.; Dorogin, L.M. Application of polydimethylsiloxane in photocatalyst composite materials: A review. React. Funct. Polym. 2021, 158, 104781. [Google Scholar] [CrossRef]
- Lamberti, A. Microfluidic photocatalytic device exploiting PDMS/TiO2 nanocomposite. Appl. Surf. Sci. 2015, 335, 50–54. [Google Scholar] [CrossRef]
- Jeong, M.-G.; Seo, H.O.; Kim, K.-D.; Kim, Y.D.; Lim, D.C. Enhanced photocatalytic activity of TiO2 by polydimethylsiloxane deposition and subsequent thermal treatment at 800 °C. Thin Solid Films 2012, 520, 4929–4933. [Google Scholar] [CrossRef]
- Deng, Z.-Y.; Wang, W.; Mao, L.-H.; Wang, C.-F.; Chen, S. Versatile superhydrophobic and photocatalytic films generated from TiO2–SiO2@PDMS and their applications on fabrics. J. Mater. Chem. A 2014, 2, 4178–4184. [Google Scholar] [CrossRef]
- Wang, T.; Lu, Z.; Wang, X.; Zhang, Z.; Zhang, Q.; Yan, B.; Wang, Y. A compound of ZnO/PDMS with photocatalytic, self-cleaning and antibacterial properties prepared via two-step method. Appl. Surf. Sci. 2021, 550, 149286. [Google Scholar] [CrossRef]
- Santiago, A.; Gondim, J.; Tranquilin, R.; Silva, F.; Fernandez, F.; Costa, M.; Motta, F.; Bomio, M. Development of ZnO/PDMS nanocomposite with photocatalytic/hydrophobic multifunction. Chem. Phys. Lett. 2019, 740, 137051. [Google Scholar] [CrossRef]
- Cha, B.J.; Woo, T.G.; Park, E.J.; Kim, I.H.; An, J.E.; Seo, H.O.; Kim, Y.D. Photo-catalytic activity of hydrophilic-modified TiO2 for the decomposition of methylene blue and phenol. Curr. Appl. Phys. 2017, 17, 1557–1563. [Google Scholar] [CrossRef]
- Barbosa, A.A.; de Aquino, R.V.S.; da Cruz Santana Neves, N.S.; Dantas, R.F.; Duarte, M.M.M.B.; da Rocha, O.R.S. Kinetic study of dye removal using TiO2 supported on polyethylene terephthalate by advanced oxidation processes through neural networks. Water Sci. Technol. 2019, 79, 1134–1143. [Google Scholar] [CrossRef]
- Heredia, M.; Duffy, J. Photocatalytic destruction of water pollutants using a TiO2 film in pet bottles. In Proceedings of the Solar Conference, Cleveland, OH, USA, 8–12 July 2007. [Google Scholar]
- Meichtry, J.M.; Lin, H.J.; de la Fuente, L.; Levy, I.K.; Gautier, E.A.; Blesa, M.A.; Litter, M.I. Low-Cost TiO2 Photocatalytic Technology for Water Potabilization in Plastic Bottles For Isolated Regions. Photocatalyst Fixation. J. Sol. Energy Eng. 2007, 129, 119–126. [Google Scholar] [CrossRef]
- Fostier, A.H.; Pereira, M.D.S.S.; Rath, S.; Guimarães, J.R. Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles. Chemosphere 2008, 72, 319–324. [Google Scholar] [CrossRef]
- Agustina, T.; Komala, R.; Faizal, M. Application of TiO2 nano particles photocatalyst to degrade synthetic dye wastewater under solar irradiation. Contemp. Eng. Sci. 2015, 8, 1625–1636. [Google Scholar] [CrossRef]
- Sanchez, L.; Guz, L.; García, P.; Ponce, S.; Goyanes, S.; Marchi, M.C.; Candal, R.; Rodriguez, J. Synthesis and Characterization of ZnO Nanorod Films on PET for Photocatalytic Disinfection of Water. J. Adv. Oxid. Technol. 2015, 18, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, C.; Molina, G.; Jentzsch, P.V.; Pérez, J.; Muñoz, F.; Pauker, C.F.S. Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates. J. Adv. Oxid. Technol. 2017, 20, 20170006. [Google Scholar] [CrossRef] [Green Version]
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
TiO2/PANI powder | Mixing | [BPA]0 = 5 mg/L [MB]0 = 5 μM 6 10.3 W/m2 visible light lamps t = 360 min PANI = {2, 4, 6, 8, 10} wt.% | 4 wt.% PANI MB removal of 99% (k = 0.013 min−1) BPA removal of 80% (k = 0.004 min−1) | [50] |
TiO2/PANI powder | In situ polymerization | [RhB]0 = 10 mg/L 350 W/m2 Suntest lamp t = 70 min TiO2/Aniline = {0.015, 0.03, 0.06} mg/mL | 0.06 mgTiO2/mLaniline 90% removal (k = 0.033 min−1) | [51] |
Cu2O-ZnO/PANI powder | In situ polymerization | [CR]0 = 30 mg/L 100 W LED light pH = 6 t = 30 min Cu2O-ZnO/Aniline = {33, 20, 10, 7.7} g/mL | 10 gTiO2/mLaniline 95% removal (k = 0.10 min−1) | [52] |
ZnO/PANI powder | In situ polymerization | [MBZ]0 = 10 mg/L 31 W/m2 UV lamp or 26.5 W/m2 xenon lamp pH = 7; t = 3 h ZnO/Aniline = {102, 20, 10} g/mL | 20 gTiO2/mLaniline 97% removal k = 0.025 min−1 for visible k = 0.034 min−1 for UV | [49] |
ZnO/PANI powder | Mixing | MO and MB 250 W visible lamp 1.5 M PANI t = 3 h | MO removal of 98.3% (k = 0.023 min−1) MB removal of 99.2% (k = 0.026 min−1) | [55] |
TiO2/PVA film | Mixing | [MB]0 = 2.5 ppm 5 6 W UV lamp 1 wt.% TiO2 t = 360 min Mix the TiO2 in an 8 wt.% PVA solution or in a 12 wt.% | 12 wt.% PVA solution 70% removal (k = 0.003 min−1) | [13] |
TiO2/PVA powder | Hydrothermal Method | [MO]0 = 15 mg/L 600 W/m2 xenon lamp t = 50 min PVA = {5, 10, 20, 40} wt.% | 40 wt.% PVA 95% removal (k = 0.060 min−1) | [54] |
ZnO/PVA powder | Sol–gel | [MB]0 = 10 ppm 400 W halogen–mercury lamp t = 20 min PVA = {5, 7, 10} wt.% | 5 wt.% PVA ~100% removal (k = 0.230 min−1) | [56] |
[MB]0 = 10 ppm 400 W halogen–mercury lamp t = 90 min PVA = {5, 7, 10} wt.% | 7 wt.% PVA 70% removal (k = 0.013 min−1) |
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
ZnO/PANI powder | In situ polymerization | [MB]0 = 10 ppm Natural irradiation t = 160 min ZnO = {1, 10} wt.% | 10 wt.% ZnO BG = 2.10 eV 91% removal (k = 0.015 min−1) | [64] |
ZnO/PANI powder | In situ polymerization | [MB]0 = 0.01 mg/L 8 W UV lamp t = 75 min ZnO = {10, 20, 30} wt.% | 30 wt.% ZnO BG = 2.07 eV 57% removal (k = 0.011 min−1) | [57] |
TiO2/PVA film | Mixing | [RhB]0 = 10 ppm 18 W LED lamp t = 49 d TiO2 = {1, 3, 5, 10, 20} wt.% | 10 wt.% TiO2 80% removal (k = 2.2 × 10−5 min−1) | [59] |
TiO2/PVA film | Mixing | [MO]0 = 15 mg/L 6 0.9 W/m2 UV lamp 10 wt.% TiO2 t = 5 h TiO2 = {1, 3, 5, 10, 12} wt.% | 10 wt.% TiO2 ~100% removal (k = 0.015 min−1) | [60] |
Al2O3-ZnO/PVA powder | Mixing | [MB]0 = 5 mg/L Solar radiation t = 30 min ZnO = {5, 7, 9} wt.% | 9 wt.% ZnO 100% removal (k = 0.15 min−1) | [58] |
TiO2/PDMS film | Plasma Treatment + UV Irradiation | [MP]0 = [EP]0 = [PPP]0 = 1 mg/L Solar radiation 680 ± 150 W/m2 t = 2 h TiO2 = {70, 140, 280, 1000, 10,000} mg/L | 140 mg/L MP removal of ~23% EP removal of ~27 PPP removal of ~33% | [34] |
TiO2/PDMS film | Mixing | [MB]0 = 0.01 m M Solar radiation t = 6 d TiO2 = {25, 50, 75, 100, 125} wt.% | 75 wt.% TiO2 ~100% removal (k = 0.001 min−1) | [61] |
Mixing | Oleic Acid 48 W mercury lamp t = 30 min TiO2 = {25, 50, 75, 100, 125} wt.% | 75 wt.% TiO2 ~100% removal (k = 0.15 min−1) | ||
TiO2/PDMS sponges | Sugar Template | [RhB]0 = 5 mg/L 1000 W/m2 xenon lamp t = 1 h TiO2 = {36, 71, 142} μg/gsponge | 71 μgTiO2/mgsponge 80% removal (k = 0.027 min−1) | [63] |
ZnO/PDMS sponges | Sugar Template | [MB]0 = 5 ppm 100 W halogen lamp or 4 W UV lamp t = 3 h ZnO = {200, 600, 1000} mg/sponge | 600 mg ZnO 85% removal with halogen lamp (k = 0.0094 min−1) 73% removal with UV lamp (k = 0.007 min−1) | [62] |
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
ZnO/PVA powder | Mixing | [MO]0 = 20 mg/L T = 27 °C 400 kW/m2 mercury lamp 8 wt.% ZnO t = 80 min pH = {3, 5, 7, 10, 12} | pH = 7 95% removal (k = 0.05 min−1) | [65] |
TiO2/PVA films | Hydrothermal method | [Cr(VI)]0 = 10 ppm 1 W/m2 xenon lamp or 5 W/m2 UV lamp or 1.05 W/m2 solar irradiation 20 wt.% TiO2 t = 25 min pH = {1.8, 2.2, 3, 3.9, 4.2, 5.9, 6.4} | pH = 3.9 UV and solar: 100% removal (k = 0.18 min−1) Xenon lamp: 90% removal (k = 0.09 min−1) | [47] |
CeO2-TiO2/PANI films | Galvanostatic | [TBBPA]0 = 10 mg/L 1200 W/m2 xenon lamp t = 120 min pH = {1, 3, 5, 7, 9} | pH = 3 96% removal (k = 0.027 min−1) | [66] |
TiO2/PANI powder | In situ polymerization | [BPA]0 = 5 ppm UV lamp t = 80 min pH = {4, 6.5, 7, 10} | pH = 10 99.7% removal (k = 0.046 min−1) | [67] |
Cu2O-ZnO/PANI powder | In situ polymerization | [CR]0 = 30 mg/L 100 W LED light Cu2O-ZnO/Aniline = 10 g/mL t = 30 min pH = {3, 6, 9} | pH = 6 95% removal (k = 0.10 min−1) | [52] |
TiO2/PVA films | Mixing | [BZF]0 = 10 mg/L 11 wt.% TiO2 Solar simulator 1 kW t = 60 min pH = {4.2, 6.9 and 9.2} | pH = 6.9 15% removal (k = 0.003 min−1) | [68] |
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
ZnO/PANI powder | In situ polymerization | [MB]0 = 10 mg/L ZnO/Aniline = 46.5 mg/mL 30 W UV lamp and 50 W halogen lamp with UV filter t = 1 h [composite] = {0.75, 1.5, 2} g/L | 1.5 g/L composite UV: 28% removal (k = 0.005 min−1) Visible: 82% removal (k = 0.029 min−1) | [70] |
TiO2/PANI powder | In situ polymerization | [BPA]0 = 5 mg/L [MB]0 = 5 μM 6 10.3 W/m2 visible light lamps t = 360 min 4 wt.% PANI [composite] = {0.3, 0.7, 1.2, 1.7} g/L | 1.2 g/L composite MB removal of 99% (k = 0.013 min−1) BPA removal of 80% (k = 0.004 min−1) | [50] |
FeO-ZnO/PANI powder | In situ polymerization | [3-APh]0 = 10 mg/L Sunlight t = 120 min [composite] = {20, 40, 60, 80, 100} mg/L | 80 mg/L composite 92% removal (k = 0.021 min−1) | [71] |
Ag-ZnO/PANI powder | In situ polymerization | [MG]0 = 200 mg/L Visible light t = 120 min pH = 8 [composite] = {0.1, 0.2, 0.3, 0.4 } g/L | 0.2 g/L composite 98.6% removal (k = 0.036 min−1) | [72] |
Cu2O-ZnO/PANI powder | In situ polymerization | [CR]0 = 30 mg/L 100 W LED light Cu2O-ZnO/Aniline = 10 g/mL t = 30 min pH = 6 [composite] = {0.05, 0.1, 0.15} g/L | 0.05 g/L composite 95% removal (k = 0.10 min−1) | [52] |
Metal Oxide | BG (eV) | Composite | BG (eV) | Reference |
---|---|---|---|---|
- | - | ZnO/PVA | 3.11 | [74] |
TiO2 | 3.24 | Ag-TiO2/PANI | 3.00 | [75] |
TiO2 | 3.20 | TiO2/PANI | 3.10 | [67] |
ZnO | 3.21 | ZnO/PANI | 2.67 | [55] |
ZnO | 3.10 | ZnO/PANI | 2.81 | [49] |
- | - | ZnO/PANI | 2.10 | [64] |
- | - | ZnO/PANI | 2.07 | [57] |
- | - | Ag-ZnO/PANI | 2.61 | [72] |
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
Ag-TiO2/PANI | In situ polymerization | [BPA]0 = 5 mg/L 400 W UV lamp or 500 W halogen lamp t = 55 min for UV lamp and 110 min for halogen lamp | UV lamp: 99.5 % removal (k = 0.096 min−1) Halogen lamp: 99.7% removal (k = 0.053 min−1) | [75] |
ZnO/PANI powder | In situ polymerization | [MB]0 = 10 mg/L ZnO/Aniline = 46.5 mg/mL 30 W UV lamp and 50 W halogen lamp with UV filter t = 1 h | UV lamp: 28% removal (k = 0.005 min−1) Halogen lamp: 82% removal (k = 0.029 min−1) | [70] |
ZnO/PANI powder | In situ polymerization | [MB]0 = [MG]0 = 10−5 M 15 W UV lamp and solar irradiation t = 5 h for solar irradiation and 9 h for UV irradiation | Solar irradiation: 99% removal of both dyes (k = 0.015 min−1) UV irradiation: MB removal of 80% (k = 0.003 min−1) MG removal of 90% (k = 0.004 min−1) | [76] |
ZnO/PANI powder | In situ polymerization | [MBZ]0 = 10 mg/L 31 W/m2 UV lamp or 26.5 W/m2 xenon lamp t = 3 h | UV lamp: 97% removal (k = 0.034 min−1) Xenon lamp: 97% removal (k = 0.025 min−1) | [49] |
TiO2/PVA films | Hydrothermal method | [Cr(VI)]0 = 10 ppm 1 W/m2 xenon lamp or 5 W/m2 UV lamp or 1.05 W/m2 solar irradiation t = 25 min | UV and solar radiation: 100% removal (k = 0.18 min−1) Xenon lamp: 90% removal (k = 0.09 min−1) | [47] |
ZnO/PDMS sponges | Sugar Template | [MB]0 = 5 ppm 100 W halogen lamp or 4 W UV lamp t = 3 h | Halogen lamp: 85% removal (k = 0.0094 min−1) UV lamp: 73% removal (k = 0.007 min−1) | [62] |
ZnO/PDMS films | Calatyls Deposition | [phenol] = 1 ppm 18 W luminescent lamp with or without a UV filter t = 30 h for UV light or 50 h for visible light | UV light: 96% removal (k = 1.8 × 10−3 min−1) Visible light: 93.9% removal (k = 9.3 × 10−4 min−1) | [77] |
TiO2/PDMS sponge | Sugar Template | [RhB]0 = 20 μM 20 mW UV light or 20 mW LED lamp t = 3 h for UV lamp or 5 h for LED lamp | UV lamp: 90% removal (k = 0.013 min−1) LED lamp: 10% removal (k = 3.5 × 10−4 min−1) | [78] |
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
TiO2/PVA films and ZnO/PVA powder | Mixing | [MO]0 = 15 mg/L 6 × 0.9 W/m2 UV lamps t = 5 h [MO]0 = 20 mg/L 400 Kw/m2 t = 90 min | 90% removal (k= 0.0076 min−1) ~100% removal (k = 0.051 min−1) | [60,65] |
C-TiO2/PVA and TiO2/PVA | Mixing | [RhB]0 = 10 mig/L 600 W/m2 Visible lamp t = 6 h [RhB]0 = 10 mg/L 700 W/m2 tungsten–halogen lamp t = 6 h | 90% removal (k = 0.0064 min−1) 89% removal (k = 0.061 min−1) | [79,80] |
TiO2/PDMS film | Plasma Treatment + UV Irradiation | [MP]0 = [EP]0 = [PPP]0 = 1 mg/L Solar radiation 680 ± 150 W/m2 or 710 ± 220 W/m2 t = 2 h | 680 ± 150 W/m2: MP removal of ~23% EP removal of ~27 PPP removal of ~33% 710 ± 220 W/m2: MP removal of ~50% EP removal of ~53% PPP removal of ~55% | [34] |
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
TiO2/PVA film | Mixing | [MO]0 = 15 mg/L 6 0.9 W/m2 UV lamp 10 wt.% TiO2 t = 5 h Treatment: heat treated under vacuum at 140–200 °C for 0.5–10 h | Treated at 140 °C for 2 h: ~100% removal (k = 0.015 min−1) | [60] |
TiO2/PVA film | Mixing | [Triton X – 100]0= 2 × 10−4 M 40 wt.% PVA Solar simulator 720 W/m2 t = 6 h Treatment: heated at 140 °C for 2 h under argon | 62% removal (k = 0.003 min−1) | [89] |
ZnO/PVA powder | Mixing | [MO]0 = 20 mg/L 400 kW/m2 mercury lamp 8 wt.% ZnO t = 80 min Treatment: 10 min under a 695 W microwave radiation; Annealing at 200 °C for 1 h | 95% removal (k = 0.05 min−1) | [65] |
TiO2/PVA film | Hydrothermal | [MO]0 = 10 mg/L 200 W dysprosium lamp 10 wt.% PVA t = 40 h Treatment: Treated at 140–240 °C | Treated at 180 °C: 84% removal (k = 0.0008 min−1) | [54] |
TiO2/PVA film | Hydrothermal | [Cr(VI)]0 = 10 ppm 1 W/m2 xenon lamp or 5 W/m2 UV lamp or 1.05 W/m2 solar irradiation 20 wt.% TiO2 t = 25 min Treatment: heated at 150 °C for 3 h in an autoclave | UV and solar: 100% removal (k = 0.18 min−1) Xenon lamp: 90% removal (k = 0.09 min−1) | [47] |
TiO2/PVA film | Hydrothermal | [MO]0 = 15 mg/L 600 W/m2 xenon lamp 40 wt.% TiO2 t = 50 min Treatment: heated at 110–150 °C for 1–3 h in an autoclave | Treated at 110 °C for 3 h: 95% removal (k = 0.060 min−1) | [48] |
ZnO/PVA film | Sol–gel | [RhB]0 = 10 mg/L 700 W/m2 tungsten–halogen lamp 16.7 wt.% PVA t = 6 h Treatment: Treated at 120–240 °C for 4 h in a flow of N2 gas | Treated at 180 °C for 4 h: 89% removal (k = 0.006 min−1) Untreated: 7 % removal (k = 0.0002 min−1) | [79] |
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
Al2O3-ZnO/PVA film | Mixing | [MB]0 = 5 mg/L Solar radiation t = 30 min | WL = [400, 800] nm 100% removal (k = 0.15 min−1) | [58] |
Fe-ZnO/PVA film | Mixing | [Nph]0 = 40 ppm 16 W UV lamp t = 4 h | BG = 3 eV 96% removal (k = 0.013 min−1) | [91] |
Mo-TiO2/PVA film | Sol–gel | [MB]0 = 10−5 M 8 W UV lamp t = 24 h 0.2 wt.% Mo | BG = 3.3 eV 91% removal (k = 0.002 min−1) | [90] |
Ag-TiO2/PVA film | Mixing | [MB]0 = 3 ppm 33 W/m2 LED lamp t = 6 h | 51% removal (k = 0.002 min−1) | [92] |
TiO2/PVA film | Mixing | [MB]0 = 2.5 ppm 56 W UV lamp t = 360 min | 12 wt.% PVA solution 70% removal (k = 0.003 min−1) | [13] |
Composite | Immobilization Technique | Conditions Tested | Results | Reference |
---|---|---|---|---|
C-TiO2/PDMS microfluid | Mixing | [RhB]0 = 13 mg/L 500 W UV lamp 2 C-TiO2 wt.% pH = 3 t = 3 h C/TiO2 = {5, 10, 20} wt.% | C/TiO2 =5 wt.% 86% removal (k = 0.011 min−1) | [73] |
Au-TiO2/PDMS sponge | Sugar Template | [RhB]0 = 20 μM 20 mW LED lamp t = 90 min | ~90% removal (k = 0.026 min−1) | [78] |
N-TiO2/PDMS film | Polymer Deposition | [MB]0 = 1 ppm Blue LED 33 wt.% PDMS t = 4 h | ~100% removal (k = 0.019 min−1) | [14] |
Support | Pollutant | Catalyst | Conditions Tested | Results | Reference |
---|---|---|---|---|---|
PET | Paracetamol | TiO2 | [Paracetamol]0 = 2 mg/L 8 W UV lamp 0.1 mg TiO2/cm2 t = 75 min | 86% removal (k = 0.027 min−1) | [83] |
E. coli | TiO2 | [E. coli]0 = 1000 cell/mL 40 W/m2 UV lamp t = 90 min | 100% removal | [103] | |
4-CP and 2,4-D | TiO2 | [4-CP]0 = 0.2 mM [2,4-D]0 = 0.5 mM 0.1 g TiO2/m2 5.9 W/m2 solar radiation t = 18 h for 4-CP and 12 h for 2,4-D | 4-CP removal of 77% (k = 0.0013 min−1) 2,4-D removal of 65% (k = 0.0014 min−1) | [104] | |
As | TiO2 | [As(III)]0 = 1 mg/L 7 mg/L Fe(II) 12 kW/m2 Solar Radiation pH = 7 t = 120 min | 99% removal (k = 0.038 min−1) | [105] | |
PR | TiO2 | [PR]0 = 100 mg/L 128 W/m2 solar radiation t = 12 h | 98% removal (k = 0.005 min−1) | [106] | |
E. coli | ZnO | [E. coli]0 = 3 × 108 CFU 30 W/m2 UV lamp t = 90 min | 100% removal | [107] | |
RB and YT | TiO2 | [RB]0 = [YT]0 = 35 mg/L 8.3 W/m2 UV lamp or 16.4 W/m2 Solar Radiation [H2O2] = 5.79 mM t = 240 min | UV: 98.2% removal (k = 0.017 min−1) Solar: 85.5% removal (k = 0.008 min−1) | [102] | |
PS | AB83 and DM1 | TiO2 | [AB83]0 = [DM1]0 = 50 ppm 8 W UV lamp pH = 2.5 t = 30 min | AB83 removal of 93.7% (k = 0.092 min−1) DM1 removal of 91.9% (k = 0.085 min−1) | [108] |
AB83 and DM1 | ZnO | [AB83]0 = [DM1]0 = 50 ppm 8 W UV lamp t = 50 min | AB83 removal of 92.1% (k = 0.051 min−1) DM1 removal of 92.9% (k = 0.053 min−1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.J.; Gomes, J.; Ferreira, P.; Martins, R.C. An Overview of Polymer-Supported Catalysts for Wastewater Treatment through Light-Driven Processes. Water 2022, 14, 825. https://doi.org/10.3390/w14050825
Silva MJ, Gomes J, Ferreira P, Martins RC. An Overview of Polymer-Supported Catalysts for Wastewater Treatment through Light-Driven Processes. Water. 2022; 14(5):825. https://doi.org/10.3390/w14050825
Chicago/Turabian StyleSilva, Maria João, João Gomes, Paula Ferreira, and Rui C. Martins. 2022. "An Overview of Polymer-Supported Catalysts for Wastewater Treatment through Light-Driven Processes" Water 14, no. 5: 825. https://doi.org/10.3390/w14050825
APA StyleSilva, M. J., Gomes, J., Ferreira, P., & Martins, R. C. (2022). An Overview of Polymer-Supported Catalysts for Wastewater Treatment through Light-Driven Processes. Water, 14(5), 825. https://doi.org/10.3390/w14050825