Precision of Headwater Stream Permanence Estimates from a Monthly Water Balance Model in the Pacific Northwest, USA
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. The Monthly Water Balance Model
2.2.1. Model Application
2.2.2. Data Availability
2.3. Observation Data
2.4. Sensitivity Analysis
2.5. Parameter Regionalization
2.6. Parameter Set Selection
2.7. Precision Analysis
3. Results
3.1. Sensitivity Analysis
3.2. Parameter Regionalization
3.3. Parameter Set Selection
3.4. Model Precision
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fritz, K.M.; Johnson, B.R.; Walters, D.M. Physical indicators of hydrologic permanence in forested headwater streams. J. North Am. Benthol. Soc. 2008, 27, 690–704. [Google Scholar] [CrossRef]
- Nadeau, T.-L.; Rains, C.M. Hydrological connectivity between headwater streams and downstream waters: How science can inform policy. J. Am. Water Resour. Assoc. 2007, 43, 118–133. [Google Scholar] [CrossRef]
- Vorste, R.V.; Sarremejane, R.; Datry, T. Intermittent rivers and ephemeral streams: A unique biome with important contributions to biodiversity and ecosystem services. In Encyclopedia of the World’s Biomes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 419–429. [Google Scholar] [CrossRef]
- U.S. Geological Survey. National Hydrography Dataset (Ver. USGS National Hydrography Dataset Best Resolution for Hydrologic Unit 17). 2019. Available online: https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-national-hydrography-products. (accessed on 1 November 2019).
- Fritz, K.M.; Hagenbuch, E.; D’Amico, E.; Reif, M.; Wigington, P.J.; Leibowitz, S.G.; Comeleo, R.L.; Ebersole, J.L.; Nadeau, T.-L. Comparing the extent and permanence of headwater streams from two field surveys to values from hydrographic databases and maps. J. Am. Water Resour. Assoc. 2013, 49, 867–882. [Google Scholar] [CrossRef]
- Nadeau, T.L.; Leibowitz, S.G.; Wigington, P.J.; Ebersole, J.L.; Fritz, K.M.; Coulombe, R.A.; Comeleo, R.L.; Blocksom, K.A. Validation of rapid assessment methods to determine streamflow duration classes in the Pacific Northwest, USA. Environ. Manag. 2015, 56, 34–53. [Google Scholar] [CrossRef] [PubMed]
- Hafen, K.C.; Blasch, K.W.; Rea, A.; Sando, R.; Gessler, P.E. The influence of climate variability on the accuracy of NHD perennial and nonperennial stream classifications. J. Am. Water Resour. Assoc. 2020, 56, 903–916. [Google Scholar] [CrossRef]
- Beaman, W. Topographic instructions of the United States Geological Survey. Topographic Mapping; U.S. Government Printing Office: Washington, DC, USA, 1928. [CrossRef] [Green Version]
- Guptill, S.C. An enhanced digital line graph design. U.S. Geological Survey: Denver, CO, USA, 1990. [Google Scholar] [CrossRef] [Green Version]
- McKay, L.; Bondelid, T.; Dewald, T.; Johnston, J.; Moore, R.; Rea, A. NHDPlus Version 2: User Guide; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- Miller, M.P.; Carlisle, D.M.; Wolock, D.M.; Wieczorek, M. A database of natural monthly streamflow estimates from 1950 to 2015 for the conterminous United States. J. Am. Water Resour. Assoc. 2018, 54, 1258–1269. [Google Scholar] [CrossRef] [Green Version]
- McCabe, G.J.; Markstrom, S.L. A monthly water-balance model driven by a graphical user interface. In Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2007. [Google Scholar]
- Bock, A.R.; Hay, L.E.; McCabe, G.J.; Markstrom, S.L.; Atkinson, R.D. Parameter regionalization of a monthly water balance model for the conterminous United States. Hydrol. Earth Syst. Sci. 2016, 20, 2861–2876. [Google Scholar] [CrossRef] [Green Version]
- Bock, A.R.; Farmer, W.H.; Hay, L.E. Quantifying uncertainty in simulated streamflow and runoff from a continental-scale monthly water balance model. Adv. Water Resour. 2018, 122, 166–175. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. Warming may create substantial water supply shortages in the Colorado River basin. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- McCabe, G.J.; Wolock, D.M. Joint variability of global runoff and global sea surface temperatures. J. Hydrometeorol. 2008, 9, 816–824. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. Independent effects of temperature and precipitation on modeled runoff in the conterminous United States. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Deweber, J.T.; Tsang, Y.; Krueger, D.M.; Whittier, J.; Wagner, T.; Infante, D.M.; Whelan, G. Importance of understanding landscape biases in USGS gage locations: Implications and solutions for managers. Fisheries 2014, 39, 155–163. [Google Scholar] [CrossRef]
- Yu, S.; Bond, N.R.; Bunn, S.; Xu, Z.; Kennard, M. Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data. J. Hydrol. 2018, 559, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Do, H.X.; van Dijk, A.I.J.M.; Bond, N.R.; Lin, P.; Kennard, M.J. Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks. Hydrol. Earth Syst. Sci. 2020, 24, 5279–5295. [Google Scholar] [CrossRef]
- Bock, A.R.; Hay, L.E.; Markstrom, S.L.; Emmerich, C.; Talbert, M. The U.S. Geological Survey Monthly Water Balance Model Futures Portal. In Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, K.; Sando, R.; McShane, R.; Dunham, J.; Hockman-Wert, D.; Kaiser, K.; Hafen, K.; Risley, J.; Blasch, K. Probability of Streamflow Permanence Model (PROSPER): A spatially continuous model of annual streamflow permanence throughout the Pacific Northwest. J. Hydrol. X 2019, 2, 100005. [Google Scholar] [CrossRef]
- Jaeger, K.; Hafen, K.; Dunham, J.; Fritz, K.; Kampf, S.; Barnhart, T.; Kaiser, K.; Sando, R.; Johnson, S.; McShane, R.; et al. Beyond streamflow: Call for a national data repository of streamflow presence for ptreams and rivers in the United States. Water 2021, 13, 1627. [Google Scholar] [CrossRef]
- Williamson, T.N.; Agouridis, C.T.; Barton, C.D.; Villines, J.A.; Lant, J.G. Classification of Ephemeral, Intermittent, and Perennial Stream Reaches Using a TOPMODEL-Based Approach. J. Am. Water Resour. Assoc. 2015, 51, 1739–1759. [Google Scholar] [CrossRef]
- Hester, G.; Carsell, K.; Ford, D. Benefits of USGS Streamgaging Program—Users and Uses of USGS Streamflow Data. 2006. Available online: https://water.usgs.gov/osw/pubs/nhwc_report.pdf (accessed on 10 March 2022).
- Lowe, W.H.; Likens, G.E. Moving Headwater streams to the head of the class. BioScience. 2005, 55, 196. [Google Scholar] [CrossRef] [Green Version]
- Gendaszek, A.S.; Dunham, J.B.; Torgersen, C.E.; Hockman-Wert, D.P.; Heck, M.P.; Thorson, J.; Mintz, J.; Allai, T. Land-cover and climatic controls on water temperature, flow permanence, and fragmentation of great basin stream networks. Water 2020, 12, 1962. [Google Scholar] [CrossRef]
- Jensen, C.K.; McGuire, K.J.; Prince, P.S. Headwater stream length dynamics across four pysiographic provinces of the Appalachian highlands. Hydrol. Process. 2017, 31, 3350–3363. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.S.; Schmadel, N.; Wondzell, S.M. Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network. Adv. Water Resour. 2018, 114, 64–82. [Google Scholar] [CrossRef]
- Beaufort, A.; Carreau, J.; Sauquet, E. A classification approach to reconstruct local daily drying dynamics at headwater streams. Hydrol. Process. 2019, 33, 1896–1912. [Google Scholar] [CrossRef]
- Ward, A.S.; Wondzell, S.M.; Schmadel, N.M.; Herzog, S.P. Climate change causes river network contraction and disconnection in the H.J. Andrews Experimental Forest, Oregon, USA. Front. Water 2020, 2, 7. [Google Scholar] [CrossRef]
- Seaber, P.R.; Kapinos, F.P.; Knapp, G.L. Hydrologic Unit Maps. 1987. Available online: https://pubs.er.usgs.gov/publication/wsp2294 (accessed on 10 March 2022).
- McShane, R.; Sando, R. Streamflow Observation Points in the Pacific Northwest, 1977–2016. Available online: https://data.usgs.gov/datacatalog/data/USGS:5a0f338de4b09af898d099b9 (accessed on 10 March 2022).
- Jaeger, K.L.; Burnett, J.; Heaston, E.D.; Wondzell, S.M.; Chelgren, N.; Dunham, J.B.; Johnson, S.; Brown, M. FLOwPER User Guide—For Collection of Flow Permanence Field Observations. Available online: https://pubs.er.usgs.gov/publication/ofr20201075 (accessed on 10 March 2022).
- Legates, D.R.; Mather, J.R. An evaluation of the average annual global water balance. Geogr. Rev. 1992, 82, 253. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J., Jr. A Re-Evaluation of the average annual global water balance. Phys. Geogr. 2005, 26, 467–479. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Mather, J.R. The Water Balance. Publ. Climatol. 1955, 8, 1–104. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. Instructions and tables for computing potential evapotranspiration and the water balance. Publ. Climatol. 1957, 10, 185–311. [Google Scholar]
- PRISM Climate Group, Oregon State University. 2020. Available online: http://prism.oregonstate.edu/ (accessed on 10 March 2022).
- Schwarz, G.E.; Alexander, R. State Soil Geographic (STATSGO) Data Base for the Conterminous United States. 1995. Available online: https://pubs.er.usgs.gov/publication/ofr95449 (accessed on 10 March 2022).
- Hamon, W. Estimating Potential Evaporation. P. I. Civil Eng.-Civ. En. 1961, 87, 107–120. [Google Scholar]
- Moore, R.B.; McKay, L.D.; Rea, A.H.; Bondelid, T.R.; Price, C.V.; Dewald, T.G.; Johnston, C.M. User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution. Available online: https://pubs.usgs.gov/of/2019/1096/ofr20191096.pdf (accessed on 10 March 2022).
- Python Software Foundation. Python Language Reference, Version 3.7. 2019. Available online: https://docs.python.org/3.7/reference/ (accessed on 10 March 2022).
- USGS Advanced Research Computing. USGS Yeti Supercomputer. U.S. Geological Survey. 2021. Available online: https://www.usgs.gov/advanced-research-computing/usgs-yeti-supercomputer (accessed on 10 March 2022).
- Hafen, K.C. Sensitivity and Precision of Stream Permanence Estimates (1977–2019) from the USGS Thornthwaite Monthly Water Balance Model in the Pacific Northwest; U.S. Geological Survey: Reston, VA, USA, 2021. [CrossRef]
- Falcone, J.A. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow. In GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow; U.S. Geological Survey: Reston, VA, USA, 2011. [Google Scholar] [CrossRef]
- Cukier, R.; Fortuin, C.M.; E Shuler, K.; Petschek, A.G.; Schaibly, J.H. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. J. Chem. Phys. 1973, 59, 3873–3878. [Google Scholar] [CrossRef]
- Saltelli, A.; Tarantola, S.; Chan, K.S. A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output. Technometrics 1991, 41, 39–56. [Google Scholar] [CrossRef]
- Herman, J.; Usher, W. SALib: An open-source Python library for sensitivity analysis. J. Open Source Softw. 2017, 2. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; de Roo, A.; Miralles, D.G.; McVicar, T.R.; Schellekens, J.; Bruijnzeel, L.A. Global-scale regionalization of hydrologic model parameters. Water Resour. Res. 2016, 52, 3599–3622. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.; Stieglitz, M. Comparing spatial and temporal transferability of hydrological model parameters. J. Hydrol. 2015, 525, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 2, 2825–2830. [Google Scholar]
- Houska, T.; Kraft, P.; Chamorro-Chavez, A.; Breuer, L. SPOTting Model Parameters Using a Ready-Made Python Package. PLoS ONE 2015, 10, e0145180. [Google Scholar] [CrossRef] [PubMed]
- Wagener, T.; Wheater, H.; Gupta, H.V. Rainfall-Runoff Modelling in Gauged and Ungauged Catchments; Imperial College Press: London, UK, 2004. [Google Scholar]
- Strachan, S.; Daly, C. Testing the daily PRISM air temperature model on semiarid mountain slopes. J. Geophys. Res. Atmos. 2017, 122, 5697–5715. [Google Scholar] [CrossRef]
- Blasch, K.W.; Hoffmann, J.P.; Graser, L.F.; Bryson, J.R.; Flint, A.L. Hydrogeology of the Upper and Middle Verde River Watersheds, Central Arizona; U.S. Geological Survey: Reston, VA, USA, 2006; pp. 1–114. [CrossRef] [Green Version]
- Hill, R.A.; Weber, M.; Leibowitz, S.G.; Olsen, A.R.; Thornbrugh, D.J. The Stream-Catchment (StreamCat) Dataset: A database of watershed metrics for the conterminous United States. JAWRA J. Am. Water Resour. Assoc. 2015, 52, 120–128. [Google Scholar] [CrossRef]
- Winter, T.C. The role of ground water in generating streamflow in headwater areas and in maintaining base flow. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 15–25. [Google Scholar] [CrossRef]
- Kasahara, T.; Wondzell, S.M. Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resour. Res. 2003, 39, SBH 3–1. [Google Scholar] [CrossRef] [Green Version]
- Packman, A.I.; Salehin, M. Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia 2003, 494, 291–297. [Google Scholar] [CrossRef]
- Salehin, M.; Packman, A.I.; Paradis, M. Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Ward, A.S.; Schmadel, N.M.; Wondzell, S.M.; Harman, C.; Gooseff, M.N.; Singha, K. Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during base flow recession. Water Resour. Res. 2016, 52, 1479–1497. [Google Scholar] [CrossRef]
Parameter Name | ID | Description | Units | Range |
---|---|---|---|---|
Runoff Factor | RF | Proportion of catchment storage that is converted to streamflow each month | - | 0.0–1.0 |
Direct Runoff Factor | DR | Proportion of precipitation that is converted to streamflow without infiltrating or evaporating | - | 0.0–0.5 |
Snow Temperature | TS | Temperature below which all precipitation is snow | °C | −10.0–2.0 |
Rain Temperature | TR | Temperature above which all precipitation is rain | °C | 0.0–10.0 |
Snow-Melt Coefficient | MC | The maximum proportion of snow water equivalent that can melt in a single month | - | 0.0–1.0 |
Flow Threshold | FT | Mean monthly flow above which a stream segment is considered permanent | L/s | 0.0–14.2 |
Precipitation Factor | PF | Multiplier for input PRISM precipitation | - | 0.1–2.0 |
Temperature Addition | TA | Value added to increase or decrease mean monthly temperature | °C | −2.0–2.0 |
Group | %HW | Stream Length (km) | Drainage Area (km2) | Observations | |
---|---|---|---|---|---|
Dry | Wet | ||||
1 | 26.7 | 13,735 | 154,176 | 425 | 525 |
2 | 13.6 | 2502 | 11,236 | 41 | 119 |
3 | 13.2 | 2255 | 8087 | 25 | 145 |
4 | 2.4 | 69 | 625 | 3 | 15 |
5 | 17.1 | 5043 | 35,648 | 98 | 202 |
6 | 13.8 | 2096 | 7588 | 42 | 68 |
7 | 8.2 | 4332 | 39,436 | 102 | 100 |
8 | 5.0 | 4696 | 90,012 | 192 | 255 |
Total | - | 34,728 | 346,808 | 928 | 1429 |
Group | n | Annual Accuracy | ||
---|---|---|---|---|
Dry | Wet | Overall | ||
1 | 0 | - | - | - |
2 | 32 | 0.61–0.78 (0.63) | 0.61–0.72 (0.67) | 0.65–0.70 (0.66) |
3 | 13 | 0.60–0.76 (0.64) | 0.64–0.74 (0.66) | 0.65–0.73 (0.66) |
4 | 92 | 0.67–1.00 (0.67) | 0.67–0.93 (0.80) | 0.67–0.89 (0.78) |
5 | 41 | 0.60–0.74 (0.62) | 0.61–0.75 (0.68) | 0.65–0.71 (0.66) |
6 | 19 | 0.67–0.79 (0.71) | 0.60–0.68 (0.63) | 0.65–0.69 (0.66) |
7 | 0 | - | - | - |
8 | 0 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafen, K.C.; Blasch, K.W.; Gessler, P.E.; Sando, R.; Rea, A. Precision of Headwater Stream Permanence Estimates from a Monthly Water Balance Model in the Pacific Northwest, USA. Water 2022, 14, 895. https://doi.org/10.3390/w14060895
Hafen KC, Blasch KW, Gessler PE, Sando R, Rea A. Precision of Headwater Stream Permanence Estimates from a Monthly Water Balance Model in the Pacific Northwest, USA. Water. 2022; 14(6):895. https://doi.org/10.3390/w14060895
Chicago/Turabian StyleHafen, Konrad C., Kyle W. Blasch, Paul E. Gessler, Roy Sando, and Alan Rea. 2022. "Precision of Headwater Stream Permanence Estimates from a Monthly Water Balance Model in the Pacific Northwest, USA" Water 14, no. 6: 895. https://doi.org/10.3390/w14060895
APA StyleHafen, K. C., Blasch, K. W., Gessler, P. E., Sando, R., & Rea, A. (2022). Precision of Headwater Stream Permanence Estimates from a Monthly Water Balance Model in the Pacific Northwest, USA. Water, 14(6), 895. https://doi.org/10.3390/w14060895