Assessing Lake Response to Extreme Climate Change Using the Coupled MIKE SHE/MIKE 11 Model: Case Study of Lake Zazari in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Modeling System
2.3. Data
2.4. Model Setup and Parameterization
2.5. Criteria for Evaluation of Lake Zazari Basin Hydrological Model
2.6. Climate Change Scenarios
3. Results and Discussion
3.1. Model Calibration and Validation
3.2. Response of Lake Zazari to Climate Change
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, C.P.; Jiang, B.; Bohn, T.J.; Lee, K.N.; Lettenmaier, D.P.; Ma, D.; Ouyang, Z. Lake and wetland ecosystem services measuring water storage and local climate regulation. Water Resour. Res. 2017, 53, 3197–3223. [Google Scholar] [CrossRef] [Green Version]
- Mooij, W.M.; Hülsmann, S.; De Senerpont Domis, L.N.; Nolet, B.A.; Bodelier, P.L.E.; Boers, P.C.M.; Dionisio Pires, L.M.; Gons, H.J.; Ibelings, B.W.; Noordhuis, R.; et al. The impact of climate change on lakes in the Netherlands: A review. Aquat. Ecol. 2005, 39, 381–400. [Google Scholar] [CrossRef]
- Altunkaynak, A. Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks. Water Resour. Manag. 2006, 21, 399–408. [Google Scholar] [CrossRef]
- Moss, B. Cogs in the endless machine: Lakes, climate change and nutrient cycles: A review. Sci. Total Environ. 2012, 434, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Demertzi, K.A.; Papamichail, D.M.; Georgiou, P.E.; Karamouzis, D.N.; Aschonitis, V.G. Assessment of rural and highly seasonal tourist activity plus drought effects on reservoir operation in a semi-arid region of Greece using the WEAP model. Water Int. 2014, 39, 23–34. [Google Scholar] [CrossRef]
- Demertzi, K.; Papadimos, D.; Aschonitis, V.; Papamichail, D. A Simplistic Approach for Assessing Hydroclimatic Vulnerability of Lakes and Reservoirs with Regulated Superficial Outflow. Hydrology 2019, 6, 61. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Fattah, S.; Krantzberg, G. A review: Building the resilience of Great Lakes beneficial uses to climate change. Sustain. Water Qual. Ecol. 2014, 3, 3–13. [Google Scholar] [CrossRef]
- Zhang, C.; Lai, S.; Gao, X.; Liu, H. A review of the potential impacts of climate change on water environment in lakes and reservoirs. J. Lake Sci. 2016, 28, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Gaglio, M.; Aschonitis, V.; Pieretti, L.; Santos, L.; Gissi, E.; Castaldelli, G.; Fano, E.A. Modelling past, present and future Ecosystem Services supply in a protected floodplain under land use and climate changes. Ecol. Model. 2019, 403, 23–34. [Google Scholar] [CrossRef]
- Dessie, M.; Verhoest, N.E.C.; Pauwels, V.R.N.; Adgo, E.; Deckers, J.; Poesen, J.; Nyssen, J. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia. J. Hydrol. 2015, 522, 174–186. [Google Scholar] [CrossRef]
- Cooke, G.D.; Welch, E.B.; Peterson, S.A.; Nicholson, S.A. Restoration and Management of Lakes and Reservoirs; CRC Press: Boca Raton, FL, USA, 2005; p. 616. [Google Scholar]
- Doulgeris, C.; Georgiou, P.; Papadimos, D.; Papamichail, D. Ecosystem approach to water resources management using the MIKE 11 modeling system in the Strymonas River and Lake Kerkini. J. Environ. Manag. 2012, 94, 132–143. [Google Scholar] [CrossRef]
- Cookey, P.E.; Darnsawasdi, R.; Ratanachai, C. A conceptual framework for assessment of governance performance of lake basins: Towards transformation to adaptive and integrative governance. Hydrology 2016, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Søndergaard, M.; Liu, Z. Lake restoration and management in a climate change perspective: An introduction. Water-SUI 2017, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Loizidou, M.; Giannakopoulos, C.; Bindi, M.; Moustakas, K. Climate change impacts and adaptation options in the Mediterranean basin. Reg. Environ. Chang. 2016, 16, 1859–1861. [Google Scholar] [CrossRef] [Green Version]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Ambrose, R.B.; Wool, T.A.; Matrin, J.L. Part A: Model Documentation. In The Water Quality Analysis Simulation Program, WASP5, Version 5.10; U.S. Environmental Protection Agency: Athens, GA, USA, 1993; p. 251. [Google Scholar]
- Cole, T.M.; Buchak, E.M. Draft User Manual, Instruction Report EL-95-1. In CE-QUAL-W2: A Two-Dimensional, Laterally Averaged Hydrodynamic and Water Quality Model, Version 2.0; Corps of Engineers Waterways Experiment Station Vicksburg: Vicksburg, MI, USA, 1995; p. 357. [Google Scholar]
- Markstrom, S.L.; Niswonger, R.G.; Regan, R.S.; Prudic, D.E.; Barlow, P.M. GSFLOW-Coupled Ground-Water and Surface-Water FLOW Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005); U.S. Geological Survey Techniques and Methods 6-D1: Reston, VA, USA, 2008; p. 240. [Google Scholar]
- Zhang, Q. Development and application of an integrated hydrological model for lake watersheds. Proc. Environ. Sci. 2011, 10, 1630–1636. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Bolding, K.; Bruggeman, J.; Jeppesen, E.; Flindt, M.R.; van Gerven, L.; Janse, J.H.; Janssen, A.B.G.; Kuiper, J.J.; Mooij, W.M.; et al. FABM-PCLake—Linking aquatic ecology with hydrodynamics. Geosci. Model. Dev. 2016, 9, 2271–2278. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Hamilton, D.; Lan, J.; McBride, C.; Trolle, D. Autocalibration of a one-dimensional hydrodynamic-ecological model (DYRESM 4.0-CAEDYM 3.1) using a Monte Carlo approach: Simulations of hypoxic events in a polymictic lake. Geosci. Model. Dev. 2018, 11, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Bracht-Flyr, B.; Istanbulluoglu, E.; Fritz, S. A hydro-climatological lake classification model and its evaluation using global data. J. Hydrol. 2013, 486, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Lu, H.; Yue, S.; Zhang, G.; Lei, Y.; La, Z.; Wang, W. Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau. Clim. Chang. 2018, 147, 149–163. [Google Scholar] [CrossRef]
- Keilholz, P.; Disse, M.; Halik, Ü. Effects of Land Use and Climate Change on Groundwater and Ecosystems at the Middle Reaches of the Tarim River Using the MIKE SHE Integrated Hydrological Model. Water-SUI 2015, 7, 3040–3056. [Google Scholar] [CrossRef] [Green Version]
- Dimitriou, E.; Moussoulis, E. Hydrological and nitrogen distributed catchment modeling to assess the impact of future climate change at Trichonis Lake, western Greece. Hydrogeol. J. 2010, 18, 441–454. [Google Scholar] [CrossRef]
- Singh, C.R.; Thompson, J.R.; French, J.R.; Kingston, D.G.; MacKay, A.W. Modelling the impact of prescribed global warming on runoff from headwater catchments of the Irrawaddy River and their implications for the water level regime of Loktak Lake, northeast India. Hydrol. Earth Syst. Sci. 2010, 14, 1745–1765. [Google Scholar] [CrossRef]
- Thompson, J.R.; Sørensen, H.R.; Gavin, H.; Refsgaard, A. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. J. Hydrol. 2004, 293, 151–179. [Google Scholar] [CrossRef]
- Doulgeris, C.; Papadimos, D.; Kapsomenakis, J. Impacts of climate change on the hydrology of two Natura 2000 sites in Northern Greece. Reg. Environ. Chang. 2016, 16, 1941–1950. [Google Scholar] [CrossRef]
- Antonopoulos, V.Z.; Gianniou, S.K.; Antonopoulos, A.V. Artificial neural networks and empirical equations to estimate daily evaporation: Application to Lake Vegoritis, Greece. Hydrol. Sci. J. 2016, 61, 2590–2599. [Google Scholar] [CrossRef] [Green Version]
- Sidiropoulos, P.; Tziatzios, G.; Vasiliades, L.; Mylopoulos, N.; Loukas, A. Groundwater Nitrate Contamination Integrated Modeling for Climate and Water Resources Scenarios: The Case of Lake Karla Over-Exploited Aquifer. Water 2019, 11, 1201. [Google Scholar] [CrossRef] [Green Version]
- Panagopoulos, Y.; Dimitriou, E. A Large-Scale Nature-Based Solution in Agriculture for Sustainable Water Management: The Lake Karla Case. Sustainability 2020, 12, 6761. [Google Scholar] [CrossRef]
- Kourgialas, N.N. A critical review of water resources in Greece: The key role of agricultural adaptation to climate-water effects. Sci. Total Environ. 2021, 775, 145857. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Andrea, V.; Tampakis, S.; Karanikola, P. Wetlands Management in Northern Greece: An Empirical Survey. Water 2020, 12, 3181. [Google Scholar] [CrossRef]
- Malamataris, D.; Kolokytha, E.; Loukas, A. Integrated hydrological modelling of surface water and groundwater under climate change:the case of the Mygdonia basin in Greece. J. Water Clim. Chang. 2020, 11, 1429–1454. [Google Scholar] [CrossRef]
- Althoff, D.; Rodrigues, L.N.; Da Silva, D.D. Impacts of climate change on the evaporation and availability of water in small reservoirs in the Brazilian savannah. Clim. Chang. 2020, 159, 215–232. [Google Scholar] [CrossRef]
- Xu, D.; Lyon, S.W.; Mao, J.; Dai, H.; Jarsjö, J. Impacts of multi-purpose reservoir construction, land-use change and climate change on runoff characteristics in the Poyang Lake basin, China. J. Hydrol. Reg. Stud. 2020, 29, 100694. [Google Scholar] [CrossRef]
- Gardner, E.; Burningham, H.; Thompson, J.R. Impacts of climate change and hydrological management on a coastal lake and wetland system. Irish Geogr. 2019, 1, 52. [Google Scholar] [CrossRef]
- Samarinas, N.; Tziolas, N.; Zalidis, G. Improved Estimations of Nitrate and Sediment Concentrations Based on SWAT Simulations and Annual Updated Land Cover Products from a Deep Learning Classification Algorithm. ISPRS Int. J. Geo-Inf. 2020, 9, 576. [Google Scholar] [CrossRef]
- Stefanidis, K.; Varlas, G.; Papadopoulos, A.; Dimitriou, E. Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece. Sustainability 2021, 13, 9908. [Google Scholar] [CrossRef]
- Gudulas, K.; Voudouris, K.; Soulios, G.; Dimopoulos, G. Comparison of different methods to stimate actual evapotranspiration and hydrologic balance. Desalination Water Treat. 2013, 51, 13–15. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Soulios, G.; Dimopoulos, G.; Mountrakis, D.; Psilovikos, A.; Pennas, P.; Chatzidimitriadis, E.; Vafiadis, P. Research on the hydrological balance of basins in Greece (Example from the basin of Sklithros, Florina). B Geol. Soc. Greece 1989, XXVI, 129–153. [Google Scholar]
- Gudulas, K. Investigation of the Operating Mechanisms of the Lakes Cheimaditida and Zazari in the Amyntaio basin, of Florina County, from a Hydrogeological and Environmental Point of View. Ph.D. Thesis, Aristotle University, Thessaloniki, Greece, 2012. (In Greek). [Google Scholar]
- Pashos, P.; Nikolaou, N.; Stamos, A. Report on technical and geological identification of landslides in the local settlements of Valtonera, Pedinou, Rodona and Fanou in municipality of Amynteo. In Hellenic Survey of Geology and Mineral Exploration; Directorate of Technical Geology, Regional Unit of Epirus, Regional Unit of Dytiko: Macedonia, Greece, 2018. (In Greek) [Google Scholar]
- Graham, D.N.; Butts, M.B. Flexible, integrated watershed modelling with MIKE SHE. In Watershed Models; Singh, V.P., Frevert, D.K., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 245–272. ISBN 0849336090. [Google Scholar]
- DHI. MIKE SHE Water Movement: User Guide, Volume 1; Danish Hydraulic Institute: Hørsholm, Denmark, 2017; p. 420. [Google Scholar]
- DHI. MIKE 11 A Modelling System for Rivers and Channels User Guide; Danish Hydraulic Institute: Hørsholm, Denmark, 2017; p. 510. [Google Scholar]
- Sørensen, H.R.; Klucovska, J.; Topolska, J.; Clausen, T.; Refsgaard, J.C. An engineering case study—Modelling the influences of Gabcikovo hydropower plant on the hydrology and ecology in the Slovakian part of the river branch system of ZitnyOstrov. In Distributed Hydrological Modelling; Refsgaard, J.C., Ed.; Kluwer: Dordrecht, The Netherlands, 1996; pp. 233–253. [Google Scholar]
- Refsgaard, J.C.; Sørensen, H.R. Water management of the Gabcikovo Scheme for balancing the interest of hydropower and environment. In Operational Water Management; Refsgaard, J.C., Karalis, E.A., Eds.; Balkema: Rotterdam, The Netherlands, 1997; pp. 365–372. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. 1982, 108, 225–230. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Papamichail, D.; Demertzi, K.; Colombani, N.; Mastrocicco, M.; Ghirardini, A.; Castaldelli, G.; Fano, E. High-resolution global grids of revised Priestley-Taylor and Hargreaves-Samani coefficients for assessing ASCE-standardized reference crop evapotranspiration and solar radiation. Earth Syst. Sci. Data 2017, 9, 615–638. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Allen, R.G.; Walter, I.A.; Elliott, R.; Howell, T.; Itenfisu, D.; Jensen, M. The ASCE Standardized Reference Evapotranspiration Equation; Allen, R.G., Walter, I.A., Elliott, R., Howell, T., Itenfisu, D., Jensen, M., Eds.; Final Report (ASCE-EWRI); Environmental and Water Resources Institute, Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute: Reston, VA, USA, 2005. [Google Scholar]
- Apostolakis, A.; Papadimos, D.; Zervas, D. Bathymetry Map of Zazari Lake. Greek Biotope/Wetland Centre (ΕΚΒΥ), 2015, Scale 1:12.000. Available online: http://hdl.handle.net/11340/1935 (accessed on 1 October 2021).
- Corine Land Cover 2012. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 (accessed on 1 October 2021).
- Hiederer, R. Mapping Soil Properties for Europe—Spatial Representation of Soil Database Attributes. In EUR26082EN Scientific and Technical Research Series; Publications Office of the European Union: Luxembourg, 2013; pp. 2013–2047. [Google Scholar] [CrossRef]
- Hiederer, R. Mapping Soil Typologies—Spatial Decision Support Applied to European Soil Database. In EUR25932EN Scientific and Technical Research Series; Publications Office of the European Union: Luxembourg, 2013; pp. 2013–2147. ISSN 1831-9424. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Vazquez, R.F.; Feyen, L.; Feyen, J.; Refsgaard, J.C. Effect of grid size on effective parameters and model performance of the MIKE-SHE code. Hydrol. Proces. 2002, 16, 355–372. [Google Scholar] [CrossRef]
- Ministry of Development. Development of Water Resources Management Systems and Tools for the Water Districts of Makedonia and Thraki; Special Issue I; ENM Consulting Engineers: Athens, Greece, 2006; p. 55. (In Greek) [Google Scholar]
- Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resour. Manag. 1988, 24, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Kallergis, G. Hydrology of geological formations, groundwater exploration, development and management, hydrothermal-thermal waters, mathematical models. In Applied Environmental Hydrogeology, 2nd ed.; Technical Chamber of Greece: Athens, Greece, 2001; p. 432. (In Greek) [Google Scholar]
- Chow, V.T. Open-Channel Hydraulics; International Student Edition; McGraw-Hill: New York, NY, USA, 1959; p. 680. [Google Scholar]
- Greek Biotope/Wetland Center, Water Level Data of Zazari Lake. 2018. Available online: http://www.biodiversity-info.gr/index.php/el/lakes-data#!Oze20170904_IMG_4511 (accessed on 1 October 2021).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Coppens, J.; Trolle, D.; Jeppesen, E.; Beklioglu, M. The impact of climate change on a Mediterranean shallow lake: Insights based on catchment and lake modelling. Reg. Environ. Chang. 2020, 20, 62. [Google Scholar] [CrossRef]
- Bucak, T.; Trolle, D.; Andersen, H.E.; Thodsen, H.; Erdogan, S.; Levi, E.E.; Filiz, N.; Jeppesen, E.; Beklioglu, M. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Sci. Total Environ. 2017, 581, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Gorguner, M.; Kavvas, M.L. Modeling impacts of future climate change on reservoir storages and irrigation water demands in a Mediterranean basin. Sci. Total Environ. 2020, 748, 141246. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.; Carvalho-Santos, C.; Diogo, P.; Beca, P.; Keizer, J.J.; Nunes, J.P. Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Sci. Total Environ. 2020, 736, 139477. [Google Scholar] [CrossRef]
- Ahmadaali, J.; Barani, G.-A.; Qaderi, K.; Hessari, B. Analysis of the Effects of Water Management Strategies and Climate Change on the Environmental and Agricultural Sustainability of Urmia Lake Basin, Iran. Water 2018, 10, 160. [Google Scholar] [CrossRef] [Green Version]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Van Der Schriek, T.; Giannakopoulos, C.; Varotsos, K.V. The impact of future climate change on bean cultivation in the Prespa Lake catchment, northern Greece. Euro-Mediterr. J. Environ. Integr. 2020, 5, 14. [Google Scholar] [CrossRef]
Parameter | Clay | Loam | Silt | Loamy Sand | Sandy Clay Loam | Sandy Loam |
---|---|---|---|---|---|---|
θs | 0.38 | 0.43 | 0.46 | 0.41 | 0.39 | 0.41 |
θr | 0.068 | 0.078 | 0.034 | 0.057 | 0.1 | 0.065 |
pFfc 1 | 2.8 | 2.2 | 2.4 | 1.9 | 2.5 | 2 |
pFw 1 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 |
Ks | 5.55 × 10−7 | 2.89 × 10−6 | 6.944 × 10−7 | 4.05 × 10−5 | 3.64 × 10−6 | 1.23 × 10−5 |
a | 0.008 | 0.036 | 0.016 | 0.124 | 0.059 | 0.075 |
n | 1.09 | 1.56 | 1.37 | 2.28 | 1.48 | 1.89 |
Criterion | Equation | Range | Best Value |
---|---|---|---|
Mean error | −∞ ~ +∞ | 0 | |
Mean absolute error | 0 ~ +∞ | 0 | |
Root mean square error | 0 ~ +∞ | 0 | |
Standard deviation of residuals | 0 ~ +∞ | 0 | |
Correlation coefficient | 0 ~ 1 | 1 | |
Nash–Sutcliffe correlation coefficient | −∞ ~ 1.0 | 1 |
ME | MAE | RMSE | STDres | R | R2 | |
---|---|---|---|---|---|---|
Calibration 25 July 2012–31 December 2016 | 0.0193 | 0.0719 | 0.0942 | 0.0922 | 0.9720 | 0.9331 |
Validation 1 January–31 December 2017 | 0.0778 | 0.0982 | 0.1248 | 0.0975 | 0.9899 | 0.8733 |
Parameters | Mountainous Area | Lowlands | Lake |
---|---|---|---|
MIKE SHE | |||
Aquifer depth (m) | 12 | 15–25 | 6 |
Hydraulic conductivty, Kx, Ky (m/s) | 1.5 × 10−5 | 2 × 10−4 | 1.5 × 10−5–2 × 10−4 |
MIKE 11 | |||
Leakage coefficient (s−1) | 1 × 10−7–1 × 10−6 |
Current Conditions | Future Predictions | ||||||||
---|---|---|---|---|---|---|---|---|---|
Observed | gf | ip | mi | mr | |||||
mm | mm | Δ (%) | mm | Δ (%) | mm | Δ (%) | mm | Δ (%) | |
Precipitation | 731 | 405 | −44.7 | 475 | −35.1 | 544 | −25.6 | 520 | −28.9 |
ETo | 961 | 1136 | 18.1 | 1052 | 9.4 | 1095 | 13.9 | 1117 | 16.2 |
Discharge | Q (m3) | Q (m3) | Δ (%) | Q (m3) | Δ (%) | Q (m3) | Δ (%) | Q (m3) | Δ (%) |
Mean (Qin) | 5.73 × 106 | 2.06 × 106 | −64.15 | 2.48 × 106 | −56.70 | 2.63 × 106 | −54.11 | 2.42 × 106 | −57.75 |
Mean (Qout) | 4.02 × 106 | 6.81 × 104 | −98.30 | 2.60 × 105 | −93.54 | 2.99 × 105 | −92.55 | 2.11 × 105 | −94.76 |
Water level | LSE (m) | LSE (m) | Δ (%) | LSE (m) | Δ (%) | LSE (m) | Δ (%) | LSE (m) | Δ (%) |
Mean (max) | 599.70 | 598.50 | −0.20 | 599.20 | −0.08 | 599.40 | −0.05 | 599.10 | −0.10 |
Mean (min) | 598.70 | 596.90 | −0.30 | 597.80 | −0.15 | 598.00 | −0.12 | 597.70 | −0.17 |
Fluctuation | 1.00 | 1.60 | −60.00 | 1.40 | −40.00 | 1.40 | −40.00 | 1.40 | −40.00 |
Water Balance Components | Future Climatic Projections | ||||
---|---|---|---|---|---|
obs (mm) | gf (mm) | ip (mm) | mi (mm) | mr (mm) | |
Precipitation | 731.3 | 404.7 | 474.6 | 544.5 | 520.1 |
Evapotranspiration | 593.2 | 432.0 | 460.3 | 513.3 | 510.6 |
Overland runoff to river (ORR) | 2.7 | 0.2 | 0.3 | 0.7 | 0.3 |
Irrigation (IR) | 31.3 | 40.7 | 40.3 | 41.3 | 40.3 |
Pumping from groundwater (PG) | 29.5 | 38.9 | 38.5 | 39.1 | 38.4 |
Saturated zone drain to rivers (DR) | 44.2 | 9.8 | 12.0 | 12.8 | 11.7 |
Baseflow to river (BR) | 17.8 | 14.5 | 16.6 | 17.3 | 16.4 |
Baseflow from river (RB) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Sklithros River outflow, mm | 63 | 23 | 27 | 28 | 26 |
Sklithros River outflow, m3 | 5.73 × 106 | 2.06 × 106 | 2.48 × 106 | 2.59 × 106 | 2.41 × 106 |
Current Conditions | Future Climatic Projections | ||||
---|---|---|---|---|---|
Observed | gf | ip | mi | mr | |
Qir (m3) | 1,512,000.0 | 1,512,000.0 | 1,512,000.0 | 1,512,000.0 | 1,512,000.0 |
Mean (Qin) (m3) | 5,730,000.0 | 2,060,000.0 | 2,480,000.0 | 2,630,000.0 | 2,420,000.0 |
Rir = Qir/Qin | 0.26 | 0.73 | 0.61 | 0.57 | 0.62 |
Qir under stable Rir = 26% | 1,512,000.0 | 543,581.2 | 654,408.4 | 693,989.5 | 638,575.9 |
Irrigated area (ha) | 280.00 | 100.66 | 121.19 | 128.52 | 118.25 |
Reduced irrigated area (%) | 64.05 | 56.72 | 54.10 | 57.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadimos, D.; Demertzi, K.; Papamichail, D. Assessing Lake Response to Extreme Climate Change Using the Coupled MIKE SHE/MIKE 11 Model: Case Study of Lake Zazari in Greece. Water 2022, 14, 921. https://doi.org/10.3390/w14060921
Papadimos D, Demertzi K, Papamichail D. Assessing Lake Response to Extreme Climate Change Using the Coupled MIKE SHE/MIKE 11 Model: Case Study of Lake Zazari in Greece. Water. 2022; 14(6):921. https://doi.org/10.3390/w14060921
Chicago/Turabian StylePapadimos, Dimitris, Kleoniki Demertzi, and Dimitris Papamichail. 2022. "Assessing Lake Response to Extreme Climate Change Using the Coupled MIKE SHE/MIKE 11 Model: Case Study of Lake Zazari in Greece" Water 14, no. 6: 921. https://doi.org/10.3390/w14060921
APA StylePapadimos, D., Demertzi, K., & Papamichail, D. (2022). Assessing Lake Response to Extreme Climate Change Using the Coupled MIKE SHE/MIKE 11 Model: Case Study of Lake Zazari in Greece. Water, 14(6), 921. https://doi.org/10.3390/w14060921