Aeration Biofilter Filler Screening and Experimental Research on Nitrogen and Phosphorus Purification in Rural Black Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Biofilter Filler Comparison Test
- (1)
- Isothermal adsorption test of nitrogen and phosphorus by filler
- (2)
- Adsorption kinetics test for fillers for nitrogen and phosphorus
2.2.2. Removal of Nitrogen and Phosphorus from Blackwater by the Biological Filter
2.2.3. Required Model Method for Fillers
- (1)
- Optimization of the isotherm adsorption model
- Basic model
- B.
- Optimization model
2.2.4. Adsorption Kinetic Analysis Method
2.2.5. Determination Method of Indicators
2.2.6. Data Analysis Method
3. Results and Discussion
3.1. Analysis of the Physical and Chemical Properties of Fillers
3.2. Isothermal Adsorption Characteristics of the Seven Fillers for Nitrogen and Phosphorus
3.3. Adsorption Kinetics of Nitrogen and Phosphorus with Seven Fillers
3.4. Removal Effect of Four Combined Fillers of Biofilter on Nitrogen and Phosphorus in Black Water
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oarga, A.; Jenssen, P.D.; Bulc, T.G. A comparison of various bulking materials as a supporting matrix in composting blackwater solids from vacuum toilets. J. Environ. Manag. 2019, 243, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.K.; Dai, Z.Q.; Shen, S.; Wang, S.Y.; Lu, X.W. Characteristics of rural domestic wastewater with source separation. Water Sci. Technol. 2021, 83, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, B.T.; Sellgren, K.L.; Cellini, E.; Klem, J.D.E.; Rogers, T.; Lynch, B.J.; Piascik, J.R.; Stoner, B.R. Remediation of suspended solids and turbidity by improved settling tank design in a small-scale, free-standing toilet system using recycled blackwater: Remediation of suspended solids and turbidity. Water Environ. J. 2019, 33, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Kun, W.; Fu, D.F. Designing process and operational effect of modified septic tank for the pre-treatment of rural domestic sewage. J. Environ. Manag. 2019, 251, 109552. [Google Scholar] [CrossRef]
- Mao, Y.X.; Tan, H.F.; Wang, K.M.; Zhang, Y.J.; Jin, Z.; Zhao, M.; Li, Y.Q.; Zheng, X.Y. Enhancement of algae ponds for rural domestic sewage treatment by prolonging daylight using artificial lamps. Ecotoxicol. Environ. Saf. 2021, 228, 113031. [Google Scholar] [CrossRef] [PubMed]
- Dan, X.; Gao, L.R.; Zheng, M.H.; Li, J.G.; Zhang, L.; Wu, Y.N.; Qiao, L.; Tian, Q.C.; Huang, H.T.; Liu, W.B.; et al. Health risks posed to infants in rural China by exposure to short- and medium-chain chlorinated paraffins in breast milk. Environ. Int. 2017, 103, 1–7. [Google Scholar]
- Yang, S.L.; Zheng, Y.F.; Mao, Y.X.; Xu, L.; Jin, Z.; Zhao, M.; Kong, H.N.; Huang, X.F.; Zheng, X.Y. Domestic wastewater treatment for single household via novel subsurface wastewater infiltration systems (SWISs) with NiiMi process: Performance and microbial community. J. Clean Prod. 2021, 279, 123434. [Google Scholar] [CrossRef]
- Bradley, B.R.; Daigger, G.T.; Rubin, R.; Tchobanoglous, G. Evaluation of onsite wastewater treatment technologies using sustainable development criteria. Clean Techn. Environ. Policy 2002, 4, 87–99. [Google Scholar] [CrossRef]
- Dong, J.X.; Wang, Y.H.; Wang, L.J.; Wang, S.J.; Li, S.J.; Ding, Y. The performance of porous ceramsites in a biological aerated filter for organic wastewater treatment and simulation analysis. J. Water Process Eng. 2020, 34, 101134. [Google Scholar] [CrossRef]
- Wang, H.J.; Dong, W.Y.; Li, T.; Liu, T.Z. A modified BAF system configuring synergistic denitrification and chemical phosphorus precipitation: Examination on pollutants removal and clogging development. Bioresour. Technol. 2015, 189, 44–52. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yue, Q.Y.; Yang, K.L.; Zhao, P.; Gao, B.Y. Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis: Investigation on pollutants removal and degradation mechanisms. J. Hazard Mater. 2018, 342, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.A.; Cao, F.F.; Ju, K.; Tang, F.B.; Chai, B.B.; Li, S.M.; Jin, P.K. Regulatory strategies and microbial response characteristics of single-level biological aerated filter-enhanced nitrogen removal. J. Water Process Eng. 2021, 42, 102190. [Google Scholar] [CrossRef]
- Manirakiza, B.; Sirotkin, A.C. Bioaugmentation of nitrifying bacteria in up-flow biological aerated filter’s microbial community for wastewater treatment and analysis of its microbial community. Sci. Afr. 2021, 14, e00981. [Google Scholar] [CrossRef]
- Lu, Z.D.; Sun, W.J.; Li, C.; Cao, W.F.; Jing, Z.B.; Li, S.M.; Ao, X.W.; Chen, C.; Liu, S.M. Effect of granular activated carbon pore-size distribution on biological activated carbon filter performance. Water Res. 2020, 177, 115768. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.; Quarmby, J.; Stephenson, T. The effects of media size on the performance of biological aerated filters. Water Res. 2001, 35, 2514–2522. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Zhu, L.Y.; Tian, X.H.; Yin, Y.S. Seasonal variation of bacterial community in biological aerated filter for ammonia removal in drinking water treatment. Water Res. 2017, 123, 668–677. [Google Scholar] [CrossRef]
- Huang, W.Y.; She, Z.L.; Gao, M.C.; Wang, Q.; Jin, C.J.; Zhao, Y.G.; Guo, L. Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity. Sci. Total Environ. 2019, 651 Pt 1, 859–870. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J.L. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 2019, 296, 111850. [Google Scholar] [CrossRef]
- Kanô, F.; Abe, I.; Kamaya, H.; Ueda, I. Fractal model for adsorption on activated carbon surfaces: Langmuir and Freundlich adsorption. Surf. Sci. 2000, 467, 131–138. [Google Scholar] [CrossRef]
- Ma, J.M.; Yuan, C.; Zhou, J.Y.; Li, Y.; Gao, G.Y.; Fu, B.J. Logistic model outperforms allometric regression to estimate biomass of xerophytic shrubs. Ecol. Indic. 2021, 132, 108278. [Google Scholar] [CrossRef]
- Wang, Z.H.; Demarcy, T.; Vandersteen, C.; Gnansia, D.; Raffaelli, C.; Guevara, N.; Hervé, D. Bayesian logistic shape model inference: Application to cochlear image segmentation. Med. Image Anal. 2022, 75, 102268. [Google Scholar] [CrossRef] [PubMed]
- Vassiljev, A.; Kaur, K.; Annus, I. Modelling of nitrogen leaching from watersheds with large drained peat areas. Adv. Eng. Softw. 2018, 125, 94–100. [Google Scholar] [CrossRef]
- Jiang, C.; Jia, L.Y.; Zhang, B.; He, Y.L.; George, K. Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution. J. Environ. Sci. 2014, 26, 466–477. [Google Scholar] [CrossRef]
- Wan, C.L.; Ding, S.; Zhang, C.; Tan, X.J.; Zou, W.G.; Liu, X.; Yang, X. Simultaneous recovery of nitrogen and phosphorus from sludge fermentation liquid by zeolite adsorption: Mechanism and application. Sep. Purif. Technol. 2017, 180, 1–12. [Google Scholar] [CrossRef]
- Haruna, S.; Yoshinori, T.; Nanako, O.O.; Yoshito, C.; Naohiko, O. Nitrogen Isotopic Fractionation in Ammonia during Adsorption on Silicate Surfaces. ACS Earth Space Chem. 2017, 1, 24–29. [Google Scholar]
- Drizo, A.; Frost, C.A.; Smith, K.A.; Grace, J. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate. Water Sci. Technol. 1997, 35, 95–102. [Google Scholar] [CrossRef]
- Dong, C.S.; Ju, S.C.; Hong, J.L.; Jong, S.H. Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Res. 2005, 39, 2445–2457. [Google Scholar]
- Wang, Y.; Shen, Z.Y.; Niu, J.F.; Liu, R.M. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. J. Hazard Mater. 2009, 162, 92–98. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhao, Y.Q.; Xu, Z.H.; Liam, D.; Liu, R.B. Highway runoff treatment by hybrid adsorptive media-baffled subsurface flow constructed wetland. Ecol. Eng. 2016, 91, 231–239. [Google Scholar] [CrossRef]
- Shao, Q.; Zhang, Y.; Liu, Z.; Long, L.Z.; Chen, Y.Q.; Hu, X.M.; Huang, L.Z. Phosphorus and nitrogen recovery from wastewater by ceramsite: Adsorption mechanism, plant cultivation and sustainability analysis. Sci. Total Environ. 2022, 805, 150288. [Google Scholar] [CrossRef]
- Viraraghavan, T.; De Maria Alfaro, F. Adsorption of phenol from wastewater by peat, fly ash and bentonite. J. Hazard Mater. 1998, 57, 59–70. [Google Scholar] [CrossRef]
- Binner, I.; Dultz, S.; Schellhorn, M.; Schenk, M.K. Potassium adsorption and release properties of clays in peat-based horticultural substrates for increasing the cultivation safety of plants. Appl. Clay Sci. 2017, 145, 28–36. [Google Scholar] [CrossRef]
- Zhu, W.L.; Cui, L.H.; Ouyang, Y.; Lon, C.F.; Tang, X.D. Kinetic Adsorption of Ammonium Nitrogen by Substrate Materials for Constructed Wetlands. Pedosphere 2011, 21, 454–463. [Google Scholar] [CrossRef]
- Brião, G.V.; Da Silva, M.G.C.; Vieira, M.G.A. Dysprosium adsorption on expanded vermiculite: Kinetics, selectivity and desorption. Colloid Surface A 2021, 630, 127616. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Sorgonà, A.; Rizzo, M.; Cacco, G. Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies. J. Environ. Manag. 2009, 90, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Malamis, S.; Katsou, E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard Mater. 2013, 252, 428–461. [Google Scholar] [CrossRef]
- Jiang, F.Y.; Qi, Y.L.; Shi, X.S. Effect of Liquid Carbon Sources on Nitrate Removal, Characteristics of Soluble Microbial Products and Microbial Community in Denitrification Biofilters. J. Clean. Prod. 2022, 339, 130776. [Google Scholar] [CrossRef]
- Guo, F.C.; Xu, F.; Cai, R.; Li, D.X.; Xu, Q.Y.; Yang, X.Y.; Wu, Z.S.; Wu, Y.B.; Wang, Q.H.; Ao, L.G.; et al. Enhancement of Denitrification in Biofilters by Immobilized Biochar under Low-temperature Stress. Bioresour. Technol. 2022, 347, 126664. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, F.X.; Chen, N.; Peng, T.; Dong, S.S.; Feng, C.P. Denitrification Performance and Mechanism of Biofilter Constructed with Sulfur Autotrophic Denitrification Composite Filler in Engineering Application. Bioresour. Technol. 2021, 340, 125699. [Google Scholar] [CrossRef]
- Lu, W.K.; Zhang, Y.L.; Wang, Q.Q.; Wei, Y.; Bu, Y.A.; Ma, B. Achieving Advanced Nitrogen Removal in a Novel Partial Denitrification/anammox-nitrifying (PDA-N) Biofilter Process Treating Low C/N Ratio Municipal Wastewater. Bioresour. Technol. 2021, 340, 125661. [Google Scholar] [CrossRef]
- Cui, B.; Yang, Q.; Liu, X.H.; Wu, W.J.; Liu, Z.B.; Gu, P.C. Achieving Partial Denitrification-anammox in Biofilter for Advanced Wastewater Treatment. Environ. Int. 2020, 138, 105612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, B.J.; Xue, F.R.; Wang, W.H.; Huang, X.Z.; Wang, Z. Partial Nitrification Coupled with Denitrification and Anammox to Treat Landfill Leachate in a Tower Biofilter Reactor (TBFR). J. Water Process Eng. 2021, 42, 102155. [Google Scholar] [CrossRef]
- Gao, Y.L.; Huang, H.; Peng, C.; Fan, X.; Hu, J.; Ren, H.Q. Simultaneous Nitrogen Removal and Toxicity Reduction of Synthetic Municipal Wastewater by Micro-electrolysis and Sulfur-based Denitrification Biofilter. Bioresour. Technol. 2020, 316, 123924. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Sun, H.M.; Jia, L.X.; Wu, W.Z. Simultaneously advanced removal of nitrogen and phosphorus in a biofilter packed with ZVI/PHBV/sawdust composite: Deciphering the succession of dominant bacteria and keystone species. Bioresour. Technol. 2022, 347, 126724. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.Y.; Wang, Y.M.; Huang, W.; Wang, J.L.; Chen, L.; Zhou, J.; He, Q. Single-stage denitrifying phosphorus removal biofilter utilizing intracellular carbon source for advanced nutrient removal and phosphorus recovery. Bioresour. Technol. 2019, 277, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.J.; Xu, P.; Cao, X.Y.; Zhou, Y.Y.; Song, C.L. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters. Bioresour. Technol. 2016, 218, 842–849. [Google Scholar] [CrossRef]
Water Quality Index | TN (Total Nitrogen) (mg·L−1) | NO3−-N (Nitrate Nitrogen) (mg·L−1) | NH4+-N (Ammonia Nitrogen) (mg·L−1) | TP (Total Phosphorus) (mg·L−1) | COD (Chemical Oxygen Demand) (mg·L−1) | pH |
---|---|---|---|---|---|---|
Zhang laozhuang village (117°49″ E, 39°44″ N) | 133 ± 5.4 | 1.3 ± 0.5 | 125 ± 6.4 | 7.8 ± 1.0 | 346 ± 9.4 | 7.5 ± 0.2 |
Da zhangzhuang village (117.45″ E, 39°42″ N) | 151 ± 7.3 | 2.7 ± 0.4 | 137 ± 5.7 | 9.6 ± 0.8 | 354 ± 10.3 | 7.6 ± 0.3 |
Dong tazhaung village (117°47″ E, 39°43″ N) | 127 ± 6.7 | 3.1 ± 1.2 | 115 ± 6.7 | 8.4 ± 1.1 | 369 ± 6.1 | 7.8 ± 0.3 |
Mao jiazhuang village (117°47″ E, 39°42″ N) | 146 ± 10.3 | 1.5 ± 0.7 | 141 ± 9.6 | 12.5 ± 2.3 | 351 ± 7.2 | 7.2 ± 0.1 |
Dong guanzhuang village (117°48″ E, 39°40″ N) | 151 ± 9.9 | 2.6 ± 1.1 | 135 ± 5.1 | 13.3 ± 1.6 | 367 ± 3.6 | 7.5 ± 0.4 |
Dong huaizhuang village (117°46″ E, 39°41″ N) | 146 ± 5.7 | 2.1 ± 0.8 | 132 ± 7.2 | 6.7 ± 1.4 | 344 ± 5.6 | 7.6 ± 0.2 |
Dong mazhuang village (117°46″ E, 39°40″ N) | 154 ± 8.3 | 3.5 ± 0.5 | 139 ± 5.8 | 13.8 ± 0.9 | 337 ± 4.2 | 7.9 ± 0.2 |
Lang erwo village (117°48″ E, 39°40″ N) | 136 ± 6.5 | 1.6 ± 0.6 | 124 ± 4.4 | 10.7 ± 2.4 | 361 ± 5.1 | 7.9 ± 0.1 |
Dong baizhuang village (117°50″ E, 39°41″ N) | 142 ± 7.2 | 1.8 ± 0.4 | 122 ± 10.1 | 6.5 ± 1.2 | 358 ± 4.3 | 7.6 ± 0.3 |
Influent concentration | 145~156 | 1.5~3.4 | 126.4~137.1 | 8.9~12.1 | 341~362 | 7.2~7.9 |
Parameter | Zeolite | Volcanic Rock | Sepiolite | Ceramsite | Anthracite | Peat | Vermiculite |
---|---|---|---|---|---|---|---|
specific surface area (m2/g) | 8.56 | 5.25 | 0.71 | 7.66 | 3.81 | 2.67 | 8.62 |
Micropore volume (cm3/g) | 2.08 × 10−2 | 1.67 × 10−2 | 8.26 × 10−4 | 7.15 × 10−2 | 3.58 × 10−3 | 2.85 × 10−2 | 2.26 × 10−2 |
micropore size (nm) | 9.75 | 12.75 | 4.68 | 9.24 | 3.76 | 8.74 | 9.86 |
pH | 7.68 | 10.58 | 8.87 | 9.54 | 7.82 | 6.67 | 7.35 |
Filler | Langmuir Adsorption Model | Freundlich Isotherm Adsorption | |||||
---|---|---|---|---|---|---|---|
Qm (mg·kg−1) | K | R2 | k | n | R2 | ||
TN | Zeolite | 300.885 | 0.028 | 0.981 | 10.568 | 1.269 | 0.982 |
Volcanic rock | 179.279 | 0.037 | 0.978 | 8.770 | 1.371 | 0.981 | |
Sepiolite | 276.860 | 0.007 | 0.951 | 1.920 | 1.080 | 0.930 | |
Ceramsite | 145.711 | 0.004 | 0.954 | 0.505 | 1.022 | 0.932 | |
Anthracite | 94.308 | 0.017 | 0.975 | 2.251 | 1.284 | 0.968 | |
Peat | 290.062 | 0.131 | 0.960 | 48.993 | 1.981 | 0.974 | |
Vermiculite | 654.496 | 0.129 | 0.973 | 147.694 | 1.320 | 0.979 | |
TP | Zeolite | 90.404 | 0.159 | 0.960 | 17.511 | 2.095 | 0.967 |
Volcanic rock | 218.068 | 0.010 | 0.963 | 2.644 | 1.129 | 0.965 | |
Sepiolite | 46.155 | 0.428 | 0.928 | 17.931 | 3.382 | 0.916 | |
Ceramsite | 233.884 | 0.129 | 0.972 | 34.517 | 1.853 | 0.973 | |
Anthracite | 23.303 | 0.163 | 0.853 | 5.338 | 2.463 | 0.952 | |
Peat | 282.409 | 0.088 | 0.939 | 31.475 | 1.644 | 0.950 | |
Vermiculite | 94.873 | 0.289 | 0.878 | 29.105 | 2.781 | 0.940 |
Filler | TN | TP | ||||||
---|---|---|---|---|---|---|---|---|
m | K | d | R2 | m | K | d | R2 | |
Zeolite | 289.76 | 0.036 | 1.037 | 0.999 | 157.21 | 0.012 | 0.978 | 0.998 |
Volcanic rock | 32.70 | 0.022 | 1.534 | 0.987 | 1034.14 | 0.009 | 0.832 | 0.975 |
Sepiolite | 74.92 | 0.034 | 1.275 | 0.994 | 967.31 | 0.017 | 0.773 | 0.943 |
Ceramsite | 4217.62 | 0.006 | 0.703 | 0.973 | 193.44 | 0.008 | 1.034 | 0.998 |
Anthracite | 967.34 | 0.004 | 0.671 | 0.981 | 12.71 | 0.021 | 1.231 | 0.977 |
Peat | 133.92 | 0.031 | 1.125 | 0.998 | 319.61 | 0.008 | 0.944 | 0.998 |
Vermiculite | 1367.95 | 0.002 | 0.995 | 0.998 | 612.34 | 0.032 | 0.729 | 0.981 |
Filler | First-Order Model | Double Constants | Models of Elovich | |||||||
---|---|---|---|---|---|---|---|---|---|---|
a | k | R2 | a | k | R2 | a | k | R2 | ||
TN | Zeolite | 49.681 | 0.205 | 0.3608 | 3.668 | 0.054 | 0.807 | 36.198 | 3.963 | 0.847 |
Volcanic rock | 44.362 | 0.159 | 0.407 | 3.426 | 0.083 | 0.857 | 228.727 | 3.556 | 0.869 | |
Sepiolite | 18.021 | 0.022 | 0.758 | 1.001 | 0.354 | 0.879 | −3.836 | 3.267 | 0.832 | |
Ceramsite | 6.503 | 0.019 | 0.959 | −0.271 | 0.402 | 0.909 | −2.463 | 1.649 | 0.938 | |
Anthracite | 12.066 | 0.249 | 0.361 | 2.32 | 0.04 | 0.987 | 10.054 | 0.47 | 0.987 | |
Peat | 125.144 | 0.254 | 0.35 | 4.674 | 0.036 | 0.908 | 106.008 | 4.464 | 0.915 | |
Vermiculite | 96.955 | 0.125 | 0.773 | 4.111 | 0.101 | 0.877 | 54.102 | 9.468 | 0.909 | |
TP | Zeolite | 27.218 | 0.095 | 0.466 | 2.607 | 0.152 | 0.939 | 10.102 | 3.772 | 0.942 |
Volcanic rock | 16.397 | 0.044 | 0.787 | 1.633 | 0.233 | 0.859 | 0.776 | 3.148 | 0.897 | |
Sepiolite | 23.524 | 0.11 | 0.218 | 2.475 | 0.153 | 0.899 | 9.133 | 3.254 | 0.873 | |
Ceramsite | 44.607 | 0.029 | 0.593 | 2.314 | 0.286 | 0.872 | −2.45 | 8.927 | 0.828 | |
Anthracite | 3.764 | 0.035 | 0.761 | −0.054 | 0.272 | 0.943 | −0.185 | 0.777 | 0.947 | |
Peat | 37.007 | 0.03 | 0.973 | 2.038 | 0.305 | 0.881 | −7.314 | 8.662 | 0.957 | |
Vermiculite | 17.31 | 0.052 | 0.707 | 1.768 | 0.222 | 0.953 | 1.77 | 3.216 | 0.966 |
Filler | Types of Sewage | Influent TN/TP Concentration (mg/L) | Removal Rate (%) | Reference |
---|---|---|---|---|
quartz sand | secondary effluent of municipal sewage treatment plant | 15.0 (TN) | 89.4 | [37] |
gravel and immobilized biochar beads | simulated wastewater | 13.0 (TN) | 86.2 | [38] |
sulfur autotrophic denitrification composite | simulated wastewater | 9.0–12.0 (TN) | 81.1 | [39] |
ceramsite | urban sewage | 40.0 (TN) | 75.0 | [40] |
clay | simulated wastewater | 35.0 (TN) | 68.3 | [41] |
organic suspended | landfill leachate | 35.0 (TN) | 81.5 | [42] |
ceramisite and sulfur | synthetic municipal wastewater | 50.0 (TN) | 90.2 | [43] |
ZVI (zero-valent iron)/PHBV (3-hydroxybutyric acid-co-3-hydroxyvaleric acid copolyester)/sawdust composite | simulated wastewater | 1.6 (TP) | 98.5 | [44] |
quartz sand | simulated wastewater | 4.0 (TP) | 78.1 | [45] |
soil, plant detritus and eutrophic lake sediment | stormwater | 1.3 (TP) | 88.6 | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Chen, D.; Zhao, W.; Zheng, X. Aeration Biofilter Filler Screening and Experimental Research on Nitrogen and Phosphorus Purification in Rural Black Water. Water 2022, 14, 957. https://doi.org/10.3390/w14060957
Chen P, Chen D, Zhao W, Zheng X. Aeration Biofilter Filler Screening and Experimental Research on Nitrogen and Phosphorus Purification in Rural Black Water. Water. 2022; 14(6):957. https://doi.org/10.3390/w14060957
Chicago/Turabian StyleChen, Peizhen, Dongkai Chen, Wenjie Zhao, and Xiangqun Zheng. 2022. "Aeration Biofilter Filler Screening and Experimental Research on Nitrogen and Phosphorus Purification in Rural Black Water" Water 14, no. 6: 957. https://doi.org/10.3390/w14060957
APA StyleChen, P., Chen, D., Zhao, W., & Zheng, X. (2022). Aeration Biofilter Filler Screening and Experimental Research on Nitrogen and Phosphorus Purification in Rural Black Water. Water, 14(6), 957. https://doi.org/10.3390/w14060957