Groundwater Recharge Modeling under Water Diversion Engineering: A Case Study in Beijing
Abstract
:1. Introduction
2. Basic information of the Study Area
2.1. Meteorology of the Study Area
2.2. Hydrogeological Conditions in the Study Area
2.3. The Water Diversion Information of the Zhangfang Water Diversion Project
3. Methods
3.1. Groundwater Flow Numerical Model
3.2. Model Calibration and Validation
4. Results and Discussion
4.1. Groundwater Budget Calculation
4.2. Schemes of Reducing Water Diversion in the Zhangfang water diversion project
4.2.1. Consideration of Different Diversion Schemes of Zhangfang Water Diversion Project
4.2.2. Prediction of Groundwater Level of the Downstream Plain of Zhangfang in 2023 in Scheme 1
4.2.3. Prediction of Groundwater Level of the Downstream Plain of Zhangfang in 2023 in Schemes 2 and 3
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Z.; Zhao, S.; Wu, J.; Zhang, Y.; Liu, P.; Jia, R. The influence of ecological restoration projects on groundwater in Yongding River Basin in Beijing, China. Water Supply 2019, 19, 2391–2399. [Google Scholar] [CrossRef]
- Woessner, W.W. Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Groundwater 2000, 38, 423–429. [Google Scholar] [CrossRef]
- Rodríguez, L.B.; Cello, P.A.; Vionnet, C.A. Modeling stream-aquifer interactions in a shallow aquifer, Choele Choel Island, Patagonia, Argentina. Hydrogeol. J. 2006, 14, 591–602. [Google Scholar] [CrossRef]
- Kazezyelmaz-Alhan, C.M.; Medina, M.A. The effect of surface/ground water interactions on wetland sites with different characteristics. Desalination 2008, 226, 298–305. [Google Scholar] [CrossRef]
- Kazezyelmaz-Alhan, C.M.; Medina, M.A.; Richardson, C.J. A wetland hydrology and water quality model incorporating surface water/groundwater interactions. Water Resour. Res. 2007, 43, W04434. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Shu, L. Stream-Aquifer Interactions: Evaluation of Depletion Volume and Residual Effects from Ground Water Pumping. Groundwater 2002, 40, 284–290. [Google Scholar] [CrossRef]
- József, K.; László, M.; József, S.; Ilona, S.K. Detection and evaluation of changes induced by the diversion of River Danube in the territorial appearance of latent effects governing shallow-groundwater fluctuations. J. Hydrol. 2015, 520, 314–325. [Google Scholar]
- Trásy, B.; Kovács, J.; Hatvani, I.G.; Havril, T.; Németh, T.; Scharek, P.; Szabó, C. Assessment of the interaction between surface- and groundwater after the diversion of the inner delta of the River Danube (Hungary) using multivariate statistics. Anthropocene 2018, 22, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Duan, Q.; Pat, J.F.Y.; Pan, Y.; Gong, H.; Di, Z.; Lei, X.; Liao, W.; Huang, Z.; Zheng, L.; et al. The Effectiveness of the South-to-North Water Diversion Middle Route Project on Water Delivery and Groundwater Recovery in North China Plain. Water Resour. Res. 2020, 56, e2019WR026759. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, H.; Chen, Y.; Wang, S.; Ke, Y.; Guo, G.; Li, X.; Chen, B.; Wang, H.; Teatini, P. Effects of Water Diversion Project on groundwater system and land subsidence in Beijing, China. Eng. Geol. 2020, 276, 105763. [Google Scholar] [CrossRef]
- Lu, Z.; Feng, Q.; Xiao, S.; Xie, J.; Zou, S.; Yang, Q.; Si, J. The impacts of the ecological water diversion project on the ecology-hydrology-economy nexus in the lower reaches in an inland river basin. Resour. Conserv. Recycl. 2021, 164, 105154. [Google Scholar] [CrossRef]
- Ji, Z.; Cui, Y.; Zhang, S.; Wang, C.; Shao, J. Evaluation of the Impact of EcologicalWater Supplement onGroundwater Restoration Based on Numerical Simulation: A Case Study in the Section of Yongding River, Beijing Plain. Water 2021, 13, 3059. [Google Scholar] [CrossRef]
- Neville, C.M. Impounded Rivers, Perspectives for Ecological Management: By Geoffrey E. Petts; John Wiley and Sons: Chichester, UK; New York, NY, USA, 1984; Volume 34, p. 1. [Google Scholar]
- Peng, Y.; Chu, J.; Peng, A.; Zhou, H. Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems. Water Resour. Manag. 2015, 29, 3787–3806. [Google Scholar] [CrossRef]
- Lerner, D.N. Groundwater recharge. In Geochemical Process, Weathering and Groundwater Recharge in Catchments; Saether, O.M., de Caritat, P., Eds.; AA Balkema: Rotterdam, The Netherlands, 1997; pp. 109–150. [Google Scholar]
- Tenant, S.; Johannes, C.N.; Stefan, U. Comparison of groundwater recharge estimation methods for the semi-arid Nyamandhlovu area, Zimbabwe. Hydrogeol. J. 2009, 17, 1427–1441. [Google Scholar]
- Richard, W.H.; Peter, G.C. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar]
- Constantz, J.; Thomas, C.L.; Zellweger, G. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resour. Res. 1994, 30, 3253–3264. [Google Scholar] [CrossRef]
- Singh, V.P. Computer Models of Watershed Hydrology; Water Resources Publications: Highlands Ranch, CO, USA, 1995. [Google Scholar]
- Zhang, F.; Wei, Y.; Qian, H.; Zhang, X. Numerical Simulation of the Groundwater in Bulang River- Red Stone Bridge Water Source. Procedia Environ. Sci. 2011, 8, 140–145. [Google Scholar]
- Chandio, A.S.; Lee, T.S.; Mirjat, M.S. The extent of waterlogging in the lower Indus Basin (Pakistan)–A modeling study of groundwater levels. J. Hydrol. 2012, 426–427, 103–111. [Google Scholar] [CrossRef]
- Palma, H.C.; Bentley, L.R. A regional-scale groundwater flow model for the Leon-Chinandega aquifer, Nicaragua. Hydrogeol. J. 2007, 15, 1457–1472. [Google Scholar] [CrossRef] [Green Version]
- Diersch, H.J. FEFLOW Finite Element Subsurface Flow and Transport Simulation System, Reference Manual; WASY GmbH Institute for Water Resources Planning and System Research: Berlin, Germany, 2009. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. A modular three-dimensional finite difference groundwater flow model. U. S. Geol. Surv. Open File Rep. 1988, 83, 528–875. [Google Scholar]
- Harbaugh, A.W. MODFLOW-2005, the US Geological Survey Modular Ground-Water Model: The Ground-Water Flow Process; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2005.
- Wu, J.; Li, J.; Teng, Y.; Chen, H.; Wang, Y. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. J. Hazard. Mater. 2019, 388, 121766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, Y.; Liu, L.; Li, B.; Yao, X. Numerical Simulation of Multi-Water-Source Artificial Recharge of Aquifer: A Case Study of the Mi-Huai-Shun Groundwater Reservoir. Water Resour. 2020, 47, 399–408. [Google Scholar] [CrossRef]
- Husam, B. Stochastic water balance model for rainfall recharge quantification in Ruataniwha Basin, New Zealand. Environ. Geol. 2009, 58, 85–93. [Google Scholar]
- Husam, M.B. Modelling surface-groundwater interaction in the Ruataniwha basin, Hawke’s Bay, New Zealand. Environ. Earth Sci. 2012, 66, 285–294. [Google Scholar]
Partition Number | Lithology | K (m/d) | μ |
---|---|---|---|
Ⅰ | gravel | 45–55 | 0.15–0.2 |
Ⅱ | Coarse sand | 25–35 | 0.11–0.18 |
Ⅲ | Medium-coarse sand | 15–25 | 0.10–0.15 |
Ⅳ | Medium sand | 5–15 | 0.02–0.08 |
Ⅴ | Medium sand | 5–15 | 0.09–0.15 |
Ⅵ | Fine sand | 0–5 | 0.05–0.1 |
Partition Number | Lithology | K (m/d) | μ |
---|---|---|---|
Ⅰ | gravel | 50 | 0.2 |
Ⅱ | Coarse sand | 30 | 0.17 |
Ⅲ | Medium-coarse sand | 17 | 0.15 |
Ⅳ | Medium sand | 10 | 0.12 |
Ⅴ | Medium sand | 8 | 0.05 |
Ⅵ | Fine sand | 5 | 0.1 |
Budget Components | Volume (×106 m3) | Percent (%) | |
---|---|---|---|
IN | precipitation infiltration | 257.35 | 55.13 |
river leakage | 68.77 | 14.73 | |
Lateral inflow | 84.68 | 18.14 | |
agricultural irrigation | 56.00 | 12.00 | |
Total IN | 466.80 | 100 | |
OUT | Exploitation | 461.56 | 96.81 |
Lateral outflow | 15.23 | 3.19 | |
Evaporation | Negligible | 0 | |
Total OUT | 476.79 | 100 | |
IN-OUT | −9.99 |
Budget Components | Scheme 2 | Scheme 3 | |||
---|---|---|---|---|---|
Volume (×106 m3) | Percent (%) | Volume (×106 m3) | Percent (%) | ||
IN | precipitation infiltration | 257.35 | 53.84 | 257.35 | 52.83 |
river leakage | 80.02 | 16.74 | 91.27 | 18.74 | |
Lateral inflow | 84.68 | 17.71 | 82.48 | 16.93 | |
agricultural irrigation | 56.00 | 11.71 | 56.00 | 11.50 | |
Total IN | 478.05 | 100.00 | 487.10 | 100.00 | |
OUT | Exploitation | 461.56 | 96.58 | 461.56 | 96.40 |
Lateral outflow | 16.36 | 3.42 | 17.23 | 3.60 | |
Evaporation | Negligible | 0.00 | Negligible | 0.00 | |
Total OUT | 477.92 | 100.00 | 478.79 | 100.00 | |
IN-OUT | 0.13 | 8.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Meng, X.; Wang, B.; Zhang, D.; Zhao, Y.; Li, R. Groundwater Recharge Modeling under Water Diversion Engineering: A Case Study in Beijing. Water 2022, 14, 985. https://doi.org/10.3390/w14060985
Zhao M, Meng X, Wang B, Zhang D, Zhao Y, Li R. Groundwater Recharge Modeling under Water Diversion Engineering: A Case Study in Beijing. Water. 2022; 14(6):985. https://doi.org/10.3390/w14060985
Chicago/Turabian StyleZhao, Mingyan, Xiangbo Meng, Boxin Wang, Dasheng Zhang, Yafeng Zhao, and Ruyi Li. 2022. "Groundwater Recharge Modeling under Water Diversion Engineering: A Case Study in Beijing" Water 14, no. 6: 985. https://doi.org/10.3390/w14060985
APA StyleZhao, M., Meng, X., Wang, B., Zhang, D., Zhao, Y., & Li, R. (2022). Groundwater Recharge Modeling under Water Diversion Engineering: A Case Study in Beijing. Water, 14(6), 985. https://doi.org/10.3390/w14060985