Why the Effect of CO2 on Potential Evapotranspiration Estimation Should Be Considered in Future Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Estimation of Potential Evapotranspiration
2.4. Evaluation of Simulation Capability for Climate Models
2.5. Contribution Rates Calculation
3. Results
3.1. Assessment of GCMs’ Simulation Capability
3.2. Effect of CO2 on PET
3.3. Contribution Factors Analysis of PET
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darshana, P.A.; Pandey, R.P. Analysing trends in reference evapotranspiration and weather variables in the Tons River Basin in Central India. Stoch. Environ. Res. Risk Assess. 2013, 27, 1407–1421. [Google Scholar] [CrossRef]
- Hashem, A.A.; Engel, B.A.; Bralts, V.E.; Marek, G.W.; Moorhead, J.E.; Rashad, M.; Radwan, S.; Gowda, P.H. Landsat hourly evapotranspiration flux assessment using lysimeters for the texas high plains. Water 2020, 12, 1192. [Google Scholar] [CrossRef]
- Onyutha, C.; Acayo, G.; Nyende, J. Analyses of precipitation and evapotranspiration changes across the Lake Kyoga Basin in East Africa. Water 2020, 12, 1134. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.Q.; Jeu, R.D.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, K.J.; Xu, Y.P.; Gao, X.C.; Wang, J. Evaluation of potential evapotranspiration based on CMADS reanalysis dataset over China. Water 2018, 10, 1126. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.C.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Schär, C.; Loeb, N.; Dutton, E.G. The global energy balance from a surface perspective. Clim. Dyn. 2013, 40, 3107–3134. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Revuelto, J.; López-Moreno, J.I.; González-Hidalgo, J.C.; Moran-Tejeda, E.; Espejo, F. Reference evapotranspiration variability and trends in Spain, 1961–2011. Glob. Planet Chang. 2014, 121, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Milly, P.C.D.; Dunne, K.A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 2016, 6, 946–949. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.M.; Yang, T.T.; Li, F.D.; Liang, K.; Hu, S.S.; Liu, C.G. Assessment of the influences of different potential evapotranspiration inputs on the performance of monthly hydrological models under different climatic conditions. J. Hydrometeorol. 2016, 17, 2259–2274. [Google Scholar] [CrossRef]
- IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Gong, X.L.; Du, S.P.; Li, F.Y.; Ding, Y.B. Study on the spatial and temporal characteristics of mesoscale drought in China under future climate change scenarios. Water 2021, 13, 2761. [Google Scholar] [CrossRef]
- Mondal, S.K.; Huang, J.L.; Wang, Y.J.; Su, B.D.; Zhai, J.Q.; Tao, H.; Wang, G.J.; Fischer, T.; Wen, S.S.; Jiang, T. Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis. Sci. Total Environ. 2021, 771, 145186. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.J.; Feng, P.Y.; Wang, B.; Liu, D.L.; Cleverly, J.; Fang, Q.X.; Yu, Q. Projecting potential evapotranspiration change and quantifying its uncertainty under future climate scenarios: A case study in southeastern Australia. J. Hydrol. 2020, 584, 124756. [Google Scholar] [CrossRef]
- Xiang, K.Y.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.J.; Su, B.D.; Wang, A.Q.; Tao, H.; Zhai, J.Q.; Kundzewicz, Z.W.; Jiang, T. Choice of potential evapotranspiration formulas influences drought assessment: A case study in China. Atmos. Res. 2020, 242, 104979. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Available online: http://www.fao.org/docrep/X0490E/X0490E00.htm (accessed on 9 February 2022).
- Kim, K.; Daly, E.J.; Flesch, T.K.; Coates, T.W. Carbon and water dynamics of a perennial versus an annual grain crop in temperate agroecosystems. Agric. For. Meteorol. 2022, 314, 108805. [Google Scholar] [CrossRef]
- Yang, Y.T.; Roderick, M.L.; Zhang, S.L.; McVicar, T.R.; Donohue, R.J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Chang. 2019, 9, 44–49. [Google Scholar] [CrossRef]
- Yang, Y.T.; Zhang, S.L.; Roderick, M.; McVicar, T.R.; Yang, D.W.; Liu, W.B.; Li, X.Y. Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs. Hydrol. Earth Syst. Sci. 2020, 24, 2921–2930. [Google Scholar] [CrossRef]
- Zhang, G.X.; Su, X.L.; Liu, W.F. Future drought trend in China considering CO2 concentration. Trans. Chin. Soc. Agric. Eng. 2021, 37, 84–91. (In Chinese) [Google Scholar] [CrossRef]
- Field, C.B.; Jackson, R.B.; Mooney, H.A. Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell Environ. 1995, 18, 1214–1225. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 2016, 6, 1023–1027. [Google Scholar] [CrossRef] [Green Version]
- Swann, A.L.S.; Hoffman, F.M.; Koven, C.D.; Randerson, J.T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA 2016, 113, 10019–10024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.T.; Zhang, S.L.; McVicar, T.R.; Beck, H.E.; Zhang, Y.Q.; Liu, B. Disconnection Between Trends of Atmospheric Drying and Continental Runoff. Water Resour. Res. 2018, 54, 4700–4713. [Google Scholar] [CrossRef]
- Thompson, J.R.; Green, A.J.; Kingston, D.G. Potential evapotranspiration-related uncertainty in climate change impacts on river flow: An assessment for the Mekong River basin. J. Hydrol. 2014, 510, 259–279. [Google Scholar] [CrossRef] [Green Version]
- Giménez, P.O.; García-Galiano, S.G. Assessing regional climate models (RCMs) ensemble-driven reference evapotranspiration over Spain. Water 2018, 10, 1181. [Google Scholar] [CrossRef] [Green Version]
- Han, J.Y.; Zhao, Y.; Wang, J.H.; Zhang, B.; Zhu, Y.N.; Jiang, S.; Wang, L.Z. Effects of different land use types on potential evapotranspiration in the Beijing-Tianjin-Hebei region, North China. J. Geogr. Sci. 2019, 29, 922–934. [Google Scholar] [CrossRef] [Green Version]
- Duhan, D.; Singh, D.; Arya, S. Effect of projected climate change on potential evapotranspiration in the semiarid region of central India. J. Water Clim. Chang. 2020, 12, 1854–1870. [Google Scholar] [CrossRef]
- Shi, L.J.; Feng, P.Y.; Wang, B.; Liu, D.L.; Yu, Q. Quantifying future drought change and associated uncertainty in southeastern Australia with multiple potential evapotranspiration models. J. Hydrol. 2020, 590, 125394. [Google Scholar] [CrossRef]
- Wen, X.H.; Pan, W.Q.; Sun, X.G.; Li, M.S.; Luo, S.Q.; Cao, B.J.; Zhang, S.B.; Wang, C.; Zhang, Z.H.; Meng, L.X.; et al. Study on the Variation Trend of Potential Evapotranspiration in the Three-River Headwaters Region in China Over the Past 20 years. Front. Earth Sci. 2020, 448. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.S.; Han, C.T.; Liu, Z.W. Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China. Agric. Water Manag. 2021, 244, 106545. [Google Scholar] [CrossRef]
- Mondal, S.K.; Tao, H.; Huang, J.L.; Wang, Y.J.; Su, B.D.; Zhai, J.Q.; Jing, C.; Wen, S.S.; Jiang, S.; Chen, Z.Y.; et al. Projected changes in temperature, precipitation and potential evapotranspiration across Indus River Basin at 1.5–3.0 °C warming levels using CMIP6-GCMs. Sci. Total Environ. 2021, 789, 147867. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, R.S.; Song, Y.X.; Han, C.T.; Liu, J.F.; Liu, Z.W. Sensitivity of potential evapotranspiration to meteorological factors and their elevational gradients in the Qilian Mountains, northwestern China. J. Hydrol. 2019, 568, 147–159. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xiao, W.H.; Wang, Y.C.; Wang, Y.; Kang, M.Y.; Wang, H.J.; Huang, Y. Sensitivity analysis of potential evapotranspiration to key climatic factors in the Shiyang River Basin. J. Water Clim. Chang. 2021, 12, 2875–2884. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, Q.H. Variations and influencing factors of potential evapotranspiration in large Siberian river basins during 1975–2014. J. Hydrol. 2021, 598, 126443. [Google Scholar] [CrossRef]
- Su, B.D.; Huang, J.L.; Mondal, S.K.; Zhai, J.Q.; Wang, Y.J.; Wen, S.S.; Gao, M.N.; Lv, Y.R.; Jiang, S.; Jiang, T.; et al. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2020, 250, 105375. [Google Scholar] [CrossRef]
- Su, B.D.; Huang, J.L.; Gemmer, M.; Jian, D.N.; Tao, H.; Jiang, T.; Zhao, C.Y. Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin. Atmos. Res. 2016, 178–179, 138–149. [Google Scholar] [CrossRef]
- Su, B.D.; Huang, J.L.; Fischer, T.; Wang, Y.J.; Kundzewicz, Z.W.; Zhai, J.Q.; Sun, H.M.; Wang, A.Q.; Zeng, X.F.; Wang, G.J.; et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Vogel, E.; Nauels, A.; Lorbacher, K.; Meinshausen, N.; Etheridge, D.M.; Fraser, P.J.; Montzka, S.A.; Rayner, P.J.; Trudinger, C.M.; et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 2017, 10, 2057–2116. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Sun, S.L.; Chen, H.S.; Sun, G.; Ju, W.M.; Wang, G.J.; Li, X.; Yan, G.X.; Gao, C.J.; Huang, J.; Zhang, F.M.; et al. Attributing the changes in reference evapotranspiration in Southwestern China using a new separation method. J. Hydrometeorol. 2017, 18, 777–798. [Google Scholar] [CrossRef]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From dimming to brightening: Decadal changes in solar radiation at earth’s surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.H.; Wu, S.H.; Dai, E.F. Determining factors in potential evapotranspiration changes over China in the period 1971–2008. Chin. Sci. Bull. 2010, 55, 2226–2234. (In Chinese) [Google Scholar] [CrossRef]
- Hua, D.; Hao, X.M.; Zhang, Y.; Qin, J.X. Uncertainty assessment of potential evapotranspiration in arid areas, as estimated by the Penman-Monteith method. J. Arid. Land 2020, 12, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.J.; Cui, W.H.; Jiang, Y.B. Temporal and spatial distribution of tropospheric carbon dioxide from 2003 to 2010 in China. Ecol. Environ. Sci. 2012, 21, 1266–1270. (In Chinese) [Google Scholar] [CrossRef]
- Bai, W.G.; Zhang, X.Y.; Zhang, P. Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations. Chin. Sci. Bull. 2010, 55, 3612–3618. [Google Scholar] [CrossRef]
Model Name | Research Institution | Original Resolution |
---|---|---|
CanESM5 | Canadian Centre for Climate Modeling and Analysis | ~2.8° × 2.8° |
CNRM-ESM2-1 | Centre National de Recherches Météorologiques- Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CNRM-CERFACS) | 1.4° × 1.4° |
FGOALS-g3 | Chinese Academy of Sciences (CAS) | 2.3° × 2° |
GISS-E2-1-G | Goddard Institute for Space Studies (NASA-GISS) | 2° × 2.5° |
IPSL-CM6A-LR | Institut Pierre-Simon Laplace | 2.5° × ~1.27° |
MIROC6 | AORI-UT-JAMSTEC-NIES | ~1.4° × 1.4° |
MRI-ESM2-0 | Meteorological Research Institute Earth System | ~1.125° × 1.12° |
China | Arid Region | Semi-Arid and Semi-Humid Region | Humid Region | |||||
---|---|---|---|---|---|---|---|---|
Y | N | Y | N | Y | N | Y | N | |
1961–2014 | −0.4 | 1.1 | 1.2 | 3.6 | 0.7 | 2.8 | −4.0 | −2.7 |
SSP1-1.9 | 3.4 | 3.0 | 2.8 | 2.3 | 2.6 | 2.2 | 5.5 | 5.2 |
SSP1-2.6 | 4.3 | 4.7 | 3.1 | 3.6 | 3.3 | 3.8 | 7.0 | 7.4 |
SSP2-4.5 | 5.4 | 8.2 | 3.4 | 6.9 | 4.4 | 7.3 | 8.9 | 11.0 |
SSP3-7.0 | 5.9 | 11.6 | 5.1 | 12.3 | 5.5 | 11.5 | 7.3 | 11.2 |
SSP4-3.4 | 6.4 | 7.4 | 4.7 | 5.9 | 5.0 | 6.1 | 10.3 | 11.2 |
SSP4-6.0 | 7.1 | 10.8 | 5.4 | 10.0 | 6.1 | 10.0 | 10.4 | 13.1 |
SSP5-8.5 | 9.1 | 18.4 | 7.3 | 18.5 | 7.7 | 17.2 | 13.3 | 20.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Jiang, S.; Su, B.; Huang, J.; Wang, Y.; Zhan, M.; Jing, C.; Jiang, T. Why the Effect of CO2 on Potential Evapotranspiration Estimation Should Be Considered in Future Climate. Water 2022, 14, 986. https://doi.org/10.3390/w14060986
Zhou J, Jiang S, Su B, Huang J, Wang Y, Zhan M, Jing C, Jiang T. Why the Effect of CO2 on Potential Evapotranspiration Estimation Should Be Considered in Future Climate. Water. 2022; 14(6):986. https://doi.org/10.3390/w14060986
Chicago/Turabian StyleZhou, Jian, Shan Jiang, Buda Su, Jinlong Huang, Yanjun Wang, Mingjin Zhan, Cheng Jing, and Tong Jiang. 2022. "Why the Effect of CO2 on Potential Evapotranspiration Estimation Should Be Considered in Future Climate" Water 14, no. 6: 986. https://doi.org/10.3390/w14060986
APA StyleZhou, J., Jiang, S., Su, B., Huang, J., Wang, Y., Zhan, M., Jing, C., & Jiang, T. (2022). Why the Effect of CO2 on Potential Evapotranspiration Estimation Should Be Considered in Future Climate. Water, 14(6), 986. https://doi.org/10.3390/w14060986