Transport Behavior of RB5 Dye in Alluvial Soil in the Northeast of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Chemicals, Solutions, and Experimental Setup
2.3. Transport Models
2.4. Parameter Estimation
2.5. Statistical Criteria
3. Results and Discussion
3.1. KBR Transport
3.2. Miscible Displacement of Dye RB5 in Alluvial Soil
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huynh, N.-T.; Chien, C.-F. A Hybrid Multi-Subpopulation Genetic Algorithm for Textile Batch Dyeing Scheduling and an Empirical Study. Comput. Ind. Eng. 2018, 125, 615–627. [Google Scholar] [CrossRef]
- Nazmul Islam, G.M.; Ke, G.; Ahsanul Haque, A.N.M.; Azharul Islam, M. Effect of Ultrasound on Dyeing of Wool Fabric with Acid Dye. Int. J. Ind. Chem. 2017, 8, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shao, Z.; Reng, X.; Zhou, J.; Qin, W. Dye-Decolorization of a Newly Isolated Strain Bacillus Amyloliquefaciens W36. World J. Microbiol. Biotechnol. 2021, 37, 8. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Sapawe, N. Effect of pH on the Photocatalytic Degradation of Remazol Brilliant Blue Dye Using Zirconia Catalyst. Mater. Sci. Proc. 2020, 31, 260–262. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyaya, M.C. Adsorption Characteristics for the Removal of a Toxic Dye, Tartrazine from Aqueous Solutions by a Low Cost Agricultural by-Product. Arab. J. Chem. 2017, 10, S1629–S1638. [Google Scholar] [CrossRef] [Green Version]
- Stagnaro, S.M.; Volzone, C.; Huck, L. Nanoclay as Adsorbent: Evaluation for Removing Dyes Used in the Textile Industry. Procedia Mater. Sci. 2015, 8, 586–591. [Google Scholar] [CrossRef] [Green Version]
- Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Sundaram, S.K.; Kumar, S.D.; Santhanam, P. Phytoremediation of Dye Contaminated Soil by Leucaena leucocephala (Subabul) Seed and Growth Assessment of Vigna radiata in the Remediated Soil. Saudi J. Biol. Sci. 2014, 21, 324–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharat, D. Treatment of Textile Industry Effluents: Limitations and Scope. J. Environ. Res. Dev. 2015, 9, 1210. [Google Scholar]
- Smaranda, C.; Popescu, M.-C.; Bulgariu, D.; Măluţan, T.; Gavrilescu, M. Adsorption of Organic Pollutants onto a Romanian Soil: Column Dynamics and Transport. Process. Saf. Environ. Prot. 2017, 108, 108–120. [Google Scholar] [CrossRef]
- Rehman, K.; Shahzad, T.; Sahar, A.; Hussain, S.; Mahmood, F.; Siddique, M.H.; Siddique, M.A.; Rashid, M.I. Effect of Reactive Black 5 Azo Dye on Soil Processes Related to C and N Cycling. PeerJ 2018, 6, e4802. [Google Scholar] [CrossRef]
- Louati, I.; Elloumi-Mseddi, J.; Cheikhrouhou, W.; Hadrich, B.; Nasri, M.; Aifa, S.; Woodward, S.; Mechichi, T. Simultaneous Cleanup of Reactive Black 5 and Cadmium by a Desert Soil Bacterium. Ecotoxicol. Environ. Saf. 2020, 190, 110103. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.T.A.; de Souza Silva, L.T.M.; de Alcântara, L.R.P.; de Oliveira Barros, V.H.; dos Santos, S.M.; de Lima, V.F.; de Sousa Lima, J.R.; Coutinho, A.P.; Antonino, A.C.D. Sorption of Remazol Black B Dye in Alluvial Soils of the Capibaribe River Basin, Pernambuco, Brazil. Rev. Ambiente Água 2020, 15. [Google Scholar] [CrossRef] [Green Version]
- Lai, K.C.; Lee, L.Y.; Hiew, B.Y.Z.; Yang, T.C.-K.; Pan, G.-T.; Thangalazhy-Gopakumar, S.; Gan, S. Utilisation of Eco-Friendly and Low Cost 3D Graphene-Based Composite for Treatment of Aqueous Reactive Black 5 Dye: Characterisation, Adsorption Mechanism and Recyclability Studies. J. Taiwan Inst. Chem. Eng. 2020, 114, 57–66. [Google Scholar] [CrossRef]
- Felista, M.M.; Wanyonyi, W.C.; Ongera, G. Adsorption of Anionic Dye (Reactive Black 5) Using Macadamia Seed Husks: Kinetics and Equilibrium Studies. Sci. Afr. 2020, 7, e00283. [Google Scholar] [CrossRef]
- El Bouraie, M.; El Din, W.S. Biodegradation of Reactive Black 5 by Aeromonas Hydrophila Strain Isolated from Dye-Contaminated Textile Wastewater. Sustain. Environ. Res. 2016, 26, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Braga, R.A.P.; de Oliveira Farias, C.; da Silva, S.; Cavalcanti, E.R. Gestão e Educação Socioambiental Na Bacia Do Capibaribe; Clã, Ed.; ANE Publishing: Recife, Brazil, 2015; p. 140. [Google Scholar]
- Da Silva Alexandre, J.I.; dos Santos, S.M.; Coutinho, A.P.; de Melo, T.d.A.T.; Gonçalves, E.A.P.; Gondim, M.V.S.; Antonino, A.C.D.; da Cunha Rabelo, A.E.C.d.G.; de Oliveira, A.L. Sorption of the Direct Black 22 Dye in Alluvial Soil. Rev. Ambiente Água 2020, 15. [Google Scholar] [CrossRef]
- Da Cunha Rabelo, A.E.C.d.G.; dos Santos Neto, S.M.; Coutinho, A.P.; Antonino, A.C.D. Sorption of Sulfadiazine and Flow Modeling in an Alluvial Deposit of a Dry Riverbed in the Brazilian Semiarid. J. Contam. Hydrol. 2021, 241, 103818. [Google Scholar] [CrossRef]
- Febrianto, G.; Karisma, D.; Mangindaan, D. Polyetherimide Nanofiltration Membranes Modified by Interfacial Polymerization for Treatment of Textile Dyes Wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2019, 622, 012019. [Google Scholar] [CrossRef]
- Zhu, J.; Qin, L.; Uliana, A.; Hou, J.; Wang, J.; Zhang, Y.; Li, X.; Yuan, S.; Li, J.; Tian, M.; et al. Elevated Performance of Thin Film Nanocomposite Membranes Enabled by Modified Hydrophilic MOFs for Nanofiltration. ACS Appl. Mater. Interfaces 2017, 9, 1975–1986. [Google Scholar] [CrossRef]
- Sana, D.; Jalila, S. Combined Effect of Unsaturated Soil Condition and Soil Heterogeneity on Methylene Blue Adsorption/Desorption and Transport in Fixed Bed Column: Experimental and Modeling Analysis. J. King Saud Univ. Sci. 2016, 28, 308–317. [Google Scholar] [CrossRef]
- Smaranda, C.; Gavrilescu, M.; Bulgariu, D. Studies on Sorption of Congo Red from Aqueous Solution onto Soil. Int. J. Environ. Res. 2011, 5, 177–188. [Google Scholar] [CrossRef]
- Bachratá, M.; Šuňovská, A.; Horník, M.; Pipíška, M.; Augustín, J. Sorption of Synthetic Dyes Onto River Sediments: A Laboratory Study. Nova Biotechnol. Chim. 2013, 12, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tong, J.; Hu, B.X.; Wei, W. Adsorption and Desorption for Dynamics Transport of Hexavalent Chromium (Cr(VI)) in Soil Column. Environ. Sci. Pollut. Res. 2018, 25, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Wei, L.; Xu, S.; Sun, J.; Shi, X.; Qiu, Y. Transport of Imidazolium-Based Ionic Liquids with Different Anion/Cation Species in Sand/Soil Columns. Ecotoxicol. Environ. Saf. 2018, 147, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Palácio Filho, A.M.; Netto, A.M.; Corrêa, M.M.; Neto, F.C.R.; Da Silva, L.P.; Malta, S.H.D.S. Hydrodynamic and Hydrodispersive Characterization of a Fluvic Cambisol in the Northeast Region of Brazil. Rev. Caatinga 2020, 33, 160–171. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T. Modeling Nonequilibrium Flow and Transport Processes Using HYDRUS. Vadose Zone J. 2008, 7, 782–797. [Google Scholar] [CrossRef] [Green Version]
- Sidoli, P.; Lassabatere, L.; Angulo-Jaramillo, R.; Baran, N. Experimental and Modeling of the Unsaturated Transports of S-Metolachlor and Its Metabolites in Glaciofluvial Vadose Zone Solids. J. Contam. Hydrol. 2016, 190, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Van Genuchten, M.T.; Wierenga, P.J. Mass Transfer Studies in Sorbing Porous Media I. Analytical Solutions. Soil Sci. Soc. Am. J. 1976, 40, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Zhan, H.; Feng, S.; Fu, B.; Ma, Y.; Huang, G. A New Mobile-Immobile Model for Reactive Solute Transport with Scale-Dependent Dispersion. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Cao, Y.; Dong, S.; Dai, Z.; Zhu, L.; Xiao, T.; Zhang, X.; Yin, S.; Soltanian, M.R. Adsorption Model Identification for Chromium (VI) Transport in Unconsolidated Sediments. J. Hydrol. 2021, 598, 126228. [Google Scholar] [CrossRef]
- Florido, A.; Valderrama, C.; Arévalo, J.A.; Casas, I.; Martínez, M.; Miralles, N. Application of Two Sites Non-Equilibrium Sorption Model for the Removal of Cu(II) onto Grape Stalk Wastes in a Fixed-Bed Column. Chem. Eng. J. 2010, 156, 298–304. [Google Scholar] [CrossRef]
- Milfont, M.L.; Antonino, A.C.; Martins, J.M.; Netto, A.M.; Corrêa, M.M. Caracterização Hidrodispersiva de Dois Solos Do Vale Do Rio São Francisco. Rev. Bras. Ciênc. Agrár. 2006, 1, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Milfont, M.L.; Antonino, A.C.D.; Martins, J.M.F.; Netto, A.M.; Gouveia, E.R.; Correa, M.M. Transporte Do Paclobutrazol Em Colunas de Solos. Rev. Bras. Ciênc. Solo 2008, 32, 2165–2175. [Google Scholar] [CrossRef] [Green Version]
- Winiarski, T.; Lassabatere, L.; Angulo-Jaramillo, R.; Goutaland, D. Characterization of the Heterogeneous Flow and Pollutant Transfer in the Unsaturated Zone in the Fluvio-Glacial Deposit. Procedia Environ. Sci. 2013, 19, 955–964. [Google Scholar] [CrossRef]
- Do Carmo, A.I.; Antonino, A.C.D.; Martins, J.M.F.; da Silva, V.L.; Morel, M.C.; Gaudet, J.P. Lixiviação de Naftaleno Em Solos Urbanos Da Região Metropolitana Do Recife, PE. Rev. Bras. Ciênc. Solo 2013, 37, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Moura, A.; Carvalho, J.; Montenegro, S.; Carmo, A.; Magalhães, A.; Sousa, C.; Antonino, A.; Araujo, J.; Melo, R. Determinação de Parâmetros Hidrodispersivos Em Solos Da Zona Da Mata de Pernambuco. Rev. Bras. Recur. Hídricos 2013, 18, 109–115. [Google Scholar] [CrossRef]
- Do Carmo, A.I.; Antonino, A.C.; Netto, A.M.; Corrêa, M.M. Caracterização Hidrodispersiva de Dois Solos Da Região Irrigada Do Vale Do São Francisco. Rev. Bras. Eng. Agríc. Ambient. 2010, 14, 698–704. [Google Scholar] [CrossRef]
- Prédélus, D.; Coutinho, A.P.; Lassabatere, L.; Bien, L.B.; Winiarski, T.; Angulo-Jaramillo, R. Combined Effect of Capillary Barrier and Layered Slope on Water, Solute and Nanoparticle Transfer in an Unsaturated Soil at Lysimeter Scale. J. Contam. Hydrol. 2015, 181, 69–81. [Google Scholar] [CrossRef]
- Ben Dassi, R.; Chamam, B.; Méricq, J.P.; Faur, C.; El Mir, L.; Trabelsi, I.; Heran, M. Novel Polyvinylidene Fluoride/Lead-Doped Zinc Oxide Adsorptive Membranes for Enhancement of the Removal of Reactive Textile Dye. Int. J. Environ. Sci. Technol. 2021, 18, 2793–2804. [Google Scholar] [CrossRef]
- Vanderborght, J.; Vereecken, H. Review of Dispersivities for Transport Modeling in Soils. Vadose Zone J. 2007, 6, 29–52. [Google Scholar] [CrossRef]
- Toride, N.; Leij, F.; Van Genuchten, M.T. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Filed Tracer Experiments; US Salinity Laboratory: Riverside, CA, USA, 1995. [Google Scholar]
- Simunek, J.; Van Genuchten, M.T.; Sejna, M.; Toride, N.; Leij, F. The STANMOD Computer Software for Evaluating Solute Transport in Porous Media Using Analytical Solutions of Convection-Dispersion Equation. Versions 1.0 and 2.0; Rep. IGWMC-TPS; IGWMC: Golden, CO, USA, 1999; p. 32. [Google Scholar]
- Van Genuchten, M.T.; Šimunek, J.; Leij, F.J.; Toride, N.; Šejna, M. STANMOD: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1355. [Google Scholar] [CrossRef]
- Costa, C.T.; Antonino, A.C.D.; Netto, A.M. Ensaios de Deslocamento de Líquido Miscível Na Determinação Dos Parâmetros Hidrodispersivos de Um Solo Aluvial. Rev. Bras. Recur. Hídricos 2006, 11, 111–122. [Google Scholar]
- Dousset, S.; Thevenot, M.; Pot, V.; Simunek, J.; Andreux, F. Evaluating Equilibrium and Non-Equilibrium Transport of Bromide and Isoproturon in Disturbed and Undisturbed Soil Columns. J. Contam. Hydrol. 2007, 94, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Lassabatere, L.; Spadini, L.; Delolme, C.; Février, L.; Galvez-Cloutier, R.; Winiarski, T. Concomitant Zn-Cd and Pb Retention in a Carbonated Fluvio-Glacial Deposit under Both Static and Dynamic Conditions. Chemosphere 2007, 69, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Lassabatere, L.; Winiarski, T.; Galvez Cloutier, R. Retention of Three Heavy Metals (Zn, Pb, and Cd) in a Calcareous Soil Controlled by the Modification of Flow with Geotextiles. Environ. Sci. Technol. 2004, 38, 4215–4221. [Google Scholar] [CrossRef]
- Prédélus, D.; Lassabatere, L.; Coutinho, A.; Louis, C.; Brichart, T.; Slimène, E.; Winiarski, T.; Angulo-Jaramillo, R. Tracing Water Flow and Colloidal Particles Transfer in an Unsaturated Soil. J. Water Resour. Prot. 2014, 6, 696–709. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Xu, S. Co-Transport of Heavy Metals in Layered Saturated Soil: Characteristics and Simulation. Environ. Pollut. 2020, 261, 114072. [Google Scholar] [CrossRef]
- Jellali, S.; Diamantopoulos, E.; Kallali, H.; Bennaceur, S.; Anane, M.; Jedidi, N. Dynamic Sorption of Ammonium by Sandy Soil in Fixed Bed Columns: Evaluation of Equilibrium and Non-Equilibrium Transport Processes. J. Environ. Manag. 2010, 91, 897–905. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; Stevens, G.W.; Mumford, K.A. Hydrocarbon Adsorption Performance and Regeneration Stability of Diphenyldichlorosilane Coated Zeolite and Its Application in Permeable Reactive Barriers: Column Studies. Microporous Mesoporous Mater. 2020, 294, 109843. [Google Scholar] [CrossRef]
- Afshari, S.; Hejazi, S.H.; Kantzas, A. Longitudinal Dispersion in Heterogeneous Layered Porous Media during Stable and Unstable Pore-Scale Miscible Displacements. Adv. Water Resour. 2018, 119, 125–141. [Google Scholar] [CrossRef]
- Afshari, S.; Hejazi, S.H.; Kantzas, A. Pore-Scale Modeling of Coupled Thermal and Solutal Dispersion in Double Diffusive-Advective Flows through Porous Media. Int. J. Heat Mass Transf. 2020, 147, 118730. [Google Scholar] [CrossRef]
- Batany, S.; Peyneau, P.-E.; Lassabatère, L.; Béchet, B.; Faure, P.; Dangla, P. Interplay between Molecular Diffusion and Advection during Solute Transport in Macroporous Media. Vadose Zone J. 2019, 18, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Schlindwein, S. Parametrização Do Transporte Dispersivo de Solutos Em Solos Estruturados: Heterogeneidade Do Meio, Percurso de Transporte e Modelagem. Rev. Bras. Ciênc. Solo 1998, 22, 173–179. [Google Scholar] [CrossRef]
- Dawodu, M.O.; Akpomie, K.G. Evaluating the Potential of a Nigerian Soil as an Adsorbent for Tartrazine Dye: Isotherm, Kinetic and Thermodynamic Studies. Alex. Eng. J. 2016, 55, 3211–3218. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Liu, X.; Tang, H.; Su, Y. Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River. J. Colloid Interface Sci. 2001, 239, 475–482. [Google Scholar] [CrossRef]
- Errais, E.; Duplay, J.; Elhabiri, M.; Khodja, M.; Ocampo, R.; Baltenweck-Guyot, R.; Darragi, F. Anionic RR120 Dye Adsorption onto Raw Clay: Surface Properties and Adsorption Mechanism. Colloids Surf. Physicochem. Eng. Asp. 2012, 403, 69–78. [Google Scholar] [CrossRef]
- Lazaridis, N.K.; Keenan, H. Chitosan Beads as Barriers to the Transport of Azo Dye in Soil Column. J. Hazard. Mater. 2010, 173, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Defo, C.; Yerima, B.P.K.; Bemmo, N. Investigating Soils Retention Ratios and Modelling Geochemical Factors Affecting Heavy Metals Retention in Soils in a Tropical Urban Watershed. Environ. Dev. Sustain. 2017, 19, 1649–1671. [Google Scholar] [CrossRef]
- Ben Slimene, E.; Lassabatere, L.; Šimůnek, J.; Winiarski, T.; Gourdon, R. The Role of Heterogeneous Lithology in a Glaciofluvial Deposit on Unsaturated Preferential Flow-a Numerical Study. J. Hydrol. Hydromech. 2017, 65, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Bien, L.B.; Predelus, D.; Lassabatere, L.; Winiarski, T.; Angulo-Jaramillo, R. Combined Effect of Infiltration, Capillary Barrier and Sloping Layered Soil on Flow and Solute Transfer in a Heterogeneous Lysimeter. Open J. Mod. Hydrol. 2013, 3, 138–153. [Google Scholar] [CrossRef]
- Coutinho, A.P.; Lassabatere, L.; Winiarski, T.; Cabral, J.J.S.P.; Antonino, A.C.D.; Angulo-Jaramillo, R. Vadose Zone Heterogeneity Effect on Unsaturated Water Flow Modeling at Meso-Scale. J. Water Resour. Prot. 2015, 7, 353–368. [Google Scholar] [CrossRef] [Green Version]
Layer | Sand (%) | Silt (%) | Clay (%) | Classification | pH in Water | ZPC | OM (%) | OC (%) | CEC (cmolc dm−3) |
---|---|---|---|---|---|---|---|---|---|
CM1 | 79.395 ± 0.35 | 15.71 ± 0.20 | 4.895 ± 0.35 | Loamy sand | 8.26 ± 0.28 | 5.50 ± 0.20 | 2.17 | 1.26 | 7.4 |
CM2 | 95.48 ± 0.40 | 4.205 ± 0.35 | 0.315 ± 0.29 | Sand | 6.01 ± 0.35 | 6.00 ± 0.35 | 1.67 | 0.97 | 3.3 |
Dye | C.I. Reactive Black 5 |
Molecular formula | C26H21N5Na4O19S6 |
Molecular weight (g.mol−1) | 991,8 |
λmax (nm) | 597 |
Classification | Azo, anionic |
Chemical structure | |
Brand | Sigma-Aldrich |
Dye content | ≥50% |
CAS-No | 17095-24-8 |
EC-No | 241-164-5 |
Component | Tetrasodium 4-amino-5-hydroxy-3,6-bis[[4-[[2-(sulphonatooxy) ethyl] sulphonyl] phenyl] azo] naphthalene-2,7-disulphonate |
Classification | Resp. Sens. Category 1, H334; Skin Sens. Category 1, H317 |
Parameters | Expressions | ||
---|---|---|---|
CDE | Two-Site Model | Two-Region Model | |
T | |||
Z | |||
Pe | |||
R | |||
β | - | ||
- | |||
C | - | - | |
C1 | - | ||
C2 | - | ||
μE | - | - | |
μ1 | - | ||
μ2 | - | ||
γE | - | - | |
γ1 | - | ||
γ2 | - |
Layer | (g cm−3) | Vp (cm3) | (cm3 cm−3) | q (cm h−1) | v (cm h−1) | Tpulse (h) |
---|---|---|---|---|---|---|
CM1 | 1.515 ± 0.002 | 36.453 ± 0.242 | 0.343 ± 0.002 | 3.723 ± 0.004 | 10.846 ± 0.077 | 1.930 ± 0.047 |
CM2 | 1.627 ± 0.002 | 37.533 ± 0.153 | 0.357 ± 0.003 | 3.625 ± 0.118 | 10.153 ± 0.304 | 1.975 ± 0.019 |
Layer | D (cm2 h−1) | R | λ (cm) | Pe | R2 | MSE | DR | ME | RMC |
---|---|---|---|---|---|---|---|---|---|
CM1 | 3.512 ± 0.427 | 1.010 ± 0.019 | 0.324 ± 0.040 | 62.353 ± 7.410 | 0.983 ± 0.004 | 14.927 ± 2.597 | 0.921 ± 0.001 | 0.984 ± 0.004 | 0.005 ± 0.007 |
CM2 | 5.559 ± 0.692 | 0.741 ± 0.021 | 0.547 ± 052 | 36.796 ± 3.324 | 0.967 ± 0.001 | 19.037 ± 0.910 | 0.894 ± 0.044 | 0.968 ± 0.001 | 0.038 ± 0.025 |
Layer | D (cm2 h−1) | R | λ (cm) | β | ω | Pe | R2 | MSE | DR | ME | RMC |
---|---|---|---|---|---|---|---|---|---|---|---|
CM1 | 1.023 ± 0.359 | 1.065 ± 0.023 | 0.101 ± 0.036 | 0.880 ± 0.018 | 0.018 ± 0.004 | 228.586 ± 71.797 | 0.997 ± 0.002 | 6.235 ± 3.012 | 1.010 ± 0.003 | 0.997 ± 0.002 | 0.003 ± 0.007 |
CM2 | 5.151 ± 0.504 | 0.790 ± 0.017 | 0.507 ± 0.047 | 0.806 ± 0.010 | 0.019 ± 0.002 | 39.638 ± 3.527 | 0.991 ± 0.001 | 9.640 ± 0.199 | 1.023 ± 0.010 | 0.992 ± 0.001 | 0.047 ± 0.013 |
Layer | D (cm2 h−1) | R | β | ω | R2 | MSE | DR | ME | RMC |
---|---|---|---|---|---|---|---|---|---|
CM1 | 2.253 ± 0.406 | 8.993 ± 0.327 | 0.216 ± 0.080 | 0.015 ± 0.006 | 0.979 ± 0.002 | 38.968 ± 2.077 | 1.028 ± 0.116 | 0.972 ± 0.077 | −0.004 ± 0.004 |
CM2 | 2.796 ± 0.322 | 3.333 ± 0.094 | 0.351 ± 0.010 | 0.015 ± 0.007 | 0.966 ± 0.002 | 59.623 ± 2.695 | 1.047 ± 0.106 | 0.949 ± 0.018 | −0.071 ± 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, A.T.A.; Coutinho, A.P.; de Oliveira Barros, V.H.; Lassabatere, L.; dos Santos Neto, S.M.; de Sousa Lima, J.R.; Antonino, A.C.D. Transport Behavior of RB5 Dye in Alluvial Soil in the Northeast of Brazil. Water 2022, 14, 1000. https://doi.org/10.3390/w14071000
Alves ATA, Coutinho AP, de Oliveira Barros VH, Lassabatere L, dos Santos Neto SM, de Sousa Lima JR, Antonino ACD. Transport Behavior of RB5 Dye in Alluvial Soil in the Northeast of Brazil. Water. 2022; 14(7):1000. https://doi.org/10.3390/w14071000
Chicago/Turabian StyleAlves, Adriana Thays Araújo, Artur Paiva Coutinho, Vitor Hugo de Oliveira Barros, Laurent Lassabatere, Severino Martins dos Santos Neto, José Romualdo de Sousa Lima, and Antonio Celso Dantas Antonino. 2022. "Transport Behavior of RB5 Dye in Alluvial Soil in the Northeast of Brazil" Water 14, no. 7: 1000. https://doi.org/10.3390/w14071000
APA StyleAlves, A. T. A., Coutinho, A. P., de Oliveira Barros, V. H., Lassabatere, L., dos Santos Neto, S. M., de Sousa Lima, J. R., & Antonino, A. C. D. (2022). Transport Behavior of RB5 Dye in Alluvial Soil in the Northeast of Brazil. Water, 14(7), 1000. https://doi.org/10.3390/w14071000