External Phosphorus Loading in New Lakes
Abstract
:1. Introduction
Aim
2. Methods
2.1. Study Design
2.2. Lake and Catchment Characteristics
Lake | ID | Established | Sampling | Lake Area | Catchment | Volume | Annual Net Precipitation a | ID15 Model Runoff | tW |
---|---|---|---|---|---|---|---|---|---|
Year | Year | ha | ha | 1000 m3 | mm Year−1 | 1000 m3 | Days | ||
Alsønderup | ALS | 1987 | 2017 | 49 | 9789 | 407.2 | 250 ± 25 | 30,084 ± 8710 | 5 ± 2 |
Botofte | BSM | 2009 | 2017 | 31 | 521 | 198.1 | 150 ± 25 | 842 ± 313 | 94 ± 48 |
Bunds | BUN | 2015 | 2018 | 141 | 1057 | 3010.3 | 275 ± 25 | 2204 ± 703 | 424 ± 186 |
Bølling | BOL | 2004 | 2018 | 344 | 2643 | 4838.4 | 400 ± 50 | 34,450 ± 3187 | 49 ± 6 |
Egå | EGA | 2006 | 2019 | 112 | 5436 | 992.9 | 275 ± 25 | 16,375 ± 4371 | 22 ± 9 b |
Filsø | FIL | 2013 | 2018 | 889 | 10,468 | 7626.7 | 450 ± 25 | 51,615 ± 6264 | 50 ± 8 c |
Gyldensteen | GES | 2014 | 2017 | 139 | 112 | 510.3 | 175 ± 50 | 672 ± 68 | 203 ± 44 d |
Hindemade | HIN | 1994 | 2018 | 41 | 6248 | 302.5 | 400 ± 50 | 29,519 ± 2324 | 4 ± 1 e |
Syberg | SYB | 2017 | 2018 | 29 | 306 | 635.8 | 125 ± 25 | 574 ± 174 | 380 ± 175 |
Lillelund | LES | 2015 | 2018 | 4.5 | 149 | 70.5 | 450 ± 50 | 2326 ± 314 | 11 ± 2 |
Rønnebæk | RBS | 2018 | 2018 | 8 | 270 | 74.6 | 175 ± 25 | 658 ± 100 | 41 ± 9 f |
Vilsted | VIL | 2006 | 2017 | 450 | 8857 | 5439.7 | 300 ± 50 | 38,230 ± 5308 | 50 ± 10 g |
2.3. Determination of External P-Loading
2.4. Determination of Lake TP
2.5. Determination of Internal P-Loading
ID | GIS | Topographic | National Average | Runoff Values | Crop Values | DNC Model | TPInternal | TPInternal % of TPExternal | ||
---|---|---|---|---|---|---|---|---|---|---|
Model # | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | ||||
kg year−1 | kg year−1 | kg year−1 | kg year−1 | kg year−1 | kg year−1 | kg year−1 | kg year−1 | kg season−1 | % | |
ALS | 3064 | 2843 ± 870 | 4820 ± 479 | 4663 ± 128 | 7072 | 8727 ± 474 | 4531 | 3852 ± 815 | −223 | −3–−5 |
BSM | 0 | 19 ± 4 | 142 ± 42 | 162 ± 14 | 484 | 162 ± 13 | 100 | 115 ± 46 | 90 | 19–90 |
BUN | 0 | 12 ± 14 | 414 ± 133 | 558 ± 44 | 2068 | 731 ± 59 | 353 | 390 ± 127 | 348 | 17–99 |
BOL | 24 | 28 ± 13 | 652 ± 154 | 609 ± 51 | 1483 | 896 ± 67 | 284 | 1149 ± 133 | 166 | 11–59 |
EGA | 999 | 951 ± 225 | 2527 ± 504 | 2365 ± 166 | 6106 | 3559 ± 214 | 2319 | 1918 ± 448 | 203 | 23–9 |
FIL a | 75 | 36 ± 25 | 3269 ± 964 | 3300 ± 247 | 13,250 | 16,777 ± 1397 | 4042 | 7006 ± 1052 | 1968 | 12–60 |
GES | 4 | 0 | 63 ± 9 | 68 ± 3 | 105 | 69 ± 3 | 39 | 98 ± 20 | 38 | 36–97 |
HIN b | 662 | 378 ± 159 | 2600 ± 635 | 2892 ± 198 | 9943 | 6228 ± 470 | 3302 | 2538 ± 305 | −389 | −4–−15 |
SYB | 44 | 10 ± 2 | 120 ± 24 | 89 ± 7 | 319 | 107 ± 5 | 91 | 79 ± 21 | 84 | 26–106 |
LES | 77 | 28 ± 4 | 100 ± 7 | 100 ± 2 | 104 | 102 ± 2 | 94 | 232 ± 30 | −9 | −4–−10 |
RBS | 0 | 43 ± 11 | 86 ± 28 | 63 ± 9 | 282 | 78 ± 6 | 104 | 113 ± 18 | 17 | 6–27 |
VIL c | 42 | 105 ± 68 | 2725 ± 843 | 2431 ± 215 | 10,652 | 10,223 ± 853 | 2706 | 3760 ± 547 | 367 | 4–15 |
2.6. Statistics
3. Results
3.1. Characteristics of New Lake Catchments
Relationships between TPSummer and Catchment Characteristics
3.2. Prediction of External P-Loading
3.3. Internal P-Loading
3.4. Temporal Resolution
4. Discussion
4.1. Water Quality of New Lakes
4.2. Determination of External P-Loading
4.3. Temporal Resolution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeppesen, E.; Jeppesen, E.; Søndergaard, M.; Kronvang, B.; Jensen, J.P.; Svendsen, L.M.; Lauridsen, T.L. Lake and Catchment Management in Denmark; Springer: Dordrecht, The Netherlands, 1999; pp. 419–432. [Google Scholar]
- King, K.W.; Williams, M.R.; Macrae, M.L.; Fausey, N.R.; Frankenberger, J.; Smith, D.R.; Kleinman, P.J.A.; Brown, L.C. Phosphorus Transport in Agricultural Subsurface Drainage: A Review. J. Environ. Qual. 2015, 44, 467–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Søndergaard, M.; Jeppesen, E.; Jensen, J.P.; Bradshaw, E.; Skovgaard, H.; Grünfeld, S. Vandrammedirektivet og Danske Søer. Del 1: Søtyper, Referencetilstand og Økologiske Kvalitetsklasser; Miljøundersøgelser: Rønde, Danmarks, 2003; p. 142. [Google Scholar]
- Reynolds, C.; Davies, P. Sources and bioavailability of phosphorus fractions in freshwaters: A British perspective. Biol. Rev. 2001, 76, 27–64. [Google Scholar] [CrossRef]
- Kronvang, B.; Iversen, H.L.; Jørgensen, J.O.; Paulsen, I.; Jensen, J.P.; Conley, D.J.; Ellermann, T.; Laursen, K.D.; Wiggers, L.; Jørgensen, L.F.; et al. Afdeling for Ferskvandsøkologi. In Fosfor i Jord og Vand Udvikling, Status og Perspektiver; Faglig Rapport fra DMU; Danmarks Miljøundersøgelser: Rønde, Denmark, 2001; p. 308. [Google Scholar]
- Hansen, K. Det tabte land: Den store fortælling om magten over det danske landskab. Gad 2008, 1, 847. [Google Scholar]
- Kragh, T.; Sand-Jensen, K.; Petersen, K.; Kristensen, E. Fast phosphorus loss by sediment resuspension in a re-established shallow lake on former agricultural fields. Ecol. Eng. 2017, 108, 2–9. [Google Scholar] [CrossRef]
- Kolath, T.; Reuss, L.; Egemose, S.; Reitzel, K. Reduction of Internal Phosphorus Load in New Lakes by Pretreatment of the Former Agricultural Soil—Methods, Ecological Results and Costs. Sustainability 2020, 12, 3575. [Google Scholar] [CrossRef]
- Sø, J.S.; Sand-Jensen, K.; Kragh, T. Optimal physical design in a new lake for reducing phosphorus pools. Ecol. Eng. 2021, 161, 106160. [Google Scholar] [CrossRef]
- Kristensen, E.; Madsen-Østerbye, M.; Massicotte, P.; Pedersen, O. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach. Biogeosciences 2018, 15, 1203. [Google Scholar] [CrossRef] [Green Version]
- Andersen, H.E.; Kronvang, B.; Larsen, S.E. Development, validation and application of Danish empirical phosphorus models. J. Hydrol. 2005, 304, 355–365. [Google Scholar] [CrossRef]
- Hobbie, J.E.; Likens, G.E. Output of phosphorous, dissolved organic carbon, and fine particulate carbon from Hubbard brook watersheds. Limnol. Oceanogr. 1973, 18, 734–742. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Smith, S.J.; Jones, O.R.; Berg, W.A.; Coleman, G.A. The transport of bioavailable phosphorus in agricultural runoff. J. Environ. Qual. 1992, 21, 30–35. [Google Scholar] [CrossRef]
- Ockenden, M.C.; Deasy, C.; Quinton, J.N.; Surridge, B.; Stoate, C. Keeping agricultural soil out of rivers: Evidence of sediment and nutrient accumulation within field wetlands in the UK. J. Environ. Manag. 2014, 135, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Kronvang, B.; Bechmann, M.; Pedersen, M.L.; Flynn, N. Phosphorus dynamics and export in streams draining micro-catchments: Development of empirical models. J. Plant Nutr. Soil Sci. 2003, 166, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Kragh, T.; Martinsen, K.T.; Kristensen, E.; Sand-Jensen, K. From drought to flood: Sudden carbon inflow causes whole-lake anoxia and massive fish kill in a large shallow lake. Sci. Total Environ. 2020, 739, 140072. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Inca, C.; Valkama, P.; Lill, J.; Slotte, J.; Hietaharju, E.; Uusitalo, R. Spatial modeling of sediment transfer and identification of sediment sources during snowmelt in an agricultural watershed in boreal climate. Sci. Total Environ. 2018, 612, 303–312. [Google Scholar] [CrossRef]
- Kronvang, B.; Hansen, B.; Hald, A.B.; Laubel, A.R.; Olsen, P. Jorderosion og bræmmer i landskabet. Vand Jord 2000, 7, 7. [Google Scholar]
- Hoffmann, C.C.; Kjaergaard, C.; Uusi-Kämppä, J.; Hansen, H.C.; Kronvang, B. Phosphorus Retention in Riparian Buffers: Review of Their Efficiency. J. Environ. Qual. 2009, 38, 1942–1955. [Google Scholar] [CrossRef]
- Nielsen, A.; Trolle, D.; Søndergaard, M.; Lauridsen, T.L.; Bjerring, R.; Olesen, J.E.; Jeppesen, E. Watershed land use effects on lake water quality in Denmark. Ecol. Appl. 2012, 22, 1187–1200. [Google Scholar] [CrossRef]
- Miljø- og Fødevareministeriets. The Danish Database of Surface Waters 2021. 2021. Available online: https://odaforalle.au.dk/ (accessed on 1 December 2021).
- Hoffmann, C.C.; Baattrup-Pedersen, A. Re-establishing freshwater wetlands in Denmark. Ecol. Eng. 2007, 30, 157–166. [Google Scholar] [CrossRef]
- SDFE. 2021. Available online: https://download.kortforsyningen.dk/ (accessed on 10 September 2021).
- Scharling, M.; Kern-Hansen, C. Klimagrid–Danmark–Nedbør og Fordampning 1990–2000 Beregningsresultater til Belysning af Vandbalancen i Danmark. Technical Report 02-03. 2002. Available online: www.dmi.dk (accessed on 1 December 2021).
- Hansen, K. Folk & Fortællinger fra Det Tabte Land, Bind 1: Jylland; Bæredygtighed: Køge Municipality, Danmark, 2011. [Google Scholar]
- Kristensen, E.; Flindt, M.; Thorsen, S.W.; Holmer, M.; Valdemarsen, T.B. Gyldensteen strand—Fra agerland til kystlagune. Vand Jord 2016, 1, 36–40. [Google Scholar]
- Mæhl, P. Miljøtilstanden i Haderslev-Vojens Tunneldalens Søer 1990–1998; Rambøll: Copenhagen, Denmark, 1999. [Google Scholar]
- Rasmussen, A. Permission for Restoration of Roennebaekken and Establishment of Lakes Adjacent to Roennebaekken in the New Woodland Area at Roennebaek; Center of Plan and Environment, Team Water and Nature: Næstved, Denmark, 2017. [Google Scholar]
- Hoffmann, C.C.; Audet, J.; Ovesen, N.B.; Larsen, S.E.; Kjeldgaard, A. Overvågning af Vådområder 2015; DCE—Nationalt Center for Miljø og Energi: Roskilde, Denmark, 2018. [Google Scholar]
- Miljøportal, D. PunktUdLedningsSystem (PULS). 2021. Available online: https://puls.miljoeportal.dk (accessed on 1 December 2021).
- Blicher-Mathiesen, G.; Rasmussen, A.; Rolighed, J.; Andersen, H.E.; Carstensen, M.V.; Jensen, P.G.; Wienke, J.; Hansen, B.; Thorling, L. Landovervågningsoplande 2016, in NOVANA; Videnskabelig Rapport; Aarhus Universitet: Aarhus, Danmark, 2018. [Google Scholar]
- Haith, D.A.; Shoemaker, L.L. Generalized watershed loading functions for stream flow nutrients 1. JAWRA J. Am. Water Resour. Assoc. 1987, 23, 471–478. [Google Scholar] [CrossRef]
- Sharpley, A.; Rekolainen, S. Phosphorus in agriculture and its environmental implications. In Phosphorus Loss from Soil to Water; CAB International: Wallingford, UK, 1997; pp. 1–53. [Google Scholar]
- Cooke, G.W.; Williams, R.J.B. Significance of man-made sources of phosphorus: Fertilizers and farming. The phosphorus involved in agricultural systems and possibilities of its movement into natural water. Water Res. 1973, 7, 19–33. [Google Scholar] [CrossRef]
- Pietilainen, O. Agricultural Phosphorus Load and Phosphorus as a Limiting Factor for Algal Growth in Finnish Lakes and Rivers; CAB International: Wallingford, UK, 1997. [Google Scholar]
- Pommel, B.; Dorioz, J.M. Movement of Phosphorus from Agricultural Soil to Water; CAB International: Wallingford, UK, 1997; pp. 243–251. [Google Scholar]
- Withers, P. Phosphorus loss to water from agriculture in the UK. In Phosphorus Loss from Soil to Water; CAB International: Wallingford, UK, 1997. [Google Scholar]
- Kolenbrander, G. Eutrophication of surface water by agriculture and the urban population. Stikstof Transl. 1972, 15, 56–76. [Google Scholar]
- Lennox, S.; Foy, R.H.; Smith, R.V.; Jordan, C. Estimating the Contribution from Agriculture to the Phosphorus Load in Surface Water; CAB International: Wallingford, UK, 1997; pp. 55–75. [Google Scholar]
- Hayward, J.; Foy, R.; Gibson, C. Nitrogen and phosphorus budgets in the Erne system, 1974–1989. In Biology and Environment: Proceedings of the Royal Irish Academy; Royal Irish Academy: Dublin, Ireland, 1993. [Google Scholar]
- Tipping, E.; Toberman, H.; Boyle, J.F.; Crow, P.; Davies, J.; Fischer, U.; Guyatt, H.; Helliwell, R.; Jackson-Blake, L.; Lawlor, A.J.; et al. Atmospheric deposition of phosphorus to land and freshwater. Environ. Sci. Process. Impacts 2014, 16, 1608–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thodsen, H.; Molina-Navarro, E.; Nielsen, J.W.; Larsen, J.; Maar, M. Afstrømning og næringsstoftilførsler til Limfjorden baseret på tre forskellige modeller. In Teknisk Rapport fra DCE—Nationalt Center for Miljø og Energi; Aarhus Universitet, DCE—Nationalt Center for Miljø og Energi: Roskilde, Denmark, 2018; p. 20. [Google Scholar]
- Windolf, J.; Thodsen, H.; Troldborg, L.; Larsen, S.E.; Bøgestrand, J.; Ovesena, N.B.; Kronvanga, B. A distributed modelling system for simulation of monthly runoff and nitrogen sources, loads and sinks for ungauged catchments in Denmark. J. Environ. Monit. 2011, 13, 2645–2658. [Google Scholar] [CrossRef] [PubMed]
- Thodsen, H.; Tornbjerg, H.; Troldborg, L.; Windolf, J.; Ovesen, N.B.; Kjeldgaard, A.; Højberg, A.L. Udvikling af Vanddelen af DK-QNP til Havbelastningsberegninger; Aarhus Universitet, DCE—Nationalt Center for Miljø og Energi: Roskilde, Denmark, 2019; p. 20. [Google Scholar]
- Windolf, J.; Wiberg-Larsen, P.; Bøgestrand, J.; Larsen, S.E.; Thodsen, H.; Hansen, R.B.; Ovesen, N.B.; Kjeldgaard, A.; Kronvang, B. Vandløb 2010. NOVANA. Aarhus Universitet, DCE–Nationalt Center for Miljø og Energi. 46 s; Videnskabelig Rapport fra DCE–Nationalt Center for Miljø og Energi; DCE—Nationalt Center for Miljø og Energi: Roskilde, Denmark, 2011. [Google Scholar]
- Thodsen, H.; Windolf, J.; Rasmussen, J.; Bøgestrand, J.; Larsen, S.E.; Tornbjerg, H.; Ovesen, N.B.; Kjeldgaard, A.; Wiberg-Larsen, P. Vandløb 2015. In NOVANA; Videnskabelig Rapport fra DCE—Nationalt Center for Miljø og Energi; DCE—Nationalt Center for Miljø og Energi: Roskilde, Denmark, 2016. [Google Scholar]
- Henriksen, H.J.; Troldborg, L.; Nyegaard, P.; Sonnenborg, T.O.; Refsgaard, J.C.; Madsen, B. Methodology for construction, calibration and validation of a national hydrological model for Denmark. J. Hydrol. 2003, 280, 52–71. [Google Scholar] [CrossRef]
- Koroleff, F. Determination of nutrients. In Methods of Seawater Analysis, 2nd ed.; Grasshof, K., Ehrhardt, M., Kremling, K., Eds.; Verlag Chemie: Weinheim, Germany, 1983; pp. 159–226. [Google Scholar]
- Huser, B.J.; Egemose, S.; Harper, H.; Hupfer, M.; Jensen, H.; Pilgrim, K.M.; Reitzel, K.; Rydin, E.; Futter, M. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Res. 2016, 97, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Akima, H.; Gebhardt, A.; Petzold, T.; Maechler, M. Akima: Interpolation of Irregularly and Regularly Spaced Data. R Package Version 0.6-2.1.(2016). 2020. Available online: https://cran.r-project.org/web/packages/akima/index.html (accessed on 1 December 2021).
- Rueda, F.; Moreno-Ostos, E.; Armengol, J. The residence time of river water in reservoirs. Ecol. Model. 2006, 191, 260–274. [Google Scholar] [CrossRef]
- Søndergaard, M.N.A.; Levi, E.E.; Johansson, L.S.; Sørensen, P.B.; Trolle, D. Empiriske Sømodeller for Sammenhænge Mellem Indløbs- og Søkoncentrationer af Fosfor og Kvælstof; Aarhus Universitet, DCE—Nationalt Center for Miljø og Energi: Roskilde, Denmark, 2020; p. 32. [Google Scholar]
- Søndergaard, M.; Reitzel, K.; Jeppesen, E.; Egemose, S.; Lauridsen, T.L.; Jensen, H. Vejledning for Gennemførelse af Sørestaurering; Aarhus Universitet, DCE-Nationalt Center for Miljø og Energi, Videnskabelig: Roskilde, Denmark, 2015. [Google Scholar]
- Kragh, T.; Andersen, M.R.; Sand-Jensen, K. Profound afternoon depression of ecosystem production and nighttime decline of respiration in a macrophyte-rich, shallow lake. Oecologia 2017, 185, 157–170. [Google Scholar] [CrossRef]
- Müller, J.P.; Jensen, H.J. Miljøtilstanden i Haderslev-Vojens Tunneldalens søer 2003; Fiskeøkologisk Laboratorium: Helsingør, Denmark, 2003. [Google Scholar]
- Pant, H.; Reddy, K. Potential internal loading of phosphorus in a wetland constructed in agricultural land. Water Res. 2003, 37, 965–972. [Google Scholar] [CrossRef]
- Jensen, T.; Egemose, S.; Andersen, F.Ø.; Reitzel, K. Fugle som ekstern næringsstofkilde. Vand Jord 2019, 4, 158–161. [Google Scholar]
- Sønderup, M.J.; Egemose, S.; Hansen, A.S.; Grudinina, A.; Madsen, M.H.; Flindt, M.R. Factors affecting retention of nutrients and organic matter in stormwater ponds. Ecohydrology 2016, 9, 796–806. [Google Scholar] [CrossRef] [Green Version]
- Banke, T. Vurdering af næringstilstand I Botofte Skovmose; University of Southern Denmark: Odense, Denmark, 2019. [Google Scholar]
- Kragh, T.; Sand-Jensen, K. Carbon limitation of lake produvctivity. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2018, 285. [Google Scholar] [CrossRef] [Green Version]
- Levin, G.; Normander, B. Arealanvendelse i Danmark Siden Slutningen af 1800-Tallet; Faglig Rapport fra DMU; Danmarks Miljøundersøgelser: Rønde, Danmark, 2008; p. 46. [Google Scholar]
- Quilliam, R.S.; van Niekerk, M.A.; Chadwick, D.R.; Cross, P.; Hanley, N.; Jones, D.L.; Vinten, A.J.A.; Willby, N.; Oliver, D.M. Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land? J. Environ. Manag. 2015, 152, 210–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiener, P.; Auerswald, K.; Weigand, S. Managing erosion and water quality in agricultural watersheds by small detention ponds. Agric. Ecosyst. Environ. 2005, 110, 132–142. [Google Scholar] [CrossRef]
ID | Measured | TPModAnnual | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TPAnnual | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||||
mg L−1 | mg L−1 | % | mg L−1 | % | mg L−1 | % | mg L−1 | % | mg L−1 | % | mg L−1 | % | |
ALS a | 0.214 | 0.200 ± 0.084 | 93 | 0.193 ± 0.081 | 90 | 0.296 ± 0.125 | 138 | 0.368 ± 0.155 | 172 | 0.187 ± 0.079 | 87 | 0.151 ± 0.032 | 71 |
BSM b | 0.381 | 0.243 ± 0.182 | 64 | 0.302 ± 0.225 | 79 | 1.857 ± 1.387 | 487 | 0.300 ± 0.224 | 79 | 0.135 ± 0.101 | 35 | 0.121 ± 0.031 | 32 |
BUN c | 0.134 | 0.139 ± 0.060 | 104 | 0.200 ± 0.086 | 149 | 0.979 ± 0.422 | 731 | 0.277 ± 0.119 | 207 | 0.114 ± 0.049 | 85 | 0.115 ± 0.015 | 86 |
BOL c | 0.057 | 0.011 ± 0.002 | 19 | 0.011 ± 0.002 | 19 | 0.031 ± 0.005 | 54 | 0.017 ± 0.002 | 30 | 0.010 ± 0.007 | 18 | 0.023 ± 0.001 | 40 |
EGA a | 0.101 d | 0.171 ± 0.073 | 169 | 0.157 ± 0.068 | 155 | 0.499 ± 0.214 | 494 | 0.259 ± 0.111 | 256 | 0.154 ± 0.066 | 152 | 0.131 ± 0.009 | 129 |
FIL c | 0.075 | 0.048 ± 0.009 | 64 | 0.048 ± 0.009 | 64 | 0.261 ± 0.049 | 348 | 0.348 ± 0.065 | 464 | 0.062 ± 0.012 | 83 | 0.118 ± 0.011 | 157 |
GES b | 0.124 | 0.051 ± 0.012 | 41 | 0.056 ± 0.013 | 45 | 0.095 ± 0.022 | 77 | 0.057 ± 0.013 | 46 | 0.029 ± 0.007 | 23 | 0.085 ± 0.027 | 69 |
HIN c | 0.068 | 0.086 ± 0.015 | 126 | 0.098 ± 0.014 | 144 | 0.441 ± 0.059 | 649 | 0.250 ± 0.033 | 368 | 0.115 ± 0.015 | 169 | 0.083 ± 0.005 | 121 |
SYB c | 0.078 | 0.183 ± 0.082 | 235 | 0.127 ± 0.057 | 163 | 0.599 ± 0.270 | 768 | 0.158 ± 0.071 | 203 | 0.130 ± 0.059 | 167 | 0.095 ± 0.004 | 121 |
LES c | 0.037 | 0.035 ± 0.008 | 95 | 0.035 ± 0.008 | 95 | 0.037 ± 0.008 | 100 | 0.036 ± 0.008 | 97 | 0.033 ± 0.007 | 89 | 0.096 ± 0.005 | 259 |
RBS c | 0.059 | 0.126 ± 0.031 | 214 | 0.086 ± 0.021 | 146 | 0.533 ± 0.131 | 903 | 0.112 ± 0.027 | 190 | 0.158 ± 0.039 | 268 | 0.170 ± 0.013 | 288 |
VIL c | 0.051 | 0.058 ± 0.019 | 114 | 0.051 ± 0.015 | 100 | 0.305 ± 0.069 | 598 | 0.290 ± 0.065 | 569 | 0.058 ± 0.013 | 114 | 0.083 ± 0.004 | 163 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
Ease of use | Easy | Medium | Difficult | Medium | Difficult | Easy |
Performance | Bad | Medium | Bad | Bad | Good | Good |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kragh, T.; Kolath, T.; Kolath, A.S.; Reitzel, K.; Martinsen, K.T.; Søndergaard, M.; Hoffmann, C.C.; Baastrup-Spohr, L.; Egemose, S. External Phosphorus Loading in New Lakes. Water 2022, 14, 1008. https://doi.org/10.3390/w14071008
Kragh T, Kolath T, Kolath AS, Reitzel K, Martinsen KT, Søndergaard M, Hoffmann CC, Baastrup-Spohr L, Egemose S. External Phosphorus Loading in New Lakes. Water. 2022; 14(7):1008. https://doi.org/10.3390/w14071008
Chicago/Turabian StyleKragh, Theis, Thor Kolath, Anja Svane Kolath, Kasper Reitzel, Kenneth Thorø Martinsen, Martin Søndergaard, Carl Christian Hoffmann, Lars Baastrup-Spohr, and Sara Egemose. 2022. "External Phosphorus Loading in New Lakes" Water 14, no. 7: 1008. https://doi.org/10.3390/w14071008
APA StyleKragh, T., Kolath, T., Kolath, A. S., Reitzel, K., Martinsen, K. T., Søndergaard, M., Hoffmann, C. C., Baastrup-Spohr, L., & Egemose, S. (2022). External Phosphorus Loading in New Lakes. Water, 14(7), 1008. https://doi.org/10.3390/w14071008