Yield, Physiology, Fruit Quality and Water Footprint in Persian Lime (Citrus latifolia Tan.) in Response to Soil Moisture Tension in Two Phenological Stages in Campeche, México
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Location and Characteristics
2.2. Soil Water Content (θ) and Soil Moisture Tension (h) Measurement
2.3. h(θ) Relationship
2.4. Soil Moisture Tensions
2.5. Treatments and Experimental Units
2.6. Experimental Design
2.7. Variables Evaluated
2.7.1. Microclimatic Data
2.7.2. Leaf Water Potential (ΨL) and Leaf Relative Water Content (LRWC)
2.7.3. Gas Exchange and Leaf Water Use Efficiency (LWUE)
2.7.4. Leaf Area Index (LAI)
2.7.5. Yield and Fruit Quality
2.7.6. Water Use Efficiency
2.7.7. Water Footprint: Blue and Green
2.8. Statistical Analysis
3. Results
3.1. h(θ) Relationship
3.2. Microclimatic Data of the Study Site
3.3. Number of Irrigations and Volume of Water Applied
3.4. Leaf Water Potential and Relative Water Content, Gas Exchange, and Leaf Area Index
3.5. Yield and Fruit Production
3.6. Physicochemical Variables and Fruit Quality
3.7. Water Use Efficiency
3.8. Water Footprint
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Crops and Livestock Products. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 8 November 2021).
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Panorama Agroalimentario, 1st ed.; Secretaría de Agricultura y Desarrollo Rural: Mexico City, Mexico, 2019.
- Rivera-Hernández, B.; Aceves-Navarro, L.A.; Arrieta-Rivera, A.; Juárez-López, J.F.; Méndez-Adorno, M.; Ramos-Álvarez, C. Evidencias del cambio climático en el estado de Tabasco durante el periodo 1961–2010. Rev. Mex. Cienc. Agric. 2016, 14, 2645–2656. [Google Scholar]
- Quej-Chi, V.H.; Almorox, J.; Arnaldo, J.A.; Moratiel, R. Evaluation of temperature based methods for the estimation of reference evapotranspiration in the Yucatán peninsula, Mexico. J. Hydrol. Eng. 2018, 24, 05018029. [Google Scholar] [CrossRef]
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Atlas Agroalimentario 2017. 2017. Available online: https://www.gob.mx/siap (accessed on 8 November 2021).
- Hanasaki, N.; Inuzuka, T.; Kanae, S.; Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 2010, 384, 232–244. [Google Scholar] [CrossRef]
- Sun, S.K.; Wu, P.; Wang, Y.B.; Zhao, X.N. The virtual water content of major grain crops and virtual water flows between regions in China. J. Sci. Food Agric. 2013, 93, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Chartzoulakis, K.; Michelakis, N.; Stefanoudaki, E. Water use, growth, yield and fruit quality of ‘Bonanza’ oranges under different soil water regimes. Adv. Hortic. Sci. 1999, 13, 6–11. [Google Scholar]
- Silva, C.R.; Folegatti, M.V.; Araújo, S.T.J.; Alves, J.J.; Fonseca, S.C.; Vasconcelos, R.R. Water relations and photosynthesis as criteria for adequate irrigation management in ‘Tahiti’ lime trees. Sci. Agric. 2005, 62, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Boman, B. Citrus best management practices. In Advances in Citrus Nutrition; Srivastava, A.K., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 391–413. [Google Scholar]
- Kandelous, M.M.; Moradi, B.A.; Hopmans, J.W. An alternative tensiometer design for deep vadose zone monitoring. Soil Sci. Soc. Am. J. 2015, 79, 1293–1296. [Google Scholar] [CrossRef] [Green Version]
- Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Allen, B.L.; Sainju, U.M. Irrigation scheduling based on wireless sensors output and soil-water characteristic curve in two soils. Sensors 2020, 20, 1336. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Wang, F.X.; Liu, H.J.; Yuan, B.Z. Potato evapotranspiration and yield under different drip irrigation regimes. Irrig. Sci. 2004, 23, 133–143. [Google Scholar] [CrossRef]
- Wang, F.X.; Kang, Y.; Liu, S.P.; Hou, X.Y. Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agric. Water Manag. 2007, 88, 34–42. [Google Scholar] [CrossRef]
- Carli, C.; Yuldashev, F.; Khalikov, D.; Condori, B.; Mares, V.; Monneveux, P. Effect of different irrigation regimes on yield, water use efficiency and quality of potato (Solanum tuberosum L.) in the lowlands of Tashkent, Uzbekistan: A field and modeling perspective. Field Crops Res. 2014, 163, 90–99. [Google Scholar] [CrossRef]
- Orozco-Romero, J.; Pérez-Zamora, O. Tensión de humedad del suelo y fertilización nitrogenada en plátano (Musa AAA Simmonds) cv. Gran Enano. Agrociencia 2006, 40, 149–162. Available online: https://www.agrociencia-colpos.mx/index.php/agrociencia/article/view/450 (accessed on 15 March 2022).
- Rivera-Hernández, B.; Carrillo-Ávila, E.; Obrador-Olán, J.J.; Juárez-López, J.F.; Aceves-Navarro, L.A.; García-López, E. Soil moisture tension and phosphate fertilization on yield components of A-7573 sweet corn (Zea mays L.) hybrid, in Campeche, Mexico. Agric. Water Manag. 2009, 96, 1285–1292. [Google Scholar] [CrossRef]
- Rivera-Hernández, B.; Carrillo-Ávila, E.; Obrador-Olán, J.J.; Juárez-López, J.F.; Aceves-Navarro, L.A. Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico. Agric. Water Manag. 2010, 97, 1365–1374. [Google Scholar] [CrossRef]
- Sudhir-Yadav; Humphreys, E.; Kukal, S.S.; Gill, G.; Rangarajan, R. Effect of water management on dry seeded and puddled transplanted rice. Part 2: Water balance and water productivity. Field Crops Res. 2011, 120, 123–132. [Google Scholar] [CrossRef]
- Mahajan, G.; Chauhan, B.S.; Timsina, J.; Singh, P.P.; Singh, K. Crop performance and water- and nitrogen-use efficiencies in dry-seeded rice in response to irrigation and fertilizer amounts in northwest India. Field Crops Res. 2012, 134, 59–70. [Google Scholar] [CrossRef]
- Carrillo-Ávila, E.; García-Acedo, C.; Arreola-Enríquez, J.; Landeros-Sánchez, C.; Osnaya-González, M.L.; Castillo-Aguilar, C.C. Evaluation of four sunflower hybrids (Helianthus annuus) under three irrigation regimes and two doses of fertilization on flower production. J. Agric. Sci. 2015, 7, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Alamilla-Magaña, J.C.; Carrillo-Ávila, E.; Obrador-Olán, J.J.; Landeros-Sánchez, C.; Vera-López, J.; Juárez-López, J.F. Soil moisture tension effect on sugar cane growth and yield. Agric. Water Manag. 2016, 177, 264–273. [Google Scholar] [CrossRef]
- Gutiérrez-Gómez, C.; Carrillo-Avila, E.; Landeros-Sánchez, C.; Coh-Méndez, D.; Monsalvo-Espinosa, A.; Arreola-Enríquez, J.; Pimentel-López, J. Soil moisture tension as an alternative for improving sustainable use of irrigation water for habanero chilies (Capsicum chinense Jacq.). Agric. Water Manag. 2018, 204, 28–37. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Simón-Grao, S.; Gimeno, V.; Martínez-Nicolás, J.J.; Srivastava, A.K. Irrigation and fertilization management in lime trees. In The Lime: Botany, Production and Uses; Khan, M.M., Al-Yahyai, R., Al-Said, F., Eds.; CAB eBooks; CAB International: Wallingford, UK, 2017; pp. 91–114. [Google Scholar]
- Rivera-Hernández, B.; Garruña-Hernández, R.; Santamaría-Basulto, F.; Andrade-Torres, J.L.; Carrillo-Ávila, E.; Andueza-Noh, R.H. Lime yield (Citrus × latifolia Tanaka ex Q. Jiménez) and fruit quality in winter season from orchards mainteined with different soil moisture tension. Agroproductividad 2020, 13, 83–88. [Google Scholar] [CrossRef]
- Zermeño-González, A.; García-Delgado, M.A.; Castro-Meza, B.I.; Rodríguez-Rodríguez, H. Soil moisture tension and fruit yield of italian lemon. Rev. Fitotec. Mex. 2007, 30, 295–303. [Google Scholar]
- Howell, T.A. Irrigation Efficiency. In Encyclopedia of Water Science; Stewart, B.A., Howell, T.A., Eds.; Marcel Dekker: New York, NY, USA, 2003; pp. 467–472. [Google Scholar]
- Hutton, R.J.; Loveys, B.R. A partial root zone drying irrigation strategy for citrus. Effects on water use efficiency and fruit characteristics. Agric. Water Manag. 2011, 98, 1485–1496. [Google Scholar] [CrossRef]
- Souza, M.J.H.; Ramos, M.M.; de Siqueira, D.L.; Costa, L.C.; Lhamas, A.J.M.; Mantovani, E.C.; Cecon, P.R.; Salomão, L.C.C. Produção e qualidade dos frutos da limeira ácida ‘Tahiti’ submetida a diferentes porcentagens de área molhada. Rev. Bras. Eng. Agric. Ambient. 2003, 7, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Ballester, C.; Castel, J.; Intrigliolo, D.S.; Castel, J.R. Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition. Agric. Water Manag. 2011, 98, 1027–1032. [Google Scholar] [CrossRef]
- Mishra, D.S.; Goswami, A.K. High density planting in fruit crops. HortFlora Res. Spectr. 2016, 5, 261–264. [Google Scholar]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Treeby, M.T.; Henriod, R.E.; Bevington, K.B.; Milne, D.J.; Storey, R. Irrigation management and rootstock effects on navel orange [Citrus sinensis (L.) Osbeck] fruit quality. Agric. Water Manag. 2007, 91, 24–32. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Romero, P.; Navarro, J.M.; Botía, P. Response of sweet orange cv ‘Lane late’ to deficit irrigation in two rootstocks. I: Water relations, leaf gas exchange and vegetative growth. Irrig. Sci. 2008, 26, 415–425. [Google Scholar] [CrossRef]
- González-Altozano, P.; Castel, L., Jr. Regulated deficit irrigation in ‘Clementina de Nules’ citrus trees. I. Yield and fruit quality effects. J. Hortic. Sci. Biotechnol. 1999, 74, 706–713. [Google Scholar] [CrossRef]
- González-Altozano, P.; Castel, L., Jr. Regulated deficit irrigation in ‘Clementina de Nules’ citrus trees. II. Vegetative effects. J. Hortic. Sci. Biotechnol. 2000, 75, 388–392. [Google Scholar] [CrossRef]
- Gasque, M.; Granero, B.; Turegano, J.V.; Gonzalez-Altozano, P. Regulated deficit irrigation effects on yield, fruit quality and vegetative growth of ‘Navelina’ citrus trees. Span. J. Agric. Res. 2010, 8, S40–S51. [Google Scholar] [CrossRef] [Green Version]
- World Reference Base for Soil Resources (WRB); IUSS Working Group. Base Referencial Mundial del Recurso Suelo 2014, Actualización 2015; Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Informes sobre recursos mundiales de suelos 106; FAO: Roma, Italy, 2015. [Google Scholar]
- Jabro, J.D.; Stevens, W.B.; Iversen, W.M. Field performance of three real-time moisture sensors in sandy loam and clay loam soils. Arch. Agron. Soil Sci. 2018, 64, 930–938. [Google Scholar] [CrossRef]
- Golia, E.E.; Angelaki, A.; Giannoulis, K.D.; Skoufogianni, E.; Bartzialis, D.; Cavalaris, C.; Vleioras, S. Evaluation of soil properties, irrigation and solid waste application levels on Cu and Zn uptake by industrial hemp. Agron. Res. 2021, 19, 92–99. [Google Scholar] [CrossRef]
- Rivera-Hernández, B.; Garruña-Hernández, R.; Carrillo-Ávila, E.; Quej-Chi, V.H.; Andrade, J.L.; Andueza-Noh, J.L.; Arreola-Enríquez, J. Using Splines in the Application of the Instantaneous Profile Method for the Hydrodynamic Characterization of a Tropical Agricultural Vertisol. Rev. Bras. Cienc. Solo, 2022; accepted for publication. [Google Scholar]
- Van Genuchten, M.T.H. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Sakellariou-Makrantonaki, M.; Angelaki, A.; Evangelides, C.; Bota, V.; Tsianou, E.; Floros, N. Experimental determination of Hydraulic Conductivity at unsaturated soil column. Procedia Eng. 2016, 162, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Da Souza, M.J.H.; Ramos, M.M.; Siqueira, D.L.; Costa, L.C.; Lhamas, A.J.M.; Mantovani, E.C.; Cecon, P.R.; Salomão, L.C.C. Estresse hídrico e época de produção da lima ácida ‘Tahiti’. Rev. Bras. Eng. Agric. Ambient. 2004, 8, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Hutton, R.J.; Landsberg, J.J.; Sutton, B.G. Timing irrigation to suit citrus phenology: A means of reducing water use without compromising fruit yield and quality. Aust. J. Exp. Agric. 2007, 47, 71–80. [Google Scholar] [CrossRef]
- Panigrahi, P.; Sharma, R.K.; Hasan, M.; Parihar, S.S. Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region. Agric. Water Manag. 2014, 25, 1635–1651. [Google Scholar] [CrossRef]
- NMX-FF-077-1996; Productos Alimenticios no Industrializados para Consumo Humano Fruta Fresca. Limón persa (Citrus latifolia L.). Especificaciones. Normas Mexicanas. Dirección General de Normas. Available online: https://studylib.es/doc/8755804/nmx-ff-077-1996.-productos-alimenticios-no (accessed on 15 March 2022).
- NMX-FF-011-1982; Productos Alimenticios no Industrializados para Consumo Humano Fruta Fresca. Determinación de Acidez titulable. Método de Titulación. non Industrialized Food Products for Human Use. Fresh Fruit. Determination of Titrable acidity. Titration Method. Normas Mexicanas. Dirección General de Normas. Available online: https://www.coursehero.com/file/107006413/NMX-FF-011-1982PDF/ (accessed on 15 March 2022).
- Lu, J.; Ookawa, T.; Hirasawa, T. The effects of irrigation regimes on the wáter use, dry matter production and physiological responses of paddy rice. Plant Soil 2000, 223, 207–216. [Google Scholar] [CrossRef]
- SAS Institute Inc. Statistical Analysis System (SAS) for Windows 9 1.3. Service Pack 2; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Machado, E.C.; Tambelli, S.P.; Medina, C.L.; Ribeiro, R.V. Respostas da fotossíntese de três espécies de citros a fatores ambientais. Pesqui. Agropecu. Bras. 2005, 40, 1161–1170. [Google Scholar] [CrossRef]
- Luchetti, M.A.; Mattos Júnior, D.; De Negri, J.D.; Figueiredo, J.O. Aspectos gerais e distribuição de cultivo. In Lima Ácida Tahiti; Mattos, D., Jr., De Negri, J.D., Figueiredo, J.O., Eds.; Instituto Agronômico: Sao Paulo, Brasil, 2003; pp. 1–12. [Google Scholar]
- Pettigrew, W. Physiological consequences of moisture deficit stress in Cotton. Crop Sci. 2004, 44, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Alves, J.; Silva, C.R.; Ribeiro, R.V.; Silva, T.J.A.; Folegatti, M.V. Growth of young “Tahiti” lime trees under irrigation levels. Eng. Agríc. 2005, 25, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Ríos-Rojas, L.; Chaali, N.; Jaramillo-Barrios, C.I.; Ouazaa, S.; Correa, J.F. Irrigation and nutrition as criteria for adequate management of Tahiti acid lime trees affected by a physiological disorder in tropical conditions. Sci. Hortic. 2020, 270, 109438. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinoza-Núñez, E.; Mourao-Filho, F.A.A.; Stuchi, E.S.; Cantuarias-Avilés, T.; Santos-Días, C.T. Performance of ‘Tahiti’ lime on twelve rootstocks under irrigated and non-irrigated conditions. Sci. Hortic. 2011, 129, 227–231. [Google Scholar] [CrossRef]
- Alves, J.; Folegatti, M.V.; Silva, C.R.; Silva, T.J.A.; Evangelistas, A.W.P. Response of young ‘Tahiti’ lime trees to different irrigation levels. Eng. Agríc. 2011, 31, 303–304. [Google Scholar] [CrossRef] [Green Version]
- Bremer, N.H.; Mourão-Filho, F.A.A.; Stuchi, E.S.; Espinosa-Nuñez, E.; Cantuarias-Avilés, T. The horticultural performance of five ‘Tahiti’ lime selections grafted onto ‘Swingle’ citrumelo under irrigated and non-irrigated conditions. Sci. Hortic. 2013, 150, 181–186. [Google Scholar] [CrossRef]
- Barry, G.H.; Castle, W.S.; Davies, F. Rootstocks and plant water relations affect sugar accumulation of citrus fruit via osmotic adjustment. J. Am. Soc. Hortic. Sci. 2004, 129, 8. [Google Scholar] [CrossRef]
- Aguado, A.; Frías, J.; García-Tejero, I.; Romero, F.; Muriel, J.L.; Capote, N. Towards the improvement of fruit-quality parameters in citrus under deficit irrigation strategies. Int. Sch. Res. Not. 2012, 2012, 940896. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pérez, J.G.; Robles, J.M.; Botía, P. Influence of deficit irrigation in phase III of fruit growth on fruit quality in ‘lane late’ sweet orange. Agric. Water Manag. 2009, 96, 969–974. [Google Scholar] [CrossRef]
- Siebert, S.; Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Montesinos, P.; Camacho, E.; Campos, B.; Rodriguez-Diaz, J.A. Analysis of virtual irrigation water. application to water resources management in a Mediterranean river basin. Water Resour. Manag. 2011, 25, 1635–1651. [Google Scholar] [CrossRef]
- Berardi, M.; D’Abbicco, M.; Girardi, G.; Vurro, M. Optimizing water consumption in Richards’ equation framework with step-wise root water uptake: A simplified model. Transp. Porous Media 2022, 141, 469–498. [Google Scholar] [CrossRef]
- Pereira, R.M.S.; Lopes, S.; Caldeira, A.; Fonte, V. Optimized planning of different crops in a field using optimal control in Portugal. Sustainability 2018, 10, 4648. [Google Scholar] [CrossRef] [Green Version]
Treatment | SMT in the Flowering Stage (kPa) | SMT in the Fruit Growth Stage (kPa) | Treatment | SMT in the Flowering Stage (kPa) | SMT in the Fruit Growth Stage (kPa) |
---|---|---|---|---|---|
T1 | −10 | −10 | T9 | −60 | −60 |
T2 | −10 | −35 | T10 | −10 | −85 |
T3 | −35 | −35 | T11 | −60 | −85 |
T4 | −35 | −10 | T12 | −35 | −85 |
T5 | −10 | −60 | T13 | −85 | −10 |
T6 | −60 | −10 | T14 | −85 | −35 |
T7 | −35 | −60 | T15 | −85 | −60 |
T8 | −60 | −35 | T16 | −85 | −85 |
Meteorological Variable | February | March | April | May | June |
---|---|---|---|---|---|
GR (MJ m−2) | 18.41 ± 2.07 | 20.11 ± 3.5 | 21.95 ± 3.29 | 22.41 ± 3.44 | 18.42 ± 6.25 |
T (°C) | 27.7 ± 1.62 | 29.43 ± 1.64 | 30.10 ± 2.33 | 31.55 ± 1.23 | 28.45 ± 2.12 |
RH (%) | 71.73 ± 5.43 | 64.95 ± 7.10 | 62.49 ± 7.30 | 61.11 ± 6.30 | 79.13 ± 9.61 |
VPD (kPa) | 2.62 ± 0.35 | 2.75 ± 0.44 | 3.59 ± 0.54 | 3.87 ± 0.39 | 2.45 ± 0.54 |
ETo (mm) | 4.25 ± 0.62 | 4.94 ± 0.79 | 5.83 ± 0.90 | 6.12 ± 0.88 | 4.54 ± 1.50 |
R (mm) | 38 | 23 | 11 | 7 | 63 |
Physiological Variables | Soil Moisture Tension (kPa) | |||
---|---|---|---|---|
−10 | −35 | −60 | −85 | |
ΨLBD (MPa) | −0.94 ± 0.15 a | −1.01 ± 0.02 a | −1.16 ± 0.02 b | −1.45 ± 0.24 c |
ΨLMD (MPa) | −1.88 ± 0.19 a | −1.87 ± 0.23 a | −2.11 ± 0.25 b | −2.78 ± 0.29 c |
LRWC (%) | 82.13 ± 5.51 a | 81.12 ± 4.47 a | 76.15 ± 5.52 b | 64.61 ± 7.27 c |
AN (μmol CO2 m−2 s−1) | 3.22 ± 0.19 a | 3.26 ± 0.18 a | 3.12 ± 0.22 a | 1.43 ± 0.45 b |
gs (mmol m−2 s−1) | 0.045 ± 0.002 a | 0.046 ± 0.003 a | 0.034 ± 0.002 b | 0.027 ± 0.003 c |
LT (mmol H2O m−2 s−1) | 0.88 ± 0.08 a | 0.83 ± 0.07 a | 0.76 ± 0.09 b | 0.57 ± 0.98 c |
LWUE (μmol CO2/mmol H2O) | 3.65 ± 0.21 b | 3.92 ± 0.12 a | 4.10 ± 0.21 a | 2.51 ± 0.24 c |
LAI (dimensionless) | 3.25 ± 0.19 a | 2.87 ± 0.27 b | 2.59 ± 0.22 b | 2.01 ± 0.24 c |
Treatments (kPa) | FW (g) | FWT (kg plant−1) | FY (t ha−1) | FSC 1 (%) | FSC 2 (%) | FSC 3 (%) |
---|---|---|---|---|---|---|
T1 (−10 FL, −10 FR) | 88.89 ± 4.5 a | 58.81 ± 2.3 a | 39.03 ± 0.85 a | 58.95 ± 2.3 a | 25.36 ± 1.3 d | 15.69 ± 2.1 g |
T2 (−10 FL, −35 FR) | 89.52 ± 3.3 a | 58.49 ± 2.5 a | 38.29 ± 0.78 a | 57.21 ± 2.4 a | 22.46 ± 1.7 f | 20.33 ± 2.3 ef |
T3 (−35 FL, −35 FR) | 87.23 ± 6.5 a | 57.96 ± 3.7 a | 38.63 ± 0.65 a | 58.17 ± 2.2 a | 27.22 ± 2.1 e | 14.61 ± 2.4 g |
T4 (−35 FL, −10 FR) | 89.29 ± 4.2 a | 57.82 ± 2.4 a | 37.98 ± 0.74 a | 56.79 ± 2.1 ab | 24.17 ± 1.5 d | 19.04 ± 2.2 f |
T5 (−10 FL, −60 FR) | 87.98 ± 4.1 a | 56.45 ± 3.2 ab | 38.09 ± 0.98 a | 56.92 ± 2.1 ab | 22.33 ± 1.9 f | 20.75 ± 2.2 ef |
T6 (−60 FL, −10 FR) | 85.96 ± 5.8 a | 56.97 ± 3.9 ab | 36.71 ± 0.98 ab | 55.83 ± 3.4 b | 25.05 ± 1.7 de | 19.12 ± 2.5 f |
T7 (−35 FL, −60 FR) | 89.13 ± 4.7 a | 56.08 ± 3.5 ab | 37.95 ± 1.15 a | 56.24 ± 1.9 ab | 21.35 ± 1.4 f | 22.41 ± 2.9 de |
T8 (−60 FL, −35 FR) | 86.54 ± 5.9 a | 56.67 ± 3.6 ab | 36.83 ± 1.12 ab | 55.90 ± 1.9 b | 21.13 ± 2.4 f | 22.92 ± 2.7 de |
T9 (−60 FL, −60 FR) | 86.58 ± 4.6 a | 55.23 ± 2.3 b | 34.91 ± 1.24 b | 52.07 ± 2.3 b | 25.98 ± 2.5 de | 21.95 ± 2.6 ef |
T10 (−10 FL, −85 FR) | 77.26 ± 4.8 b | 29.34 ± 4.2 e | 20.78 ± 1.16 c | 41.95 ± 2.5 c | 36.97 ± 2.3 b | 21.08 ± 2.4 ef |
T11 (−60 FL, −85 FR) | 72.59 ± 6.1 c | 25.61 ± 3.6 f | 18.41 ± 1.32 d | 37.12 ± 2.2 d | 30.30 ± 2.9 c | 32.58 ± 2.7 b |
T12 (−35 FL, −85 FR) | 78.76 ± 5.8 b | 28.12 ± 3.7 e | 19.53 ± 0.98 cd | 40.91 ± 3.1 c | 32.27 ± 2.8 c | 26.82 ± 3.3 c |
T13 (−85 FL, −10 FR) | 78.46 ± 5.3 b | 19.57 ± 4.7 g | 13.89 ± 0.98 e | 33.97 ± 1.9 e | 39.08 ± 3.1 a | 26.95 ± 3.4 c |
T14 (−85 FL, −35 FR) | 76.13 ± 6.2 b | 18.36 ± 3.7 g | 14.12 ± 1.12 e | 34.12 ± 2.4 e | 40.40 ± 2.9 a | 25.48 ± 3.6 cd |
T15 (−85 FL, −60 FR) | 76.46 ± 6.8 b | 14.46 ± 3.5 h | 9.79 ± 1.28 f | 29.84 ± 2.1 f | 39.91 ± 2.7 a | 30.25 ± 2.5 b |
T16 (−85 FL, −85 FR) | 70.23 ± 7.2 c | 10.27 ± 4.6 i | 6.84 ± 1.34 g | 26.07 ± 2.6 g | 30.25 ± 3.3 c | 43.68 ± 2.8 a |
Treatments (kPa) | FWSS (%) | FWS (%) | L* | C* | h° |
---|---|---|---|---|---|
T1 (−10 FL, −10 FR) | 0.24 ± 0.02 d | 0.04 ± 0.10 e | 45.12 ± 3.4 c | 35.51 ± 3.5 c | 123.74 ± 5.2 a |
T2 (−10 FL, −35 FR) | 0.25 ± 0.03 d | 0.07 ± 0.12 e | 44.88 ± 2.9 c | 35.76 ± 2.7 c | 122.42 ± 5.1 a |
T3 (−35 FL, −35 FR) | 0.25 ± 0.03 d | 0.04 ± 0.13 e | 45.27 ± 5.7 c | 35.96 ± 3.9 c | 122.18 ± 5.2 a |
T4 (−35 FL, −10 FR) | 0.24 ± 0.02 d | 0.05 ± 0.11 e | 44.94 ± 4.2 c | 36.14 ± 3.1 c | 121.71 ± 6.2 a |
T5 (−10 FL, −60 FR) | 0.31 ± 0.03 d | 0.09 ± 0.11 e | 45.16 ± 3.9 c | 37.85 ± 3.4 cb | 120.82 ± 6.4 a |
T6 (−60 FL, −10 FR) | 0.27 ± 0.04 d | 0.05 ± 0.18 e | 46.96 ± 6.5 c | 36.21 ± 4.2 c | 121.15 ± 5.9 a |
T7 (−35 FL, −60 FR) | 0.37 ± 0.02 d | 0.07 ± 0.14 e | 45.37 ± 4.5 c | 37.97 ± 3.7 cb | 120.53 ± 5.2 a |
T8 (−60 FL, −35 FR) | 0.26 ± 0.04 d | 0.06 ± 0.12 e | 45.09 ± 4.5 c | 36.28 ± 4.4 c | 121.81 ± 6.3 a |
T9 (−60 FL, −60 FR) | 1.23 ± 0.05 c | 1.32 ± 0.19 d | 46.71 ± 4.9 c | 37.52 ± 6.1 cb | 119.89 ± 6.2 ab |
T10 (−10 FL, −85 FR) | 2.25 ± 0.41 b | 2.51 ± 0.31 c | 54.25 ± 5.2 b | 39.99 ± 4.3 b | 118.11 ± 5.6 bc |
T11 (−60 FL, −85 FR) | 3.25 ± 0.43 a | 4.21 ± 0.54 b | 54.18 ± 3.9 b | 46.27 ± 3.8 a | 116.48 ± 5.2 c |
T12 (−35 FL, −85 FR) | 2.31 ± 0.34 b | 2.98 ± 0.34 c | 53.09 ± 3.5 b | 40.08 ± 4.2 b | 117.22 ± 4.4 bc |
T13 (−85 FL, −10 FR) | 0.57 ± 0.06 d | 1.87 ± 0.63 d | 46.44 ± 4.2 c | 35.89 ± 4.2 c | 120.64 ± 6.5 a |
T14 (−85 FL, −35 FR) | 0.67 ± 0.08 d | 1.65 ± 0.48 d | 45.12 ± 5.4 c | 36.12 ± 4.1 c | 121.07 ± 5.7 a |
T15 (−85 FL, −60 FR) | 1.92 ± 0.19 bc | 1.89 ± 0.55 d | 54.28 ± 6.5 b | 39.54 ± 6.1 b | 118.74 ± 4.9 bc |
T16 (−85 FL, −85 FR) | 4.21 ± 0.51 a | 6.51 ± 0.72 a | 57.56 ± 7.8 a | 47.28 ± 5.8 a | 115.28 ± 5.2 d |
Treatments (kPa) | FJC (%) | FPT ** (mm) | TSS (°Brix) | TA ** (%) | TSS/TA ** |
---|---|---|---|---|---|
T1 (−10 FL, −10 FR) | 49.2 ± 2.3 a | 2.80 ± 0.22 | 8.34 ± 0.86 b | 6.93 ± 0.36 | 1.20 ± 0.13 |
T2 (−10 FL, −35 FR) | 48.9 ± 2.7 a | 2.80 ± 0.28 | 8.35 ± 0.85 b | 6.92 ± 0.37 | 1.21 ± 0.11 |
T3 (−35 FL, −35 FR) | 48.7 ± 2.4 a | 2.73 ± 0.23 | 8.48 ± 0.87 b | 7.00 ± 0.32 | 1.21 ± 0.12 |
T4 (−35 FL, −10 FR) | 49.3 ± 2.2 a | 2.85 ± 0.19 | 8.36 ± 0.86 b | 6.95 ± 0.43 | 1.20 ± 0.13 |
T5 (−10 FL, −60 FR) | 45.2 ± 2.4 ab | 2.78 ± 0.22 | 8.47 ± 0.87 b | 6.90 ± 0.48 | 1.22 ± 0.14 |
T6 (−60 FL, −10 FR) | 47.1 ± 2.6 ab | 2.85 ± 0.21 | 8.69 ± 0.98 b | 7.18 ± 0.40 | 1.21 ± 0.15 |
T7 (−35 FL, −60 FR) | 45.5 ± 2.3 ab | 2.88 ± 0.27 | 8.62 ± 0.88 b | 7.01 ± 0.42 | 1.21 ± 0.13 |
T8 (−60 FL, −35 FR) | 47.1 ± 2.6 ab | 2.89 ± 0.21 | 8.64 ± 0.96 b | 7.07 ± 0.43 | 1.20 ± 0.14 |
T9 (−60 FL, −60 FR) | 45.7 ± 3.2 ab | 2.82 ± 0.27 | 8.64 ± 1.01 b | 7.12 ± 0.58 | 1.21 ± 0.15 |
T10 (−10 FL, −85 FR) | 42.3 ± 2.7 b | 2.89 ± 0.25 | 8.67 ± 1.11 b | 7.18 ± 0.77 | 1.22 ± 0.14 |
T11 (−60 FL, −85 FR) | 42.2 ± 3.5 b | 2.99 ± 0.29 | 9.68 ± 1.21 a | 7.20 ± 0.89 | 1.27 ± 0.19 |
T12 (−35 FL, −85 FR) | 42.5 ± 3.2 b | 2.97 ± 0.27 | 8.59 ± 1.13 b | 7.12 ± 0.68 | 1.22 ± 0.16 |
T13 (−85 FL, −10 FR) | 45.6 ± 2.5 ab | 2.89 ± 0.25 | 8.65 ± 0.98 b | 7.07 ± 0.46 | 1.22 ± 0.14 |
T14 (−85 FL, −35 FR) | 45.4 ± 3.8 ab | 2.91 ± 0.27 | 8.55 ± 0.89 b | 7.11 ± 0.47 | 1.20 ± 0.15 |
T15 (−85 FL, −60 FR) | 43.6 ± 3.2 b | 2.98 ± 0.28 | 9.24 ± 1.1 ab | 7.23 ± 0.98 | 1.29 ± 0.19 |
T16 (−85 FL, −85 FR) | 38.8 ± 3.4 c | 3.11 ± 0.36 | 9.84 ± 1.32 a | 7.32 ± 1.11 | 1.46 ± 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Hernández, B.; González-Jiménez, V.; Carrillo-Ávila, E.; Garruña-Hernández, R.; Andrade, J.L.; Quej-Chi, V.H.; Arreola-Enríquez, J. Yield, Physiology, Fruit Quality and Water Footprint in Persian Lime (Citrus latifolia Tan.) in Response to Soil Moisture Tension in Two Phenological Stages in Campeche, México. Water 2022, 14, 1011. https://doi.org/10.3390/w14071011
Rivera-Hernández B, González-Jiménez V, Carrillo-Ávila E, Garruña-Hernández R, Andrade JL, Quej-Chi VH, Arreola-Enríquez J. Yield, Physiology, Fruit Quality and Water Footprint in Persian Lime (Citrus latifolia Tan.) in Response to Soil Moisture Tension in Two Phenological Stages in Campeche, México. Water. 2022; 14(7):1011. https://doi.org/10.3390/w14071011
Chicago/Turabian StyleRivera-Hernández, Benigno, Vianey González-Jiménez, Eugenio Carrillo-Ávila, René Garruña-Hernández, José Luis Andrade, Víctor Hugo Quej-Chi, and Jesús Arreola-Enríquez. 2022. "Yield, Physiology, Fruit Quality and Water Footprint in Persian Lime (Citrus latifolia Tan.) in Response to Soil Moisture Tension in Two Phenological Stages in Campeche, México" Water 14, no. 7: 1011. https://doi.org/10.3390/w14071011
APA StyleRivera-Hernández, B., González-Jiménez, V., Carrillo-Ávila, E., Garruña-Hernández, R., Andrade, J. L., Quej-Chi, V. H., & Arreola-Enríquez, J. (2022). Yield, Physiology, Fruit Quality and Water Footprint in Persian Lime (Citrus latifolia Tan.) in Response to Soil Moisture Tension in Two Phenological Stages in Campeche, México. Water, 14(7), 1011. https://doi.org/10.3390/w14071011