Long Term Effectiveness of Wellhead Protection Areas
Abstract
:1. Introduction
2. Case Study: Public Groundwater Supply of Montijo Municipality
2.1. Geological and Hydrogeological Framework
2.2. Public Water Supply and Wellhead Protection Zones
3. Methodology
3.1. Analytical Methods
- (a)
- The Fixed Radius methods (CFR) (Dec.-Law 382/99), (Figure 5) define the WPA through a volumetric equation which calculates the volume of water that reaches the catchment in a certain time, which is considered necessary to reduce the contamination to an admissible level before reaching the catchment. It is assumed that the catchment is the only draining element of the aquifer, where all flow lines converge, and that there are no privileged flow directions. In this case, the WPAs are bounded by circles around the well, with radius calculated from Equation (1), where r is the radius of WPA (m), Q is the well flow rate (m3/day), t is the time required for a pollutant to reach the well (days), n the effective porosity (%), and b is the saturated thickness (m).
- (b)
- The Wyssling method [49] (Figure 5) consists of calculating the catchment zone of a well whose size is a function of the propagation time of a contaminant in the aquifer. It is a simple method, applicable to homogeneous porous aquifers, that has the disadvantage of not considering the heterogeneities of the aquifer. The use of this method presupposes knowledge of the hydraulic gradient (i), the well capacity (Q), the hydraulic conductivity (K) or Transmissivity (T), the effective porosity (n) and the aquifer thickness (b). The variables that allow for the drawing of the WPAs are the height of the capture zone (B), the width of the capture zone front to the height of the well (B’), the capture zone radius (Xo), the Darcy velocity (V), the distance (x) corresponding to time t, in the direction of flow (upstream of capture) (So) and in the opposite direction to the flow (downstream of the catchment) (Su).
- (c)
- The Bear and Jacobs method [50] is based on the definition of the capture zone induced by the capture to be protected. A capture zone is the volume of the aquifer through which groundwater flows to a pumped well during a given time of travel. To simplify the analytical model, a series of simplifying assumptions are made. Thus, the Bear and Jacobs method is applied to the case of a single catchment located in a homogeneous, isotropic aquifer of infinite extent, subjected to a uniform regional gradient. This area is delineated using the capture zone curve. The equations for the capture zone curve were derived by Bear and Jacobs [50] and is as follows:
3.2. Numerical Modeling
4. Results
4.1. Redefining Extended WPAs Using Analytical Methods
4.2. Redefining Extended WPAs Using Numerical Modelling
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNESCO World Water Assessment Programme. The United Nations World Water Development Report 2021: Valuing Water; UNESCO: Paris, France, 2021; p. 187. ISBN 978-92-3-100434-6. [Google Scholar]
- Martínez Navarrete, C.; Grima Olmedo, J.; Durán Valsero, J.J.; Gómez Gómez, J.D.; Luque Espinar, J.A.; de la Orden Gómez, J.A. Groundwater protection in Mediterranean countries after the European water framework directive. Environ. Geol. 2008, 54, 537–549. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Herbert, C.; Döll, P. Global Assessment of Current and Future Groundwater Stress with a Focus on Transboundary Aquifers. Water Resour. Res. 2019, 55, 4760–4784. [Google Scholar] [CrossRef]
- Bertrand, G.; Hirata, R.; Pauwels, H.; Cary, L.; Petelet-Giraud, E.; Chatton, E.; Aquilina, L.; Labasque, T.; Martins, V.; Montenegro, S.; et al. Groundwater contamination in coastal urban areas: Anthropogenic pressure and natural attenuation processes. Example of Recife (PE State, NE Brazil). J. Contam. Hydrol. 2016, 192, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Shultz, S.D.; Lindsay, B.E. The willingness to pay for groundwater protection. Water Resour. Res. 1990, 26, 1869–1875. [Google Scholar] [CrossRef]
- Velis, M.; Conti, K.I.; Biermann, F. Groundwater and human development: Synergies and trade-offs within the context of the sustainable development goals. Sustain. Sci. 2017, 12, 1007–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Environmental Protection Agency. 1987 Final Rule: Emergency and Hazardous Chemical Inventory Forms and Community Right-To-Know Reporting Requirements 52 FR 38344. Available online: https://www.epa.gov/sites/default/files/2013-09/documents/52fr38364.pdf (accessed on 7 February 2022).
- EU—European Commission. Report from the Commission. Implementation of Council Directive 91/676/EEC Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Synthesis from Year 2000 Member States Reports. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52002DC0407&from=EN (accessed on 7 February 2022).
- Colon, M.; Richard, S.; Roche, P.A. The evolution of water governance in France from the 1960s: Disputes as major drivers for radical changes within a consensual framework. Water Int. 2018, 43, 109–132. [Google Scholar] [CrossRef]
- García-García, A.; Martínez-Navarrete, C. Protection of groundwater intended for human consumption in the water framework directive: Strategies and regulations applied in some European countries. Pol. Geol. Inst. Spec. Pap. 2005, 18, 28–32. Available online: https://www.pgi.gov.pl/en/docman-tree-all/publikacje-2/special-papers/79-garcia/file.html (accessed on 2 February 2022).
- Cleary, T.; Cleary, R.W. Delineation of Wellhead Protection Areas: Theory and Practice. Water Sci. Technol. 1991, 24, 239–250. [Google Scholar] [CrossRef]
- Taylor, R.; Cronin, A.; Pedley, S.; Barker, J.; Atkinson, T. The implications of groundwater velocity variations on microbial transport and wellhead protection—Review of field evidence. FEMS Microbiol. Ecol. 2004, 49, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, S.; Hirata, R.; Gomes, D.; Paris, M.; D’Elia, M. Groundwater Quality Protection—A Guide for Water Utilities, Municipal Authorities, and Environment Agencies; World Bank GW-MATe Report 2007; World Bank: Washington, DC, USA, 2007; ISBN 0-8213-4951-1. [Google Scholar]
- Fileccia, A. Some simple procedures for the calculation of the influence radius and well head protection areas (theoretical approach and a field case for a water table aquifer in an alluvial plain). Acque Sotter. Ital. J. Groundw. 2015, 4, 7–23. [Google Scholar] [CrossRef]
- Liu, Y.; Weisbrod, N.; Yakirevich, A. Comparative Study of Methods for Delineating the Wellhead Protection Area in an Unconfined Coastal Aquifer. Water 2019, 11, 1168. [Google Scholar] [CrossRef] [Green Version]
- Krijgsman, B.; Lobo-Ferreira, J.P.C. A Methodology for Delineating Wellhead Protection Areas; INCH 7; Laboratório Nacional de Engenharia Civil: Lisbon, Portugal, 2001; ISBN 972-49-1882-3. [Google Scholar]
- Expósito, J.L.; Esteller, M.V.; Paredes, J.; Rico, C.; Franco, R. Groundwater Protection Using Vulnerability Maps and Wellhead Protection Area (WHPA): A Case Study in Mexico. Water Resour. Manag. 2010, 24, 4219–4236. [Google Scholar] [CrossRef] [Green Version]
- Piccinini, L.; Fabbri, P.; Pola, M.; Marcolongo, E. Numerical modeling to well-head protection area delineation, an example in Veneto Region (NE Italy). Rend. Online Soc. Geol. Ital. 2015, 35, 232–235. [Google Scholar] [CrossRef]
- Thibaut, R.; Laloy, E.; Hermans, T. A new framework for experimental design using Bayesian Evidential Learning: The case of wellhead protection area. J. Hydrol. 2021, 603, 126903. [Google Scholar] [CrossRef]
- Ramanarayanan, T.S.; Storm, D.E.; Smolen, M.D. Seasonal Pumping Variation Effects on Wellhead Protection Area Delineation. Water Resour. Bull. 1995, 31, 421–430. [Google Scholar] [CrossRef]
- Tosco, T.; Sethi, R. Comparison between backward probability and particle tracking methods for the delineation of well head protection areas. Environ. Fluid Mech. 2010, 10, 77–90. [Google Scholar] [CrossRef]
- Evers, S.; Lerner, D.N. How Uncertain Is Our Estimate of a Wellhead Protection Zone? Groundwater 2005, 36, 49–57. [Google Scholar] [CrossRef]
- Theodossiou, N.; Fotopoulou, E. Delineating well-head protection areas under conditions of hydrogeological uncertainty. A case-study application in northern Greece. Environ. Process. 2015, 2, 113–122. [Google Scholar] [CrossRef]
- INE. Censos 2011 Resultados Definitivos—Região Lisboa. Available online: https://censos.ine.pt/ngt_server/attachfileu.jsp?look_parentBoui=156652050&att_display=n&att_download=y (accessed on 18 January 2022).
- INE. Censos 2021 Resultados Provisórios. Available online: https://www.ine.pt/ngt_server/attachfileu.jsp?look_parentBoui=536757700&att_display=n&att_download=y (accessed on 18 January 2022).
- Almeida, C.; Mendonça, J.J.L.; Jesus, M.R.; Gomes, A.J. Sistemas Aquíferos de Portugal Continental; Centro de Geologia da Universidade de Lisboa; Instituto Nacional da Água: Lisboa, Portugal, 2000. [Google Scholar] [CrossRef]
- Pais, J.; Moniz, C.; Cabral, J.; Cardoso, J.; Legoinha, P.; Machado, S.; Morais, M.A.; Lourenço, C.; Ribeiro, M.L.; Henriques, P.; et al. Notícia Explicativa da Carta Geológica 1:50.000, nº 34-D, Lisboa; Instituto Nacional de Engenharia, Tecnologia e Inovação: Lisboa, Portugal, 2006; Available online: https://novaresearch.unl.pt/en/publications/not%C3%ADcia-explicativa-da-carta-geol%C3%B3gica-150000-n%C2%BA-34-d-lisboa (accessed on 15 December 2021).
- Galopim de Carvalho, A.; Ribeiro, A.; Cabral, J. Evolução Paleogeográfica da Bacia Cenozoica do Tejo-Sado; Boletim da Sociedade Geológica de Portugal: Lisboa, Portugal, 1983–1985; Volume XXIV, pp. 209–212. Available online: https://www.researchgate.net/publication/292390457_Evolucao_paleogeografica_da_bacia_cenozoica_do_Tejo-Sado (accessed on 10 December 2021).
- Kullberg, M.C.; Kullberg, J.C.; Terrinha, P. Tectónica da Cadeia da Arrábida. In Tectónica das Regiões de Sintra e Arrábida. Memórias Geociências; Museu Nacional de História Natural, Universidade de Lisboa: Lisboa, Portugal, 2000; pp. 35–84. Available online: https://research.unl.pt/ws/portalfiles/portal/325791/Kullberg+et+al+%28Mem+Geoc+MNHN+2000%29.pdf (accessed on 10 December 2021).
- Kullberg, J.C.; Rocha, R.B.; Soares, A.F.; Rey, J.; Terrinha, P.; Callapez, P.; Martins, L. A Bacia Lusitaniana: Estratigrafia, Paleogeografia e Tectónica. In Geologia de Portugal no Contexto da Ibéria; Dias, R., Araújo, A., Terrinha, P., Kullberg, J.C., Eds.; Universidade de Évora: Évora, Portugal, 2006; pp. 317–368. Available online: http://hdl.handle.net/10362/1487 (accessed on 10 December 2021).
- Kullberg, J.C.; Rocha, R.B.; Soares, A.F.; Rey, J.; Terrinha, P.; Azerêdo, A.C.; Callapez, P.; Duarte, L.V.; Kullberg, M.C.; Martins, L.; et al. A Bacia Lusitaniana: Estratigrafia, Paleogeografia e Tectónica. In Geologia de Portugal; Dias, R., Araújo, A., Terrinha, P., Kullberg, J.C., Eds.; Escolar Editora: Lisboa, Portugal, Volume II—Geologia Meso-cenozóica de Portugal; pp. 195–347. Available online: https://docentes.fct.unl.pt/omateus/files/kullberg_et_al_2013_a_bacia_lusitaniana.pdf (accessed on 10 December 2021).
- Antunes, M.T.; Elderfield, H.; Legoinha, P.; Pais, J. A stratigraphic framework for the Miocene from the Lower Tagus Basin (Lisbon, Setúbal Peninsula, Portugal): Depositional sequences, biostratigraphy and isotopic ages. Rev. Soc. Geológica España 1999, 12, 3–15. Available online: https://run.unl.pt/handle/10362/4167 (accessed on 15 December 2021).
- Antunes, M.T.; Legoinha, P.; Cunha, P.; Pais, J. High resolution stratigraphy and Miocene facies correlation in Lisbon and Setúbal Peninsula (Lower Tagus basin, Portugal). Ciências Da Terra 2000, 14, 183–190. Available online: http://hdl.handle.net/10362/4707 (accessed on 15 December 2021).
- Cunha, P.; Pais, J.; Legoinha, P. Evolução geológica de Portugal continental durante o Cenozóico—Sedimentação aluvial e marinha numa margem continental passiva (Ibéria ocidental). In Proceedings of the 6th Symposium on the Atlantic Iberian Margin, Oviedo, Spain, 1–5 December 2009; Available online: https://run.unl.pt/handle/10362/2351 (accessed on 15 December 2021).
- Antunes, M.T.; Chevalier, J.P. Notes sur la Géologie et la Paléontologie du Miocène de Lisbonne—VII—Observations compémentaires sur les madréporaires et les faciès rècifaux. Rev. Fac. Ciências Lisb. 1971, 16, 291–305. [Google Scholar]
- Mendes-Victor, L.A.; Hirn, A.; Veinante, J.L. A seismic section across the Tagus valley, Portugal: Possible evolution of the crust. Ann. Géophysique 1980, 36, 469–476. [Google Scholar]
- Azevedo, T.M. O Sinclinal de Albufeira. Evolução Pós-Miocénica e Reconstituição Paleogeográfica. Ph.D. Thesis, Centro de Geologia da Faculdade de Ciências de Lisboa, Lisboa, Portugal, 1982. [Google Scholar]
- Pais, J. The Neogene of the Lower Tagus Basin (Portugal). Rev. Esp. Paleontol. 2004, 19, 229–242. [Google Scholar] [CrossRef]
- Moniz, C. Contributo para o conhecimento da Falha de Pinhal Novo—Alcochete, no âmbito da Neotectónica do Vale Inferior do Tejo. Master’s Thesis, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal, 2010. [Google Scholar]
- Ribeiro, A.; Kullberg, M.C.; Kullberg, J.C.; Manuppella, G.; Phipps, S. A review of Alpine tectonics in Portugal: Foreland datachment in basement and cover rocks. Tectonophysics 1990, 184, 357–366. Available online: https://repositorio.lneg.pt/handle/10400.9/1877 (accessed on 10 December 2021). [CrossRef] [Green Version]
- Cabral, J.; Moniz, C.; Ribeiro, P.; Terrinha, P.; Matias, L. Analysis of seismic reflection data as a tool for the seismotectonic assessment of a low activity intraplate basin—The Lower Tagus Valley (Portugal). J. Seismol. 2003, 7, 431–447. [Google Scholar] [CrossRef]
- Simões, M. Contribuição Para o Conhecimento Hidrogeológico do Cenozóico na Bacia do Baixo Tejo. Ph.D. Thesis, Universidade Nova de Lisboa, Caparica, Portugal, 1998. [Google Scholar]
- PNUD—Programme Des Nations Unies Pour Le Developpement. Étude des Eaux Souterraines de la Péninsule de Setúbal (Système Aquifère Mio-Pliocène du Tejo et du Sado); Rapport Final sur les Résultats du Project, Conclusions et Recommendations; Programme des Nations Unies Pour le Développement; Direcção Geral dos Recursos e Aproveitamentos Hidráulicos: Lisbon, Portugal, 1981. [Google Scholar]
- Zeferino, J. Modelação Numérica (FEFLOW) e Contaminação por Intrusão Salina do Sistema Aquífero Mio-Pliocénico do Tejo, na Frente Ribeirinha do Barreiro. Master’s Thesis, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa, Caparica, Portugal, 2016. [Google Scholar]
- HP—Hidrotécnica Portuguesa. Estudo de Caracterização dos Aquíferos e dos Consumos de Água na Península de Setúbal; Estudo Realizado Para Empresa Portuguesa de Águas Livres, S.A., (EPAL): Lisbon, Portugal, 1994. [Google Scholar]
- Lopo Mendonça, J.P. Caracterização geológica e hidrogeológica da Bacia Terciária do Tejo-Sado. In Tágides 7, Os Aquíferos das Bacias Hidrográficas do Rio Tejo e das Ribeiras do Oeste, Saberes e Reflexões; ARH do Tejo, I.P.: Lisbon, Portugal, 2010; pp. 59–65. Available online: https://www.researchgate.net/publication/307205223_Caracterizacao_geologica_e_hidrogeologica_da_bacia_terciaria_do_Tejo_Sado (accessed on 12 December 2021).
- Moinante, M.J. Delimitação de Perímetros de Protecção de Captações de Águas Subterrâneas. Estudo Comparativo Utilizando Métodos Analíticos E Numéricos. Master’s Thesis, Universidade Técnica de Lisboa, Lisbon, Portugal, 2003. [Google Scholar]
- Wyssling, L. Eine nene form el zur Berechnung der Zustromungsdaner der grunduaners zu einem Grunduaner Pumpuern. Eclogee Geol. Helv. 1979, 72, 401–406. [Google Scholar]
- Bear, J.; Jacobs, M. On the Movement of Water Bodies Injected into Aquifer. J. Hydrol. 1965, 3, 37–57. [Google Scholar] [CrossRef]
- McElwee, C.D. Capture zones for simple aquifers. Ground Water 1991, 29, 587–590. Available online: https://pubs.er.usgs.gov/publication/70016701 (accessed on 8 January 2022). [CrossRef]
- Diersch, H.J. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- LABCARGA. Desenvolvimento de Métodos Específicos Para a Avaliação da Recarga das Massas de Água Subterrâneas, Para Melhorar a Avaliação do Estado Quantitativo; Relatório Final; Laboratório de Cartografia e Geologia Aplicada: Porto, Portugal, 2017; 141p. [Google Scholar]
- Simões, M. Modelos e Balanços do Aquífero Sedimentar da Bacia do Tejo—Margem Esquerda, na Península de Setúbal. In Proceedings of the 8º Seminário Sobre Águas Subterrâneas, FCUL, Lisbon, Portugal, 10–11 March 2011; pp. 119–122. Available online: https://novaresearch.unl.pt/en/publications/pmodelos-e-balan%C3%A7os-do-aqu%C3%ADfero-sedimentar-da-bacia-do-tejo-marge (accessed on 10 September 2021).
- Gonçalves, P. Sustentabilidade do Aquífero Tejo-Sado (Exploração eficiente na Margem Sul do Tejo). In Proceedings of the 12º Seminário Sobre Águas Subterrâneas, Coimbra, Portugal, 7–8 March 2019; Livro de Atas. Universidade de Coimbra: Coimbra, Portugal, 2019. [Google Scholar]
Extended WPZ | Area (km2) | Wells | Drains (m) | Flow Rate (m3/Day) | Hydraulic Gradient | Aquifer Thickness (m) | Transmissivity (m2/Day) | Hydraulic Conductivity (m/Day) | Porosity |
---|---|---|---|---|---|---|---|---|---|
A | 2.32 | SM01 | 206–259 | 3456 | 0.001–0.0008 | 72 | 370 | 5 | 0.10 |
SM02 | 185–273 | 5184 | 109 | 1140 | 10 | ||||
B | 1.31 | MJ01 | 110–220 | 3636 | 0.00047 | 43 | 614 | 14 | 0.25 |
MJ04 | 121–233 | 774 | 0.00130 | 44 | 1008 | 23 | |||
C | 2.30 | MJ02 | 141–248 | 3289 | 0.00203 | 43 | 1407 | 33 | 0.25 |
MJ03 | 114–237 | 3589 | 0.00122 | 43 | 1653 | 38 | |||
MJ05 | 776 | 0.00208 | 43 | 1250 | 29 |
Layer | Hydraulic-Head BC-Dirichlet | Well BC Nodal Source/Sink Type | |||
---|---|---|---|---|---|
South | Southeast | East (Fault) | Northwest | ||
1 (phreatic) | ✓ (estuary) | ✓ (estuary) | ✗ | ✓ (estuary) | ✗ |
2 (aquitard) | ✗ | ✓ | ✗ | ✓ | ✗ |
3 (aquifer) | ✗ | ✓ | ✗ | ✓ | ✓ |
4 (aquitard) | ✗ | ✓ | ✗ | ✓ | ✗ |
5 (aquifer) | ✗ | ✓ | ✗ | ✓ | ✓ |
Extended WPA | Wells | Minimum Flow Rate (m3/Day) | Maximum Flow Rate (m3/Day) | Hydraulic Gradient (2011) | Flow Direction | Hydraulic Gradient (2019) | Flow Direction |
---|---|---|---|---|---|---|---|
A | SM01 | 351 | 3456 | 0.001–0.0008 | - | 0.00789 | SE |
SM02 | 505 | 5184 | - | 0.00781 | SSE | ||
B | MJ01 | 1047 | 3636 | 0.00047 | NE | 0.00178 | NNE |
MJ04 | 57 | 774 | 0.00130 | ENE | 0.00083 | NW | |
C | MJ02 | 2089 | 3289 | 0.00203 | SSE | 0.00495 | SW |
MJ03 | 2828 | 3589 | 0.00122 | SE | 0.00383 | WNW | |
MJ05 | 503 | 776 | 0.00208 | NE | 0.00228 | NW |
Method | WPA | Wells | Area (km2) | Total (km2) |
---|---|---|---|---|
2011 (Jacob and Bear predominant) | A | SM01 and SM02 | 2.32 | 5.93 |
B | MJ01 and MJ04 | 1.31 | ||
C | MJ02, MJ03 and MJ05 | 2.3 | ||
Fixed Radius | A | SM01 and SM02 | 2.06 | 5.78 |
BC | MJ01, MJ02, MJ03, MJ04 and MJ05 | 3.72 | ||
Wyssling | A | SM01 and SM02 | 5.34 | 15.37 |
BC | MJ01, MJ03, MJ04 and MJ05 | 8.01 | ||
C1 | MJ02 | 2.02 | ||
Jacob and Bear | A | SM01 and SM02 | 3.12 | 7.04 |
B1 | MJ01 | 1.18 | ||
B2 | MJ04 | 0.25 | ||
C1 | MJ02 | 1.07 | ||
C2 | MJ03 | 1.17 | ||
C3 | MJ05 | 0.25 | ||
Numerical (first option) | A | SM01 and SM02 | 1.99 | 4.98 |
B1 | MJ01 | 0.83 | ||
B2 | MJ04 | 0.19 | ||
C | MJ02, MJ03 and MJ05 | 1.97 | ||
Numerical (second option) | A | SM01 and SM02 | 3.97 | 10.24 |
BC | MJ01, MJ02, MJ03, MJ04 and MJ05 | 6.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeferino, J.; Paiva, M.; Carvalho, M.d.R.; Carvalho, J.M.; Almeida, C. Long Term Effectiveness of Wellhead Protection Areas. Water 2022, 14, 1063. https://doi.org/10.3390/w14071063
Zeferino J, Paiva M, Carvalho MdR, Carvalho JM, Almeida C. Long Term Effectiveness of Wellhead Protection Areas. Water. 2022; 14(7):1063. https://doi.org/10.3390/w14071063
Chicago/Turabian StyleZeferino, Joel, Marina Paiva, Maria do Rosário Carvalho, José Martins Carvalho, and Carlos Almeida. 2022. "Long Term Effectiveness of Wellhead Protection Areas" Water 14, no. 7: 1063. https://doi.org/10.3390/w14071063
APA StyleZeferino, J., Paiva, M., Carvalho, M. d. R., Carvalho, J. M., & Almeida, C. (2022). Long Term Effectiveness of Wellhead Protection Areas. Water, 14(7), 1063. https://doi.org/10.3390/w14071063