Potentially Toxic Elements and Pb Isotopes in Mine-Draining Meža River Catchment (NE Slovenia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Preparation
2.2. Instrumentation
2.3. Reagents and Materials
2.4. Analytical Procedures
2.5. Pearson Correlation Coefficient
2.6. Probable Effect Concentration Quotient (PEC-Q)
3. Results and Discussion
3.1. PTE in Water Samples
3.2. PTE in Sediment Samples
3.3. Correlations between PTE in Water and Sedimets
3.4. Probable Effect Concentration Quotient (PEC-Q)
3.5. Pb Isotope Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rečnik, A.; Zavašnik, J.; Štrucl, S.F. The Mežica mine, Koroška (Slovenia). Mineral. Rec. 2014, 45, 507–548. [Google Scholar]
- Gosar, M.; Miler, M. Anthropogenic metal loads and their sources in stream sediments of the Meža River catchment area (NE Slovenia). Appl. Geochem. 2011, 26, 1855–1866. [Google Scholar] [CrossRef]
- Žibret, G.; Gosar, M.; Miler, M.; Alijagić, J. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies. Land Degrad. Dev. 2018, 29, 4457–4470. [Google Scholar] [CrossRef] [Green Version]
- Kladnik, Š. Comparison of the Current State of the Environment in the Upper Meža Valley with the Situation in the Past Decades. Bachelor’s Thesis, University of Ljubljana, Faculty of Arts, Department of Geography, Ljubljana, Slovenia, 2009. [Google Scholar]
- Gošar, D.; Costa, M.R.; Ferreira, A.; Štrucl, S.F. Assessment of past and present water quality in closed Mežica Pb-Zn Mine (Slovenia). Comun. Geol. 2015, 102, 65–69. [Google Scholar]
- Svete, P.; Milačič, R.; Pihlar, B. Partitioning of Zn, Pb and Cd in river sediments from a lead and zinc mining area using the BCR three-step sequential extraction procedure. J. Environ. Monit. 2001, 3, 586–590. [Google Scholar] [CrossRef]
- Fux, J.; Gosar, M. Vsebnosti svinca in drugih težkih kovin v sedimentih na območju Mežiške doline (Lead and other heavy metals in stream sediments in the area of Meža valley). Geologija 2007, 50, 347–360. [Google Scholar] [CrossRef]
- Audry, S.; Schäfer, J.; Blanc, G.; Jouanneau, J.M. Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ. Pollut. 2004, 132, 413–426. [Google Scholar] [CrossRef]
- Rybicka, E.H.; Adamie, E.; Aleksander-Kwaterczak, U. Distribution of trace metals in the Odra River system: Water–suspended matter–sediments. Limnologica 2005, 35, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Strzebońska, M.; Jarosz-Krzemińska, E.; Adamiec, E. Assessing Historical Mining and Smelting Effects on Heavy Metal Pollution of River Systems over Span of Two Decades. Water Air Soil Pollut. 2017, 228, 141. [Google Scholar] [CrossRef] [Green Version]
- Smolders, A.J.P.; Lock, R.A.C.; Van der Velde, G.; Medina Hoyos, R.I.; Roelofs, J.G.M. Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo river, South America. Arch. Environ. Contam. Toxicol. 2003, 44, 314–323. [Google Scholar] [CrossRef]
- Bollhöfer, A.; Rosman, K.J.R. Isotopic source signatures for atmospheric lead: The Northern Hemisphere. Geochim. Cosmochim. Acta. 2001, 65, 1727–1740. [Google Scholar] [CrossRef]
- Sun, G.X.; Wang, X.J.; Hu, Q.H. Using stable lead isotopes to trace heavy metal contamination sources in sediments of Xiangjiang and Lishui Rivers in China. Environ. Pollut. 2011, 159, 3406–3410. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Teng, Y.; Song, L.; Wang, J.; Zhang, L. Lead and strontium isotopes as tracers to investigate the potential sources of lead in soil and groundwater: A case study of the Hun River alluvial fan. Appl. Geochem. 2018, 97, 291–300. [Google Scholar] [CrossRef]
- Schnyder, E.; Štrok, M.; Kosonen, Z.; Skudnik, M.; Mazej, D.; Jeran, Z.; Thöni, L. Lead concentrations and stable lead isotope ratios in moss in Slovenia and Switzerland. Ecol. Indic. 2018, 95, 250–259. [Google Scholar] [CrossRef]
- Rosca, C.; Schoenberg, R.; Tomlinson, E.L.; Kamber, B.S. Combined zinc-lead isotope and trace-metal assessment of recent atmospheric pollution sources recorded in Irish peatlands. Sci. Total Environ. 2019, 658, 234–249. [Google Scholar] [CrossRef]
- Ladonin, D.V.; Plyaskina, O.V. Isotopic composition of lead in soils and street dust in the Southeastern Administrative District of Moscow. Eurasian Soil Sci. 2009, 42, 93–104. [Google Scholar] [CrossRef]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevič, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–577. [Google Scholar] [CrossRef]
- Monna, F.; Hamer, K.; Lévêque, J.; Sauer, M. Pb isotopes as a reliable marker of early mining and smelting in the Northern Harz province (Lower Saxony, Germany). J. Geochem. Explor. 2000, 68, 201–210. [Google Scholar] [CrossRef]
- MacKenzie, A.B.; Pulford, I.D. Investigation of contaminant metal dispersal from a disused mine site at Tyndrum, Scotland, using concentration gradients and stable Pb isotope ratios. Appl. Geochem. 2002, 17, 1093–1103. [Google Scholar] [CrossRef]
- Ettler, V.; Mihaljevič, M.; Šebek, O.; Molek, M.; Grygar, T.; Zeman, J. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Příbram, Czech Republic. Environ. Pollut. 2006, 142, 409–417. [Google Scholar] [CrossRef]
- Ayrault, S.; Roy-Barman, M.; Le Cloarec, M.F.; Priadi, C.R.; Bonté, P.; Göpel, C. Lead contamination of the Seine River, France: Geochemical implications of a historical perspective. Chemosphere 2012, 87, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Liang, X.; Zhou, H.; Tu, X. Lead isotopes as a tracer of Pb origin in the sediments from Beijiang River, South China. Water Sci. Technol. 2012, 66, 2613–2619. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Long, E.R.; Ingersoll, C.G.; MacDonald, D.D. Calculation and Uses of Mean Sediment Quality Guideline Quotients: A Critical Review. Environ. Sci. Technol. 2006, 40, 1726–1736. [Google Scholar] [CrossRef]
- Larrose, A.; Coynel, A.; Schäfer, J.; Blanc, G.; Massé, L.; Maneux, E. Assessing the current state of the Gironde Estuary by mapping priority contaminant distribution and risk potential in surface sediment. Appl. Geochem. 2010, 25, 1912–1923. [Google Scholar] [CrossRef]
- Essien, J.P.; Antai, S.P.; Olajire, A.A. Distribution, Seasonal Variations and Ecotoxicological Significance of Heavy Metals in Sediments of Cross River Estuary Mangrove Swamp. Water Air Soil Pollut. 2009, 197, 91–105. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Zhao, Q.; Deng, L.; Dong, S. Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River. Ecotoxicol. Environ. Saf. 2012, 82, 32–39. [Google Scholar] [CrossRef]
- Kugonič, N.; Kopušar, N. Garden Soil and Vegetable Pollution Assessment of the Upper Meza Valley (Slovenia). Phyton 2000, 40, 117–121. [Google Scholar]
- Finzgar, N.; Jez, E.; Voglar, D.; Lestan, D. Spatial distribution of metal contamination before and after remediation in the Meza Valley, Slovenia. Geoderma 2014, 217–218, 135–143. [Google Scholar] [CrossRef]
- Zuliani, T.; Mladenovič, A.; Ščančar, J.; Milačič, R. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering. Environ. Monit. Assess. 2016, 188, 234. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Directive 2008/105/EC of the European Parliament and of the Council on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and Amending Directive 2000/60/EC of the European Parliament and of the Council. L 348/84. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0105 (accessed on 19 January 2022).
- Statutory Instruments. S.I. No. 272. European Communities Environmental Objectives (Surface Waters) Regulations 2009. Available online: https://www.irishstatutebook.ie/eli/2009/si/272/made/en/print (accessed on 9 January 2022).
- Zhang, S.; Wang, S.; Shan, X. Distribution and speciation of heavy metals in surface sediments from Guanting reservoir, Beijing. J. Environ. Sci. Health 2002, 37, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.X.; Zhang, S.Z.; Shan, X.Q. Fractionation of Heavy Metals in Different Particle-Size Sediments and Its Relationship with Heavy Metal Pollution. Bull. Environ. Contam. Toxicol. 2003, 71, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Štrucl, I. Geološke, geokemične in mineraloške značilnosti rude in prikamenine svinčevo-cinkovih orudenj mežiškega rudišča (Geological and geochemical characteristics of ore and host rock of lead–zinc ores of the Mežica ore deposit). Geologija 1984, 27, 215–327. [Google Scholar]
- Miler, M.; Gosar, M. Characteristics and potential environmental influences of mine waste in the area of the closed Mežica Pb–Zn mine (Slovenia). J. Geochem. Explor. 2012, 112, 152–160. [Google Scholar] [CrossRef]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace elements in river waters. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2003; Volume 5, pp. 225–272. [Google Scholar] [CrossRef]
- Miler, M.; Gosar, M. Assessment of contribution of metal pollution sources to attic and household dust in Pb-polluted area. Indoor Air 2019, 29, 487–498. [Google Scholar] [CrossRef]
- Gassama, N.; Curie, F.; Vanhooydonck, P.; Bourrain, X.; Widory, D. Determining the regional geochemical background for dissolved trace metals and metalloids in stream waters: Protocol, results and limitations—The upper Loire River basin (France). Water 2021, 13, 1845. [Google Scholar] [CrossRef]
- Tansel, B.; Rafiuddin, S. Heavy metal content in relation to particle size and organic content of surficial sediments in Miami River and transport potential. Int. J. Sediment Res. 2016, 31, 324–329. [Google Scholar] [CrossRef]
Sample Number | Sample Location | Pb | Zn | Cd | As |
---|---|---|---|---|---|
(1) | Meža–Topla | 2.52 ± 0.09 | 4.33 ± 0.09 | 0.038 ± 0.004 | 1.29 ± 0.02 |
(2) | Meža–Črna 1 | 1.08 ± 0.03 | 5.70 ± 0.19 | 0.049 ± 0.005 | 0.62 ± 0.01 |
(3) | Meža–Črna 2 | 9.01 ± 0.27 | 7.39 ± 0.13 | 0.057 ± 0.004 | 0.64 ± 0.01 |
(4) | Meža–Žerjav 1 | 19.7 ± 0.7 | 11.4 ± 0.4 | 0.11 ± 0.01 | 1.11 ± 0.04 |
(5) | Meža–Žerjav 2 | 41.9 ± 1.9 | 28.5 ± 0.7 | 0.58 ± 0.01 | 7.28 ± 0.11 |
(6) | Meža–Mežica | 21.7 ± 0.6 | 63.8 ± 1.1 | 0.63 ± 0.01 | 3.09 ± 0.05 |
(7) | Meža–Podklanc | 8.08 ± 0.22 | 53.6 ± 1.1 | 0.24 ± 0.01 | 0.87 ± 0.03 |
(8) | Helena Rivulet | 51.7 ± 0.9 | 107 ± 1 | 0.52 ± 0.01 | 0.41 ± 0.01 |
(9) | Jazbina Rivulet | 4.37 ± 0.13 | 67.7 ± 1.8 | 0.26 ± 0.01 | 0.37 ± 0.01 |
(10) | Junčar Rivulet | 31.5 ± 0.7 | 89.5 ± 1.2 | 0.25 ± 0.01 | 0.53 ± 0.01 |
Sample Number | Sample Location | Fraction (mm) | Pb | Zn | Cd | As |
---|---|---|---|---|---|---|
(2a) | Meža–Črna 1 | <0.063 | 1619 ± 1 | 2214 ± 21 | 13.2 ± 0.1 | 22.3 ± 0.3 |
<0.150 | 2549 ± 277 | 2055 ± 24 | 10.3 ± 0.1 | 14.4 ± 0.3 | ||
(3a) | Meža–Črna 2 * | <0.150 | 120 ± 1 | 375 ± 6 | 2.45 ± 0.01 | 10.3 ± 0.3 |
<0.250 | 114 ± 3 | 646 ± 5 | 2.71 ± 0.04 | 11.0 ± 0.2 | ||
(5a) | Meža–Žerjav 2 | <0.063 | 15,609 ± 16 | 5206 ± 74 | 33.0 ± 0.1 | 56.5 ± 0.6 |
<0.150 | 3895 ± 275 | 1702 ± 6 | 9.61 ± 0.13 | 20.4 ± 0.3 | ||
(7a) | Meža–Podklanc | <0.063 | 5814 ± 5 | 6658 ± 69 | 43.8 ± 0.1 | 30.5 ± 0.4 |
<0.150 | 10,032 ± 192 | 15,956 ± 121 | 88.0 ± 0.7 | 44.3 ± 0.6 | ||
(10a) | Junčar Rivulet | <0.063 | 2350 ± 1 | 6071 ± 61 | 29.3 ± 0.1 | 29.5 ± 0.7 |
<0.150 | 1401 ± 26 | 5278 ± 13 | 21.4 ± 0.3 | 28.7 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goltnik, T.; Burger, J.; Kranjc, I.; Turšič, J.; Zuliani, T. Potentially Toxic Elements and Pb Isotopes in Mine-Draining Meža River Catchment (NE Slovenia). Water 2022, 14, 998. https://doi.org/10.3390/w14070998
Goltnik T, Burger J, Kranjc I, Turšič J, Zuliani T. Potentially Toxic Elements and Pb Isotopes in Mine-Draining Meža River Catchment (NE Slovenia). Water. 2022; 14(7):998. https://doi.org/10.3390/w14070998
Chicago/Turabian StyleGoltnik, Tjaša, Judita Burger, Irena Kranjc, Janja Turšič, and Tea Zuliani. 2022. "Potentially Toxic Elements and Pb Isotopes in Mine-Draining Meža River Catchment (NE Slovenia)" Water 14, no. 7: 998. https://doi.org/10.3390/w14070998
APA StyleGoltnik, T., Burger, J., Kranjc, I., Turšič, J., & Zuliani, T. (2022). Potentially Toxic Elements and Pb Isotopes in Mine-Draining Meža River Catchment (NE Slovenia). Water, 14(7), 998. https://doi.org/10.3390/w14070998