Reactive Transport of NH4+ in the Hyporheic Zone from the Ground Water to the Surface Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Water and Sediments
2.2. Column Experiment
2.3. Sample Analysis
3. Results
3.1. Characteristics of the Sediment and Column Samples
3.2. NH4+ Concentration Changes in SGW under Aerobic/Anaerobic Condition
3.3. NH4+ Microbial Oxidation in SGW under Aerobic/Anaerobic Condition
3.4. Ion Exchange for NH4+ in SGW under Aerobic Condition
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ur Rehman, S.; Ahmed, R.; Ma, K.; Xu, S.; Aslam, M.A.; Bi, H.; Liu, J.; Wang, J. Ammonium nitrate is a risk for environment: A case study of Beirut (Lebanon) chemical explosion and the effects on environment. Ecotoxicol. Environ. Saf. 2021, 210, 111834. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Yang, J.; Li, Y.; Liu, B.; Wang, F.; Chang, C. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China. Mar. Pollut. Bull. 2016, 110, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Angar, Y.; Kebbouche-Gana, S.; Djelali, N.-E.; Khemili-Talbi, S. Novel approach for the ammonium removal by simultaneous heterotrophic nitrification and denitrification using a novel bacterial species co-culture. World J. Microbiol. Biotechnol. 2016, 32, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, F.; Yang, Y.; Kong, X.; Li, S.; Zhang, Y.; Cao, D. Ammonium-nitrogen-contaminated groundwater remediation by a sequential three-zone permeable reactive barrier (multibarrier) with oxygen-releasing compound (ORC)/clinoptilolite/spongy iron: Column studies. Environ. Sci. Pollut. Res. 2015, 22, 3705–3714. [Google Scholar] [CrossRef] [PubMed]
- Rusydi, A.F.; Onodera, S.I.; Saito, M.; Hyodo, F.; Maeda, M.; Sugianti, K.; Wibawa, S. Potential Sources of Ammonium-Nitrogen in the Coastal Groundwater Determined from a Combined Analysis of Nitrogen Isotope, Biological and Geological Parameters, and Land Use. Water 2020, 13, 25. [Google Scholar] [CrossRef]
- Naranjo, R.C.; Niswonger, R.G.; Davis, C.J. Mixing effects on nitrogen and oxygen concentrations and the relationship to mean residence time in a hyporheic zone of a riffle-pool sequence. Water Resour. Res. 2015, 51, 7202–7217. [Google Scholar] [CrossRef]
- Mohd Mokhlesur, R.; Fuad, M.; Kamaruzzaman, Y. Elimination and Kinetics of Ammonium Ions from Waste Water Using by Zeolite (NaY) Preparing from Agriculture Waste. Biosci. Res. 2019, 16, 3395–3412. [Google Scholar]
- Wu, L.; Li, Z.; Zhao, C.; Liang, D.; Peng, Y. A novel partial-denitrification strategy for post-anammox to effectively remove nitrogen from landfill leachate. Sci. Total Environ. 2018, 633, 745–751. [Google Scholar] [CrossRef]
- Huang, J.; Kankanamge, N.R.; Chow, C.; Welsh, D.T.; Li, T.; Teasdale, P.R. Removing ammonium from water and wastewater using cost-effective adsorbents: A review. J. Environ. Sci. 2018, 63, 174–197. [Google Scholar] [CrossRef]
- Geng, Y.; Jiang, L.; Zhang, D.; Liu, B.; Zhang, J.; Cheng, H.; Wang, L.; Peng, Y.; Wang, Y.; Zhao, Y.; et al. Glyphosate, aminomethylphosphonic acid, and glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018: Occurrence, main drivers, and environmental risk assessment. Sci. Total Environ. 2020, 769, 144396. [Google Scholar] [CrossRef]
- O’Connor, E.; Kavanagh, O.N.; Chovan, D.; Madden, D.G.; Cronin, P.; Albadarin, A.B.; Walker, G.M.; Ryan, A. Highly selective trace ammonium removal from dairy wastewater streams by aluminosilicate materials. J. Ind. Eng. Chem. 2020, 86, 39–46. [Google Scholar] [CrossRef]
- Zheng, L.; Cardenas, M.B.; Wang, L. Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones. J. Geophys. Res. Biogeosci. 2016, 121, 1086–1103. [Google Scholar] [CrossRef] [Green Version]
- Weatherill, J.J.; Atashgahi, S.; Schneidewind, U.; Krause, S.; Ullah, S.; Cassidy, N.; Rivett, M.O. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential. Water Res. 2018, 128, 362–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, T.; Wu, L.; Gomez-Velez, J.D.; Lewandowski, J.; Hannah, D.M.; Krause, S. Dynamic Hyporheic Zones: Exploring the Role of Peak Flow Events on Bedform-Induced Hyporheic Exchange. Water Resour. Res. 2019, 55, 218–235. [Google Scholar] [CrossRef]
- Silva, L.C.F.; Lima, H.S.; de Oliveira Mendes, T.A.; Sartoratto, A.; de Paula Sousa, M.; de Souza, R.S.; de Paula, S.O.; de Oliveira, V.M.; da Silva, C.C. Heterotrophic nitrifying/aerobic denitrifying bacteria: Ammonium removal under different physical-chemical conditions and molecular characterization. J. Environ. Manag. 2019, 248, 109294. [Google Scholar] [CrossRef] [PubMed]
- Mekala, C.; Nambi, I.M. Understanding the hydrologic control of N cycle: Effect of water filled pore space on heterotrophic nitrification, denitrification and dissimilatory nitrate reduction to ammonium mechanisms in unsaturated soils. J. Contam. Hydrol. 2017, 202, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, X.; Zhang, Z.; Liu, Y. Full nitration-denitration versus partial nitration-denitration-anammox for treating high-strength ammonium-rich organic wastewater. Bioresour. Technol. 2018, 261, 379–384. [Google Scholar] [CrossRef]
- Choi, M.; Cho, K.; Jeong, D.; Chung, Y.C.; Park, J.; Lee, S.; Bae, H. Effects of the ammonium loading rate on nitrite-oxidizing activity during nitrification at a high dose of inorganic carbon. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2018, 53, 708–717. [Google Scholar] [CrossRef]
- Ge, S.; Wang, S.; Yang, X.; Qiu, S.; Li, B.; Peng, Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere 2015, 140, 85–98. [Google Scholar] [CrossRef]
- Choi, A.; Cho, H.; Kim, S.H.; Thamdrup, B.; Lee, S.; Hyun, J.H. Rates of N2 production and diversity and abundance of functional genes associated with denitrification and anaerobic ammonium oxidation in the sediment of the Amundsen Sea Polynya, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 123, 113–125. [Google Scholar] [CrossRef]
- He, T.; Xie, D.; Ni, J.; Li, Z.; Li, Z. Nitrous oxide produced directly from ammonium, nitrate and nitrite during nitrification and denitrification. J. Hazard. Mater. 2020, 388, 122114. [Google Scholar] [CrossRef] [PubMed]
- Kopprio, G.A.; Dutto, M.S.; Cardona, J.G.; Gärdes, A.; Lara, R.J.; Graeve, M. Biogeochemical markers across a pollution gradient in a Patagonian estuary: A multidimensional approach of fatty acids and stable isotopes. Mar. Pollut. Bull. 2018, 137, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, J.; Gao, C.; Li, Y.; Shen, X.; Zhang, S.; Huo, S.; Xia, X. Anaerobic ammonium oxidation (anammox) is the main microbial N loss pathway in alpine wetland soils of the Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 787, 147714. [Google Scholar] [CrossRef]
- Einsiedl, F.; Wunderlich, A.; Sebilo, M.; Coskun, Ö.K.; Orsi, W.D.; Mayer, B. Biogeochemical evidence of anaerobic methane oxidation and anaerobic ammonium oxidation in a stratified lake using stable isotopes. Biogeosciences 2020, 17, 5149–5161. [Google Scholar] [CrossRef]
- Yan, A.; Liu, C.; Liu, Y.; Xu, F. Effect of ion exchange on the rate of aerobic microbial oxidation of ammonium in hyporheic zone sediments. Environ. Sci. Pollut. Res. 2018, 25, 8880–8887. [Google Scholar] [CrossRef]
- Thornton, A.; Pearce, P.; Parsons, S. Ammonium removal from digested sludge liquors using ion exchange. Water Res. 2007, 41, 433–439. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Liu, Y.; Feng, J.; Han, J.; Yan, W. Effective removal of ammonium nitrogen using titanate adsorbent: Capacity evaluation focusing on cation exchange. Sci. Total Environ. 2021, 771, 144800. [Google Scholar] [CrossRef]
- Gooseff, M.N.; Mcknight, D.M.; Runkel, R.L. Reach-Scale Cation Exchange Controls on Major Ion Chemistry of an Antarctic Glacial Meltwater Stream. Aquat. Geochem. 2004, 10, 221–238. [Google Scholar] [CrossRef]
- Monteiro, M.; Séneca, J.; Magalhães, C. The history of aerobic ammonia oxidizers: From the first discoveries to today. J. Microbiol. 2014, 52, 537–547. [Google Scholar] [CrossRef]
- Mulholland, P.J.; Helton, A.M.; Poole, G.C.; Hall, R.O.; Hamilton, S.K.; Peterson, B.J.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C.N.; et al. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 2008, 452, 202–205. [Google Scholar] [CrossRef]
Chemical | M | mg/L | Ions | mM | |
---|---|---|---|---|---|
NaHCO3 | 1.44 × 10−3 | 121.0 | Ca2+ | 1 | |
KHCO3 | 1.60 × 10−4 | 16.0 | K+ | 0.16 | |
MgSO4(7H2O) | 5.10 × 10−4 | 125.7 | Mg2+ | 0.51 | |
CaSO4(2H2O) | 3.50 × 10−4 | 60.4 | Na+ | 1.44 | |
CaCl2(2H2O) | 6.50 × 10−4 | 95.6 | NO3− | 0 | |
KBr | 37.2 | pH | 8.103 |
Column | A (Aerobic) | B (Anaerobic) |
---|---|---|
Length (cm) | 10.5 | 10.7 |
A (cm2) | 5.31 | 5.31 |
V (mL) | 55.74 | 56.81 |
Porosity | 0.385 | 0.425 |
Pore Water (mL) | 21.9 | 24.2 |
Flow Rate (mL/h) | 12.13 | 11.21 |
Residence Time (h) | 1.803 | 2.15 |
Darcy Velocity (cm/h) | 2.28 | 2.11 |
Sample time (min) | 25 | 25 |
Cation Exchange Capacity (CEC) (cmol/kg) | 4.423 | 4.423 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, A.; Guo, X.; Hu, D.; Chen, X. Reactive Transport of NH4+ in the Hyporheic Zone from the Ground Water to the Surface Water. Water 2022, 14, 1237. https://doi.org/10.3390/w14081237
Yan A, Guo X, Hu D, Chen X. Reactive Transport of NH4+ in the Hyporheic Zone from the Ground Water to the Surface Water. Water. 2022; 14(8):1237. https://doi.org/10.3390/w14081237
Chicago/Turabian StyleYan, Ailan, Xianyan Guo, Donghui Hu, and Xiaoyang Chen. 2022. "Reactive Transport of NH4+ in the Hyporheic Zone from the Ground Water to the Surface Water" Water 14, no. 8: 1237. https://doi.org/10.3390/w14081237
APA StyleYan, A., Guo, X., Hu, D., & Chen, X. (2022). Reactive Transport of NH4+ in the Hyporheic Zone from the Ground Water to the Surface Water. Water, 14(8), 1237. https://doi.org/10.3390/w14081237