Development of a New Method to Support a Participatory Planning for Piped Water Supply Infrastructure in Informal Settlements
Abstract
:1. Introduction
2. State-of-the-Art
2.1. Informal Settlement Upgrade and Water Supply
- Insecure residence status;
- Inadequate access to safe water;
- Inadequate access to sanitation and other infrastructure;
- Overcrowding.
2.2. Approaches to the Automated Planning of a Piped Water Supply System
3. Materials and Methods
3.1. Software
3.2. Delimitation of the Upgrading Area and Data Import
3.3. Derivation of Potential Routes and Creation of the Maximum Possible Network
- Removal of parallel edges between two nodes;
- Removal of line elements without a connection to main network;
- Removal of “self loops” (line with identical start and end nodes) by inserting a node in the middle of the line.
3.4. Determination of Water Point Locations
3.5. Topology Optimization
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. The World’s Cities in 2018: Data Booklet ST/ESA/SER.A/417. 2018. Available online: https://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf (accessed on 19 October 2021).
- United Nations. Special Edition: Progress towards the Sustainable Development Goals: Report of the Secretary-General E/2019/68. 2019. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=E/2019/68 (accessed on 21 October 2021).
- United Nations. Sustainable Development Goals—17 Goals to Transform Our World: SDG6—Ensure Availability and Sustainable Management of Water and Sanitation for All. Available online: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 4 April 2022).
- Brown, R.; Leder, K.; Wong, T.; French, M.; Ramirez-Lovering, D.; Chown, S.L.; Luby, S.; Clasen, T.; Reidpath, D.; El Sioufi, M.; et al. Improving human and environmental health in urban informal settlements: The Revitalising Informal Settlements and their Environments (RISE) programme. Lancet Planet. Health 2018, 2, S29. [Google Scholar] [CrossRef]
- Brown-Luthango, M.; Reyes, E.; Gubevu, M. Informal settlement upgrading and safety: Experiences from Cape Town, South Africa. J. Hous. Built Environ. 2017, 32, 471–493. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme. Enhancing Urban Safety and Security: Global Report on Human Settlements 2007; Earthscan: London, UK, 2007; ISBN 978-92-113-1920-0. [Google Scholar]
- Abbott, J. The use of GIS in informal settlement upgrading: Its role and impact on the community and on local government. Habitat Int. 2003, 27, 575–593. [Google Scholar] [CrossRef]
- Jaitman, L.; Brakarz, J. Evaluation of Slum Upgrading Programs: Literature Review and Methodological Approaches. Available online: https://publications.iadb.org/publications/english/document/Evaluation-of-Slum-Upgrading-Programs-Literature-Review-and-Methodological-Approaches.pdf (accessed on 18 October 2021).
- Morrow, E. Exploring the Concept of a GIS-Based Decision Support System for the Upgrading of Informal Settlements in South Africa’s North West Province; Georgia Institute of Technology: Atlanta, GA, USA, 2010. [Google Scholar]
- Brelsford, C.; Martin, T.; Hand, J.; Bettencourt, L.M.A. Toward cities without slums: Topology and the spatial evolution of neighborhoods. Sci. Adv. 2018, 4, eaar4644. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Domestic Water Quantity, Service Level and Health, 2nd ed.; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001524-1. [Google Scholar]
- United Nations Human Settlements Programme. Expert Group Meeting on Urban Indicators: Secure Tenure, Slums and Global Sample of Cities; United Nations Human Settlements Programm (UN-Habitat): Nairobi, Kenya, 2002; Available online: https://www.citiesalliance.org/sites/default/files/expert-group-meeting-urban-indicators%5B1%5D.pdf (accessed on 20 October 2021).
- United Nations Human Settlements Programme. Streets as Tools for Urban Transformation in Slums: A Street-Led Approach to Citywide Slum Upgrading; United Nations Human Settlements Programm (UN-Habitat): Nairobi, Kenya, 2012. [Google Scholar]
- Cairncross, S. The benefits of water supply. In Developing World Water; Pickford, J., Ed.; Grosvenor Press: London, UK, 1987; pp. 46–63. [Google Scholar]
- Sarkar, A. Can shared standpipes fulfil the Sustainable Development Goal of universal access to safe water for urban poor in Kenya? Water Policy 2019, 21, 1034–1049. [Google Scholar] [CrossRef]
- Rausch, L.; Friesen, J.; Altherr, L.C.; Meck, M.; Pelz, P.F. A Holistic Concept to Design Optimal Water Supply Infrastructures for Informal Settlements Using Remote Sensing Data. Remote Sens. 2018, 10, 216. [Google Scholar] [CrossRef] [Green Version]
- Leonita, G.; Kuffer, M.; Sliuzas, R.; Persello, C. Machine Learning-Based Slum Mapping in Support of Slum Upgrading Programs: The Case of Bandung City, Indonesia. Remote Sens. 2018, 10, 1522. [Google Scholar] [CrossRef] [Green Version]
- Kohli, D.; Sliuzas, R.; Kerle, N.; Stein, A. An ontology of slums for image-based classification. Comput. Environ. Urban Syst. 2012, 36, 154–163. [Google Scholar] [CrossRef]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R. Slums from Space—15 Years of Slum Mapping Using Remote Sensing. Remote Sens. 2016, 8, 455. [Google Scholar] [CrossRef] [Green Version]
- Wurm, M.; Taubenböck, H. Detecting social groups from space—Assessment of remote sensing-based mapped morphological slums using income data. Remote Sens. Lett. 2018, 9, 41–50. [Google Scholar] [CrossRef]
- Gram-Hansen, B.; Helber, P.; Varatharajan, I.; Azam, F.; Coca-Castro, A.; Kopackova, V.; Bilinski, P. Mapping Informal Settlements in Developing Countries using Machine Learning and Low Resolution Multi-spectral Data. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES), Honolulu, HI, USA, 27–28 January 2019. [Google Scholar]
- Enk, A.; de Wasseige, C. Identification of appropriate data sources and analysis software to monitor the growth of informal settlements in Namibia. In Proceedings of the Joint Urban Remote Sensing 2019, Vannes, France, 22–24 May 2019; pp. 1–4. [Google Scholar]
- Stark, T.; Wurm, M.; Zhu, X.X.; Taubenböck, H. Satellite-Based Mapping of Urban Poverty with Transfer-Learned Slum Morphologies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5251–5263. [Google Scholar] [CrossRef]
- Wang, W.; Yang, N.; Zhang, Y.; Wang, F.; Cao, T.; Eklund, P. A review of road extraction from remote sensing images. J. Traffic Transp. Eng. 2016, 3, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Lucci, P.; Bhatkal, T.; Khan, A. Are we underestimating urban poverty? World Dev. 2018, 103, 297–310. [Google Scholar] [CrossRef]
- Rehm, I.-S.; Friesen, J.; Pouls, K.; Busch, C.; Taubenböck, H.; Pelz, P.F. A Method for Modeling Urban Water Infrastructures Combining Geo-Referenced Data. Water 2021, 13, 2299. [Google Scholar] [CrossRef]
- Sitzenfrei, R. A Review on Network Generator Algorithms for Water Supply Modelling and Application Studies. In Proceedings of the World Environmental and Water Resources Congress 2016, West Palm Beach, FL, USA, 22–26 May 2016; Pathak, C.S., Reinhart, D., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 505–515, ISBN 9780784479865. [Google Scholar]
- Sitzenfrei, R. Stochastic Generation of Urban Water Systems for Case Study Analysis. Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 2010. [Google Scholar]
- Sitzenfrei, R.; Fach, S.; Kleidorfer, M.; Urich, C.; Rauch, W. Dynamic virtual infrastructure benchmarking: DynaVIBe. Water Sci. Technol. Water Supply 2010, 10, 600–609. [Google Scholar] [CrossRef]
- Sitzenfrei, R.; Möderl, M.; Rauch, W. Automatic generation of water distribution systems based on GIS data. Environ. Model. Softw. 2013, 47, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Zischg, J.; Rauch, W.; Sitzenfrei, R. Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply. Entropy 2018, 20, 708. [Google Scholar] [CrossRef] [Green Version]
- Mair, M.; Zischg, J.; Rauch, W.; Sitzenfrei, R. Where to Find Water Pipes and Sewers?—On the Correlation of Infrastructure Networks in the Urban Environment. Water 2017, 9, 146. [Google Scholar] [CrossRef] [Green Version]
- Rausch, L. Mathematische Optimierung von Wasserversorgungsnetzwerken für Informelle Siedlungen in Mega Cities; Shaker: Aachen, Germany, 2019; ISBN 978-3-8440-6687-6. [Google Scholar]
- IBM. ILOG CPLEX Optimizer. Available online: https://www.ibm.com/de-de/analytics/cplex-optimizer (accessed on 4 April 2022).
- QGIS Association. QGIS Geographic Information System; QGIS.org. 2021. Available online: https://www.qgis.org/en/site/index.html (accessed on 19 October 2021).
- OpenStreetMap Contributors. Planet Dump. Available online: https://planet.openstreetmap.org/ (accessed on 10 March 2022).
- Python Software Foundation. Python Language Reference; Version 3.7. 2021. Available online: https://www.python.org/downloads/ (accessed on 30 September 2021).
- Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, USA, 19–24 August 2008. [Google Scholar]
- Perron, L.; Furnon, V. OR-Tools; Version 7.2. Google, 2019. Available online: https://developers.google.com/optimization (accessed on 13 December 2021).
- Forrest, J.J.; Vigerske, S.; Gambini Santos, H.; Ralphs, T.; Hafer, L.; Kristjansson, B.; Jpfasano; Straver, E.; Lubin, M.; Rlougee; et al. coin-or/Cbc: Version 2.10.5; Zenodo, 2020. Available online: https://github.com/coin-or/Cbc (accessed on 13 December 2021).
- Gurobi Optimization, L.L.C. Gurobi Optimizer Reference Manual; 2022. Available online: https://www.gurobi.com (accessed on 18 November 2021).
- Lorenz, I.-S.; Pelz, P. Optimal Resilience Enhancement of Water Distribution Systems. Water 2020, 12, 2602. [Google Scholar] [CrossRef]
- Gold, C.M.; Mioc, D.; Anton, F.; Sharma, O.; Dakowicz, M. A Methodology for Automated Cartographic Data Input, Drawing and Editing Using Kinetic Delaunay/Voronoi Diagrams. In Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence; Gavrilova, M.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 9783540851257. [Google Scholar]
- Hans-Martin Heck, R.B. Netzentwurf und Netzoptimierung. 2006. Available online: http://www.optiv.de/Fallbsp/05-Netzentwurf/05-Netzentwurf/05-Netzentwurf.pdf (accessed on 12 March 2021).
- Aurenhammer, F.; Klein, R. Voronoi Diagrams. In Handbook of Computational Geometry, 1st ed.; Elsevier: New York, NY, USA, 2000; pp. 201–290. ISBN 9780080529684. [Google Scholar]
- Hiyoshi, H. Intelligent Solutions for Curve Reconstruction Problem. In Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence; Gavrilova, M.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 9783540851257. [Google Scholar]
- Rezapour, M. Network Design with Facility Location: Approximation and Exact Techniques. Ph.D. Thesis, Technischen Universität Berlin, Berlin, Germany, 2015. [Google Scholar]
- Mattfeld, D.; Vahrenkamp, R. Logistiknetzwerke; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; ISBN 978-3-8349-2269-4. [Google Scholar]
- Calik, H.; Labbé, M.; Yaman, H. p-Center Problems. In Location Science; Laporte, G., Nickel, S., Saldanha da Gama, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 79–92. ISBN 978-3-319-13110-8. [Google Scholar]
- Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in Optimisation of Water Distribution Systems? A Literature Review of System Design. Water 2018, 10, 307. [Google Scholar] [CrossRef] [Green Version]
- Prömel, H.J.; Steger, A. The Steiner Tree Problem; Vieweg + Teubner Verlag: Wiesbaden, Germany, 2002; ISBN 978-3-528-06762-5. [Google Scholar]
- Garey, M.R.; Graham, R.L.; Johnson, D.S. The Complexity of Computing Steiner Minimal Trees. SIAM J. Appl. Math. 1977, 32, 835–859. [Google Scholar] [CrossRef]
- Müller, T.; Schmid, K.; Schuman, D.; Gabor, T.; Friedrich, M.; Geitz, M. Solving Large Steiner Tree Problems in Graphs for Cost-Efficient Fiber-to-the-Home Network Expansion. 2021. Available online: http://arxiv.org/pdf/2109.10617v1 (accessed on 24 November 2021).
Access Level | Typical Volumes of Water Used in the Home 1 | Accessibility of Water Supply |
---|---|---|
Inadequate access | Quantity collected can be below 5.3 L/person/day | More than 1000 m in distance or 30 min total collection time |
Basic access | Average quantity unlikely to exceed 20 L/person/day | 100–1000 m in distance or 5–30 min total collection time |
Intermediate access | Average quantity about 50 L/person/day | Water delivered through one tap on- plot, or within 100 m or 5 min total collection time |
Optimal access | Average quantity more than 100 L/person/day | Water supplied through multiple taps and continuously available |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosbach, J.; Sonnenburg, A.; Fiedler, J.E.; Urban, W. Development of a New Method to Support a Participatory Planning for Piped Water Supply Infrastructure in Informal Settlements. Water 2022, 14, 1316. https://doi.org/10.3390/w14081316
Mosbach J, Sonnenburg A, Fiedler JE, Urban W. Development of a New Method to Support a Participatory Planning for Piped Water Supply Infrastructure in Informal Settlements. Water. 2022; 14(8):1316. https://doi.org/10.3390/w14081316
Chicago/Turabian StyleMosbach, Julian, Alexander Sonnenburg, Justus Ernst Fiedler, and Wilhelm Urban. 2022. "Development of a New Method to Support a Participatory Planning for Piped Water Supply Infrastructure in Informal Settlements" Water 14, no. 8: 1316. https://doi.org/10.3390/w14081316
APA StyleMosbach, J., Sonnenburg, A., Fiedler, J. E., & Urban, W. (2022). Development of a New Method to Support a Participatory Planning for Piped Water Supply Infrastructure in Informal Settlements. Water, 14(8), 1316. https://doi.org/10.3390/w14081316