Anthropogenic Influences on an Urban River: Differences in Cations and Nutrients along an Urban/Suburban Transect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Water Chemistry
2.3. Quality Assurance/Quality Control
2.4. Statistical Analysis
3. Results
3.1. Cations, Metals, and Nutrient Concentrations among Sites
3.2. Seasonal Trends in Cations, Metals, and Nutrient Concentrations
3.3. Ratios
3.4. PCA
4. Discussion
4.1. Cations and Ratios
4.2. Mn and Fe
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Evol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Maa, J.P. Sediment erosion characteristics in the Anacostia River. J. Hydraul. Eng. 2008, 134, 1102–1109. [Google Scholar] [CrossRef] [Green Version]
- Velinsky, D.J.; Riedel, G.F.; Ashley, J.T.; Cornwell, J.C. Historical contamination of the Anacostia River, Washington, D.C. Environ. Monit. Assess. 2011, 183, 307–328. [Google Scholar] [CrossRef]
- Connor, N.P.; Sarraino, S.; Frantz, D.E.; Bushaw-Newton, K.; MacAvoy, S.E. Geochemical characteristics of an urban river: Influences of an anthropogenic landscape. Appl. Geochem. 2014, 47, 209–216. [Google Scholar] [CrossRef]
- Rao, N.S.; Dinakar, A.; Kumari, B.K. Appraisal of vulnerable zones of non-cancer-causing health risks associated with exposure of nitrate and fluoride in groundwater from a rural part of India. Environ. Res. 2021, 202, 111674. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Belt, K.T. The urban watershed continuum: Evolving spatial and temporal dimensions. Urban Ecosyst. 2012, 15, 409–435. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Duan, S. Human-accelerated weathering increases salinization, major ions, and alkalization in fresh water across land use. Appl. Geochem. 2017, 83, 121–135. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Reimer, J.E.; Maas, C.M.; Galella, J.G.; Utz, R.M.; Duan, S.; Kryger, J.R.; Yaculak, A.M.; et al. Freshwater salinization syndrome: From emerging global problem to managing risks. Biogeochemistry 2021, 154, 255–292. [Google Scholar] [CrossRef]
- AWS 2021 State of the Anacostia River Full Report. Available online: https://www.anacostiaws.org/what-we-do/public-policy-advocacy/state-of-the-river-report-card/2021-state-of-the-anacostia-river-full-report.html (accessed on 1 March 2022).
- Foster, G.D.; Roberts, E.C.; Gruessner, B.; Velinsky, D.J. Hydrogeochemistry and transport of organic contaminants in an urban watershed of Chesapeake Bay (USA). Appl. Geochem. 2000, 15, 901–915. [Google Scholar] [CrossRef]
- Weaver, K.N. Generalized Geological Map of Maryland. Department of Natural Resources, Maryland Geological Survey. 1967. Available online: http://www.mgs.md.gov/geology/geologic_map/md_geologic_map.html (accessed on 1 April 2022).
- U.S. Army Corps of Engineers (USACE). Anacostia River Watershed Restoration Plan and Report, Final Draft, Accessed 2 January 2013. 2010. Available online: http://www.anacostia.net/Restoration_Plan/download/Anacostia-Report-Web-Quality.pdf. (accessed on 11 April 2022).
- Subba Rao, N.; Dinakar, A.; Karuna Kumari, B.; Karunanidhi, D.; Kamalesh, T. Seasonal and spatial variation of groundwater quality vulnerable zones of Yellareddygudem watershed, Nalgonda district, Telangana State, India. Arch. Environ. Contam. Toxicol. 2021, 80, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2022. [Google Scholar]
- Subba Rao, N.; Sakram, G.; Rashmirekha, D. Deciphering artificial groundwater recharge suitability zones in the agricultural area of a river basin in Andhra Pradesh, India using Geospatial Techniques and Analytical Hierarchical Process Method. Catena 2022, 212, 106085. [Google Scholar] [CrossRef]
- Puckett, L.J.; Bricker, O.P. Factors controlling the major ion chemistry of streams in the Blue Ridge and Valley and Ridge physiographic provinces of Virginia and Maryland. Hydrol. Process. 1992, 6, 79–97. [Google Scholar] [CrossRef]
- Miller, W.R.; Drever, J.I. Water chemistry of a stream flowing in a storm, Absaroka Mountains, Wyoming. Geol. Soc. Am. Bull. 1977, 88, 286–290. [Google Scholar] [CrossRef]
- Reeder, S.W.; Hitchon, B.; Levinson, A.A. Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin Canada–I, Factors controlling inorganic composition. Geochem. Cosmochim. Acta 1972, 36, 825–865. [Google Scholar] [CrossRef]
- Wiegand, B.A. Tracing effects of decalcification on solute sources in a shallow groundwater aquifer, NW Germany. J. Hydrol. 2009, 378, 62–71. [Google Scholar] [CrossRef]
- Bushaw-Newton, K.L.; Ewers, E.; Fortunato, C.A.; Ashley, J.T.; Velinsky, D.J.; MacAvoy, S.E. Bacterial community profiles from sediments of the Anacostia River using metabolic and molecular analyses. Environ. Sci. Poll. Res. 2012, 19, 1271–1279. [Google Scholar] [CrossRef]
- Goguel, R.L.; St John, D.A. Chemical identification of Portland cements in New Zealand Concretes. Cem. Concr. Res. 1993, 23, 59–68. [Google Scholar] [CrossRef]
- Maybeck, M. Global occurrence of major elements in Rivers. In Surface and Ground Water, Weathering, and Soils. Treatise on Geochemistry, 1st ed.; Drever, J.I., Holland, H.D., Turekian, K.K., Eds.; Elsvier-Pergamon: Oxford, UK, 2005; Volume 5, pp. 207–223. [Google Scholar]
- Bu, H.; Song, X.; Zhang, Q.; Burford, M.A. Strontium concentrations and isotope ratios in a forest-river system in the South Qinling Mts. China. Water Res. 2016, 93, 91–97. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Wood, K.L.; Galella, J.G.; Gion, A.M.; Haq, S.; Goodling, P.J.; Haviland, K.A.; Reimer, J.E.; Morel, C.J.; Wessel, B.; et al. Making ‘chemical cocktails’- Evolution of urban geochemical processes across the periodic table of elements. Appl. Geochem. 2020, 119, 104632. [Google Scholar] [CrossRef]
- Nicholson, R.T. Standard Specifications for Highways and Structures. 2013. Available online: https://ddot.dc.gov/sites/default/files/dc/sites/ddot/publication/attachments/DDOT_StandardSpecificationsHighwaysStructures_2013.pdf (accessed on 11 April 2022).
- Graham, I.L.; Goguel, R.L.; St John, D.A. Use of strontium isotopes to determinethe orgin of cement in concretes: Case examples from New Zealand. Cem. Concr. Res. 2000, 30, 1105–1111. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Groffman, P.M.; Brand, L.E.; Elliot, E.M.; Shields, C.A.; Kendall, C. Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ. Sci. Technol. 2011, 45, 8225–8232. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 2011, 170, 1739–1755. [Google Scholar] [CrossRef] [PubMed]
- Nnadi, E.O.; Newman, A.P.; Coupe, S.J.; Mbanasco, F.U. Stormwater harvesting for irrigation purposes: An investigation of chemical quality of water recycled in pervious pavement system. J. Environ. Manag. 2015, 147, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Waters, 3rd ed.; USGS Survey Water-Supply Paper 2254; United States Government Printing Office: Washington DC, USA, 1985. [Google Scholar]
- Shiyong, T.; Zhang, X.; Xu, J.; Pan, G.; Gu, F. Anthropogenic impacts on isotopic and geochemical characteristics of urban streams: A case study in Wuhan, China. Environ. Sci. Poll. Res. 2021, 28, 39186–39198. [Google Scholar] [CrossRef]
Longbranch (27) | Still Creek (26) | Northeast (29) | Bladensburg (29) | Kenilworth (29) | Anacostia Park (28) | |
---|---|---|---|---|---|---|
Ca | 46.9 ± 19.8 B | 36.2 ± 20.0 D | 22.8 ± 7.4 A | 31.8 ± 6.3 D,E | 31.9 ± 12.1 D,E | 29.0 ± 6.7 C,D |
Mg | 15.2 ± 6.1 A | 10.1 ± 4.0 B,D | 7.4 ± 1.9 C | 9.2 ± 1.8 D | 8.3 ± 2.0 C,B | 7.8 ± 2.1 C |
Na | 673.6 ± 1542.0 A | 562.3 ± 1259.6 A,B | 416.6 ± 1432.0 A | 402.7 ± 1197.7 A | 434.8 ± 1408.4 A | 390.9 ± 1548.7 A,C |
K | 7.8 ± 4.6 A | 5.4 ± 3.2 A,B | 4.7 ± 1.8 A | 5.5 ± 1.9 A | 5.9 ± 3.2 A | 4.8 ± 1.2 A,C |
Fe | 0.20 ± 0.34 A | 0.68 ± 0.61 B | 0.41 ± 0.37 B,D | 0.20 ± 0.21 A,C | 0.38 ± 0.37 C,D | 0.45 ± 0.41 B,D |
S | 6.1 ± 2.4 A | 5.0 ± 2.1 B | 4.3 ± 0.9 B | 5.5 ± 1.0 A,C | 6.5 ± 2.5 A,C | 6.4 ± 2.5 A,C |
Si | 5.22 ± 1.81 A | 3.68 ± 0.87 B | 2.80 ± 0.98 C | 3.01 ± 1.08 D | 3.44 ± 1.07 D | 3.40 ± 1.07 D |
P | 0.06 ± 0.11 A | 0.08 ± 0.12 A | 0.07 ± 0.13 A | 0.07 ± 0.12 A,B | 0.07 ± 0.12 A,B | 0.08 ± 0.12 B |
Mn | 0.06 ± 0.11 A,B | 0.14 ± 0.26 A | 0.07 ± 0.17 A | 0.03 ± 0.10 B | 0.07 ± 0.11 A | 0.06 ± 0.10 A |
NO3 | 1.5 ± 0.8 A | 0.15 ± 0.4 B | 0.7 ± 0.4 C | 0.6 ± 0.4 B | 0.6 ± 0.4 B | 0.7 ± 0.3 D |
NH4 | 0.17 ± 0.50 A,D | 0.12 ± 0.40 A,D | 0.12 ± 0.35 D | 0.15 ± 0.25 A,B | 0.19 ± 0.18 B,C | 0.31 ± 0.55 C |
SAR | 18.1 ± 38.4 A,B | 20.5 ± 51.2 A | 19.7 ± 67.8 A,B | 15.6 ± 46.6 A,B | 16.8 ± 57.1 A,B | 17.7 ± 70.4 B |
Fall (54) | Winter (33) | Spring (46) | Summer (34) | |
---|---|---|---|---|
Al | 0.17 ± 0.37 A | 0.23 ± 0.28 A,B | 0.15 ± 0.18 A,B | 0.08 ± 0.10 C |
B | 0.011 ± 0.010 A | 0.21 ± 0.020 B,D | 0.02 ± 00.23 C,B | 0.028 ± 0.019 D |
Ca | 32.4 ± 12.0 A | 38.9 ± 24.8 A | 30.6 ± 9.7 A | 30.8 ± 10.1 A |
Mg | 9.4 ± 3.9 A | 10.3 ± 5.6 A | 9.3 ± 3.8 A | 9.5 ± 3.6 A |
Na | 81.2 ± 82.7 A | 786.1 ± 1279.2 B | 1000.6 ± 2294.9 B | 87.7 ± 86.2 A |
K | 6.2 ± 2.4 A | 7.4 ± 5.0 A,B | 4.3 ± 1.4 C | 5.0 ± 1.4 B |
Fe | 0.4 ± 0.5 A | 0.5 ± 0.4 B | 0.3 ± 0.4 A | 0.2 ± 0.3 A |
S | 5.3 ± 1.7 A,C | 7.0 ± 3.7 B | 5.5 ± 1.3 A,B | 4.9 ± 3.7 C |
P | 0.08 ± 0.10 A | 0.11 ± 0.16 A,C | 0.07 ± 0.13 B,C | 0.02 ± 0.02 B,C |
NO3 | 0.66 ± 0.58 A,C | 0.98 ± 0.57 B | 0.78 ± 0.37 C | 0.71 ± 0.72 A,D |
NH4 | 0.21 ± 0.50 A,B | 0.10 ± 0.13 A,B | 0.07 ± 0.10 A | 0.35 ± 0.54 B |
Mn | 0.05 ± 0.15 A | 0.16 ± 0.18 B | 0.07 ± 0.16 C | 0.01 ± 0.02 A |
SAR | 3.2 ± 2.8 A | 23.4 ± 30.7 B | 42.1 ± 99.4 B | 3.5 ± 3.2 A |
Si | 4.1 ± 1.5 A | 3.8 ± 1.1 A.B | 3.0 ± 1.1 B | 3.4 ± 1.6 B |
Zn | 0.005 ± 0.006 A | 0.015 ± 0.020 B | 0.006 ± 0.007 A | 0.007 ± 0.023 A |
Long Branch Creek (27) | Still Creek (26) | Northeast Branch (29) | Bladensburg (29) | Kenilworth (29) | Anacostia Park (28) | |
---|---|---|---|---|---|---|
Ca/Na (mass) | 0.96 ± 2.23 A,B | 0.35 ± 0.49 A | 0.41 ± 0.40 A,B | 0.55 ± 0.48 B | 0.57 ± 0.48 B | 0.66 ± 0.57 B |
Ca/Na (molar) | 0.55 ± 1.28 A,B | 0.20 ± 0.27 A | 0.23 ± 0.23 A,B | 0.32 ± 0.27 B | 0.33 ± 0.29 B | 0.38 ± 0.33 B |
Ca/K (mass) | 6.5 ± 1.8 A | 7.7 ± 4.7 A | 5.4 ± 2.2 B | 6.2 ± 1.8 A | 5.9 ± 1.7 A | 6.3 ± 1.6 A |
Ca/K (molar) | 6.3 ± 1.7 A | 7.5 ± 4.6 A | 5.2 ± 2.2 B | 6.0 ± 1.7 A | 5.7 ± 1.6 A | 6.2 ± 1.6 A |
Ca/Sr (mass) | 171 ± 28 A | 186 ± 33 B | 223 ±27 C | 221 ± 21 C | 218 ± 17 C | 220 ± 22 C |
Ca/Sr (molar) | 373 ± 61 A | 404 ± 66 A,E | 489 ± 59 B,C,D | 484 ± 45 D | 476 ± 36 D | 480 ± 49 D |
Long Branch | Still Creek | Northeast Branch | Bladensburg | Kenilworth | Anacostia Waterfront | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 (35.2%) | PC2 (13.5%) | PC3 (9.4%) | PC1 (31.1%) | PC2 (16.3%) | PC3 (11.9%) | PC1 (25.3%) | PC2 (15.5%) | PC3 (12.5%) | PC1 (25.4%) | PC2 (14.2%) | PC3 (11.8%) | PC1 (32.7%) | PC2 (12.5%) | PC3 (10.3%) | PC1 (22.0%) | PC2 (16.0%) | PC3 (10.9%) | |
Ca | 0.95 | −0.16 | −0.03 | 0.95 | −0.05 | 0.00 | 0.89 | 0.35 | 0.02 | 0.87 | 0.16 | −0.21 | 0.96 | 0.07 | −0.02 | 0.94 | −0.26 | 0.06 |
Mg | 0.89 | −0.32 | 0.00 | 0.93 | −0.12 | −0.11 | 0.68 | −0.18 | −0.17 | 0.86 | −0.06 | −0.26 | 0.92 | −0.09 | −0.07 | 0.90 | −0.29 | 0.01 |
Na | 0.78 | 0.36 | −0.15 | 0.39 | −0.013 | 0.69 | 0.15 | −0.38 | −0.09 | 0.43 | 0.02 | 0.36 | 0.34 | 0.07 | 0.46 | −0.14 | 0.14 | 0.70 |
K | 0.90 | 0.00 | 0.01 | 0.84 | −0.02 | −0.2 | 0.61 | −0.15 | 0.14 | 0.61 | 0.00 | −0.20 | 0.81 | 0.17 | 0.10 | 0.41 | −0.21 | 0.13 |
Fe | −0.44 | 0.74 | 0.35 | −0.15 | 0.85 | −0.03 | 0.26 | 0.60 | 0.52 | −0.30 | 0.50 | 0.65 | −0.26 | 0.36 | 0.10 | 0.26 | 0.86 | 0.06 |
Mn | 0.38 | 0.78 | 0.24 | 0.58 | 0.59 | 0.08 | 0.73 | 0.52 | 0.28 | 0.07 | 0.92 | −0.07 | 0.52 | 0.17 | 0.10 | 0.44 | 0.35 | 0.03 |
Zn | 0.25 | 0.17 | 0.03 | 0.41 | 0.47 | 0.00 | 0.04 | −0.44 | 0.54 | 0.04 | 0.37 | 0.49 | 0.51 | 0.38 | −0.29 | 0.00 | 0.51 | 0.30 |
Al | −0.43 | 0.57 | 0.18 | −0.39 | 0.69 | 0.00 | −0.37 | 0.19 | 0.65 | −0.52 | 0.18 | 0.63 | −0.35 | 0.78 | −0.28 | −0.22 | 0.88 | 0.17 |
As | −0.15 | −0.11 | −0.29 | −0.38 | −0.05 | 0.61 | −0.28 | −0.07 | −0.19 | 0.04 | 0.21 | −0.24 | −0.09 | 0.04 | 0.56 | −0.13 | −0.03 | 0.42 |
Ba | 0.93 | 0.15 | 0.06 | 0.92 | 0.12 | −0.14 | 0.63 | −0.41 | 0.09 | 0.72 | −0.29 | 0.06 | 0.67 | −0.09 | 0.21 | −0.03 | −0.47 | 0.43 |
B | −0.18 | 0.00 | −0.11 | 0.28 | −0.06 | −0.40 | 0.33 | 0.28 | −0.03 | 0.38 | −0.03 | 0.09 | 0.41 | 0.15 | −0.43 | 0.54 | 0.33 | −0.32 |
Cd | 0.03 | −0.41 | 0.63 | 0.06 | 0.00 | −0.11 | 0.00 | 0.00 | −0.14 | −0.03 | −0.10 | −0.21 | −0.06 | −0.11 | 0.06 | 0.04 | −0.11 | 0.07 |
Cr | 0.03 | −0.33 | 0.67 | −0.26 | 0.67 | 0.02 | −0.34 | 0.16 | 0.56 | −0.04 | 0.92 | −0.27 | −0.32 | 0.79 | 0.29 | −0.15 | 0.31 | −0.22 |
Co | −0.24 | 0.45 | 0.63 | 0.18 | 0.74 | 0.07 | −0.35 | 0.12 | 0.57 | −0.03 | 0.93 | −0.27 | −0.31 | 0.79 | 0.31 | 0.62 | 0.45 | −0.23 |
Cu | −0.26 | −0.17 | 0.15 | −0.18 | 0.18 | −0.15 | −0.35 | 0.08 | −0.14 | −0.20 | 0.18 | −0.07 | −0.23 | 0.17 | −0.07 | −0.13 | 0.22 | −0.07 |
Mo | 0.03 | −0.52 | 0.61 | 0.09 | −0.22 | −0.62 | 0.37 | −0.41 | 0.08 | −0.12 | −0.19 | −0.42 | −0.17 | −0.25 | 0.21 | −0.24 | −0.08 | −0.26 |
Ni | −0.24 | 0.22 | 0.63 | 0.43 | 0.79 | −0.06 | −0.36 | 0.06 | 0.57 | −0.08 | 0.83 | −0.43 | −0.35 | 0.52 | 0.41 | 0.53 | 0.35 | −0.36 |
P | −0.26 | 0.28 | 0.12 | −0.19 | −0.31 | 0.68 | 0.19 | 0.59 | 0.33 | −0.34 | −0.13 | 0.38 | −0.27 | 0.08 | −0.69 | 0.12 | 0.41 | −0.14 |
Pb | −0.06 | −0.07 | −0.02 | 0.04 | −0.21 | −0.58 | 0.00 | −0.03 | −0.22 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
S | 0.88 | 0.22 | 0.18 | 0.73 | −0.08 | 0.42 | 0.30 | −0.68 | 0.26 | 0.68 | 0.22 | 0.07 | 0.94 | 0.14 | −0.04 | 0.97 | 0.00 | −0.04 |
Sr | 0.95 | −0.19 | 0.01 | 0.93 | 0.05 | 0.00 | 0.93 | 0.06 | −0.01 | 0.90 | 0.03 | −0.21 | 0.96 | 0.03 | 0.00 | 0.90 | −0.36 | 0.04 |
Ti | −0.46 | 0.61 | 0.32 | −0.36 | 0.67 | 0.16 | −0.47 | 0.22 | 0.76 | −0.50 | 0.47 | 0.44 | −0.48 | 0.76 | 0.04 | −0.22 | 0.78 | −0.05 |
Be | −0.03 | 0.09 | −0.16 | 0.07 | −0.25 | −0.09 | 0.77 | 0.87 | −0.07 | −0.03 | −0.26 | −0.05 | 0.04 | −0.18 | −0.57 | 0.27 | −0.29 | −0.12 |
NO3 | 0.53 | −0.26 | 0.45 | −0.24 | −0.24 | 0.24 | −0.21 | −0.35 | 0.47 | 0.19 | −0.24 | 0.57 | 0.01 | 0.22 | −0.51 | 0.62 | 0.43 | 0.11 |
NH4 | 0.03 | −0.38 | 0.16 | 0.10 | −0.21 | −0.59 | 0.50 | 0.74 | −0.06 | 0.04 | −0.08 | −0.49 | 0.25 | −0.35 | 0.57 | −0.04 | −0.11 | −0.08 |
Si | 0.43 | −0.39 | 0.38 | 0.00 | 0.77 | −0.31 | −0.03 | 0.17 | −0.38 | −0.23 | −0.07 | 0.06 | 0.27 | 0.44 | −0.31 | 0.25 | 0.52 | −0.18 |
pH | 0.37 | −0.28 | 0.23 | 0.34 | −0.48 | −0.23 | 0.25 | 0.02 | −0.35 | 0.22 | −0.04 | −0.04 | 0.16 | −0.06 | 0.11 | −0.26 | −0.24 | −0.14 |
TDS (mg/L) | 0.86 | 0.31 | −0.02 | 0.85 | −0.06 | −0.04 | 0.69 | −0.51 | 0.24 | 0.78 | 0.09 | 0.21 | 0.90 | 0.18 | 0.10 | 0.43 | −0.18 | 0.63 |
hardness | 0.91 | −0.20 | −0.10 | 0.93 | −0.05 | −0.05 | 0.83 | 0.22 | 0.01 | 0.71 | 0.08 | −0.09 | 0.86 | 0.06 | −0.17 | 0.79 | −0.17 | 0.16 |
SAR | 0.75 | 0.36 | 0.33 | 0.24 | −0.15 | 0.72 | 0.13 | −0.38 | −0.10 | 0.43 | 0.02 | 0.36 | 0.28 | 0.06 | 0.47 | −0.14 | 0.16 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacAvoy, S.E.; Lunine, A. Anthropogenic Influences on an Urban River: Differences in Cations and Nutrients along an Urban/Suburban Transect. Water 2022, 14, 1330. https://doi.org/10.3390/w14091330
MacAvoy SE, Lunine A. Anthropogenic Influences on an Urban River: Differences in Cations and Nutrients along an Urban/Suburban Transect. Water. 2022; 14(9):1330. https://doi.org/10.3390/w14091330
Chicago/Turabian StyleMacAvoy, Stephen E., and Alex Lunine. 2022. "Anthropogenic Influences on an Urban River: Differences in Cations and Nutrients along an Urban/Suburban Transect" Water 14, no. 9: 1330. https://doi.org/10.3390/w14091330
APA StyleMacAvoy, S. E., & Lunine, A. (2022). Anthropogenic Influences on an Urban River: Differences in Cations and Nutrients along an Urban/Suburban Transect. Water, 14(9), 1330. https://doi.org/10.3390/w14091330