A Quasi-Single-Phase Model for Debris Flows Incorporating Non-Newtonian Fluid Behavior
Abstract
:1. Introduction
2. Mathematical Model
3. Model Comparison
3.1. Case Description
3.2. Results
4. Discussion
4.1. Sensitivity Analysis
4.2. Effects of Additional Shear Stress Due to Non-Newtonian Fluid
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takahashi, T. Debris Flow Mechanics, Prediction and Countermeasures; Taylor & Francis: London, UK, 2007. [Google Scholar]
- Le, M. Dynamic Mechanism of Gully-Type Debris Flow and Its Numerical Simulation; China Institute of Water Resources and Hydropower Research: Beijing, China, 2019. [Google Scholar]
- Hu, K.; Cui, P.; Li, P. Debris flow dynamic models and numerical computation. Chin. J. Nat. 2014, 36, 313–318. (In Chinese) [Google Scholar]
- Hu, K.; Cui, P.; Tian, M.; Yang, H. A review of the debris flow dynamic models and numerical simulation. J. Hydraul. Eng. 2012, 43, 79–84. (In Chinese) [Google Scholar] [CrossRef]
- Brufau, P.; Garcia-Navarro, P.; Ghilardi, P.; Natale, L.; Savi, F. 1D mathematical modelling of debris flow. J. Hydraul. Res. 2000, 38, 435–446. [Google Scholar] [CrossRef]
- Pudasaini, S.; Wang, Y.; Hutter, K. Modelling debris flows down general channels. Nat. Hazards Earth Syst. Sci. 2005, 5, 799–819. [Google Scholar] [CrossRef]
- Xia, C.; Li, J.; Cao, Z.; Liu, Q.; Hu, K. A quasi single-phase model for debris flows and its comparison with a two-phase model. J. Mt. Sci. 2018, 15, 1071–1089. [Google Scholar] [CrossRef]
- Pelanti, M.; Bouchut, F.; Mangeney, A. A Roe-Type scheme for two-phase shallow granular flows over variable topography. ESAIM-Math. Model. Num. 2008, 42, 851–885. [Google Scholar] [CrossRef] [Green Version]
- Pitman, E.; Le, L. A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A 2005, 363, 1573–1601. [Google Scholar] [CrossRef]
- Di Cristo, C.; Greco, M.; Iervolino, M.; Leopardi, A.; Vacca, A. Two-dimensional two-phase depth-integrated model for transients over mobile bed. J. Hydraul. Eng. 2016, 142, 04015043. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Cao, Z.; Hu, K.; Pender, G.; Liu, Q. A depth-averaged two-phase model for debris flows over fixed beds. Int. J. Sediment Res. 2018, 33, 362–477. [Google Scholar] [CrossRef]
- Li, J.; Cao, Z.; Hu, K.; Pender, G.; Liu, Q. A depth-averaged two-phase model for debris flows over erodible beds. Earth Surf. Process. Landf. 2018, 43, 817–839. [Google Scholar] [CrossRef]
- Denlinger, R.; Iverson, R. Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J. Geophys. Res. Solid Earth 2001, 106, 553–566. [Google Scholar] [CrossRef]
- Liu, K.; Huang, M. Numerical simulation of debris flow with application on hazard area mapping. Comput. Geosci. 2006, 10, 221–240. [Google Scholar] [CrossRef]
- Armanini, A.; Fraccarollo, L.; Rosatti, G. Two-dimensional simulation of debris flows in erodible channels. Comput. Geosci. 2009, 35, 993–1006. [Google Scholar] [CrossRef]
- Rosatti, G.; Begnudelli, L. Two-dimensional simulation of debris flows over mobile bed: Enhancing the TRENT2D model by using a well-balanced Generalized Roe-type solver. Comput. Fluids. 2013, 71, 179–195. [Google Scholar] [CrossRef]
- Shieh, C.; Jan, C.; Tsai, Y. A numerical simulation of debris flow and its application. Nat. Hazards 1996, 13, 39–54. [Google Scholar] [CrossRef]
- Armanini, A.; Capart, H.; Fraccarollo, L.; Larcher, M. Rheological stratification in experimental free-surface flows of granular-liquid mixtures. J. Fluid Mech. 2005, 532, 269–319. [Google Scholar] [CrossRef] [Green Version]
- Pastor, M.; Blanc, T.; Haddad, B.; Petrone, S.; Sanchez, M.; Drempetic, V.; Nissler, D.; Crosta, G.; Cascini, L.; Sorbino, G.; et al. Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 2014, 11, 793–812. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhang, W.; Xu, Q.; Xie, P.; Liang, H. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 2012, 9, 275–283. [Google Scholar] [CrossRef]
- Barnes, H.; Hutton, J.; Walters, K. An Introduction to Rheology; Rheology Series 3; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Wang, W.; Chen, G.; Han, Z.; Zhou, S.; Zhang, H.; Jing, P. 3D numerical simulation of debris-flow motion using SPH method incorporating non-Newtonian fluid behavior. Nat. Hazards 2016, 81, 1981–1998. [Google Scholar] [CrossRef]
- Jeon, C.; Hodges, B. Comparing thixotropic and Herschel-Bulkley parameterizations for continuum models of avalanches and subaqueous debris flows. Nat. Hazards Earth Syst. Sci. 2018, 18, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Papanastasiou, T. Flows of materials with yield. J. Rheol. 1987, 31, 385–404. [Google Scholar] [CrossRef]
- Han, Z.; Su, B.; Li, Y.; Wang, W.; Wang., W.; Huang, J.; Chen, G. Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model. Eng. Geol. 2019, 255, 26–36. [Google Scholar] [CrossRef]
- Major, J.J.; Pierson, T.C. Debris flow rheology: Experimental analysis of finegrained slurries. Water Resour. Res. 1992, 28, 841–857. [Google Scholar] [CrossRef]
- Jeffrey, D.P.; Kelin, X.W.; Alessandro, S. Experimental study of the grain-flow, fluid-mud transition in debris flows. J. Geol. 2001, 109, 427–447. [Google Scholar] [CrossRef] [Green Version]
- Pudasaini, S.P. Some exact solutions for debris and avalanche flows. Phys. Fluids 2011, 23, 043301. [Google Scholar] [CrossRef]
- Pasculli, A.; Minatti, L.; Sciarra, N.; Paris, E. SPH modeling of fast muddy debris flow: Numerical and experimental comparison of certain commonly utilized approaches. Ital. J. Geosci. 2013, 132, 350–365. [Google Scholar] [CrossRef] [Green Version]
- Hirano, M. River bed degradation with armouring. Proc. Jpn. Soc. Civ. Eng. 1971, 1971, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Xia, C.; Pender, G.; Liu, Q. Shallow water hydro-sediment-morphodynamic equations for fluvial processes. J. Hydraul. Eng. 2017, 143, 02517001. [Google Scholar] [CrossRef]
- Lucas, A.; Mangeney, A.; Ampuero, J. Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat. Commum. 2014, 5, 417. [Google Scholar] [CrossRef] [Green Version]
- Pirulli, M.; Pastor, M. Numerical study on the entrainment of bed material into rapid landslides. Geotechnique 2012, 62, 959–972. [Google Scholar] [CrossRef]
- Richardson, J.; Zaki, W. Sedimentation and fluidisation: Part 1. Chem. Eng. Res. Des. 1954, 75, s82–s99. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.; Jia, Y. Nonuniform sediment transport in alluvial rivers. J. Hydraul. Res. 2000, 38, 427–434. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, J. Sedimentation Research in China-Systematic Selections; Water and Power Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Cao, Z.; Hu, P.; Hu, K.; Pender, G.; Liu, Q. Modelling roll waves with shallow water equations and turbulent closure. J. Hydraul. Res. 2015, 53, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, A.; Rodi, W. Predictions of heat and mass transfer in open channels. J. Hydraul. Div. 1978, 104, 397–420. [Google Scholar] [CrossRef]
- Ni, H. Turbulence Simulation and Application in Modern Hydraulics Engineering; China Water Power Press: Beijing, China, 2010. [Google Scholar]
- Iverson, R. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Effects of constitutive relations on turbidity current evolutions. In Proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13–18 August 2017; pp. 1047–1057. [Google Scholar]
- Fei, X. A Model for Calculating Viscosity of Sediment Carrying Flow in the Middle and Lower Yellow River. J. Sediment Res. 1991, 2, 1–13. [Google Scholar] [CrossRef]
- Aureli, F.; Maranzoni, A.; Mignosa, P.; Ziveri, C. A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography. Adv. Water Resour. 2008, 31, 962–974. [Google Scholar] [CrossRef]
- Xia, C.; Cao, Z.; Pender, G.; Borthwick, A. Numerical Algorithms for Solving Shallow Water Hydro-Sediment-Morphodynamic Equations. Eng. Comput. 2017, 34, 2836–2861. [Google Scholar] [CrossRef] [Green Version]
- Iverson, R. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef] [Green Version]
- Iverson, R.; Logan, M.; LaHusen, R.; Berti, M. The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. Earth Surf. 2010, 115, F03005. [Google Scholar] [CrossRef]
- Iverson, R.; Reid, M.; Logan, M.; LaHusen, R.; Godt, J.; Griswold, J. Positive feedback and momentum growth during debris-flowentrainment of wet bed sediment. Nat. Hazards 2011, 4, 116–121. [Google Scholar] [CrossRef]
Coefficient Value | m (n = 1) | |||||
---|---|---|---|---|---|---|
0.7 | 1.0 | 1.3 | 0 | 0.01 | ∞ | |
(%) | 1.702 | 1.702 | 1.703 | 2.56 | 2.030 | 1.702 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, C.; Tian, H. A Quasi-Single-Phase Model for Debris Flows Incorporating Non-Newtonian Fluid Behavior. Water 2022, 14, 1369. https://doi.org/10.3390/w14091369
Xia C, Tian H. A Quasi-Single-Phase Model for Debris Flows Incorporating Non-Newtonian Fluid Behavior. Water. 2022; 14(9):1369. https://doi.org/10.3390/w14091369
Chicago/Turabian StyleXia, Chunchen, and Haoyong Tian. 2022. "A Quasi-Single-Phase Model for Debris Flows Incorporating Non-Newtonian Fluid Behavior" Water 14, no. 9: 1369. https://doi.org/10.3390/w14091369
APA StyleXia, C., & Tian, H. (2022). A Quasi-Single-Phase Model for Debris Flows Incorporating Non-Newtonian Fluid Behavior. Water, 14(9), 1369. https://doi.org/10.3390/w14091369