Pollution Control of Industrial Mariculture Wastewater: A Mini-Review
Abstract
:1. Introduction
2. Current Situation of Mariculture Wastewater Pollution in China
3. Treatment Technologies of Industrial Mariculture Wastewater
3.1. Treatment of Raw Mariculture Wastewater
3.2. Treatment of RAS Mariculture Wastewater
3.2.1. Combined Denitrification Filter and Ecological Method
3.2.2. Combined Fixed-Bed Denitrification and Ecological Method
4. The Main Challenge of Mariculture Wastewater Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Liu, H.; Sui, J. Mariculture: Developments, Present Status and Prospects: Success Stories and Modern Trends. Aquac. China 2018, 38–54. [Google Scholar] [CrossRef]
- Fisheries Administration Bureau of MARA, N. CSF. China Fishery Statistics Yearbooks; China Agriculture Press: Beijing, China, 2021. [Google Scholar]
- Almroth, B.C.; Eggert, H. Marine Plastic Pollution: Sources, Impacts, and Policy Issues. Rev. Environ. Econ. Policy 2019, 13, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Zhao, Z.; Huang, X.; Du, X.; Wang, C.; Li, J.; Wang, L.; Xu, Q. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacteriu Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment. Biomed Res. Int. 2016, 2016, 2758168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gichana, Z.M.; Liti, D.; Waidbacher, H.; Zollitsch, W.; Drexler, S.; Waikibia, J. Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation. Aquac. Int. 2018, 26, 1541–1572. [Google Scholar] [CrossRef]
- Wu, H.; Peng, R.; Yang, Y.; He, L.; Wang, W.; Zheng, T.; Lin, G. Mariculture pond influence on mangrove areas in south China: Significantly larger nitrogen and phosphorus loadings from sediment wash-out than from tidal water exchange. Aquaculture 2014, 426–427, 204–212. [Google Scholar] [CrossRef]
- Braña, C.B.C.; Cerbule, K.; Senff, P.; Stolz, I.K. Towards Environmental Sustainability in Marine Finfish Aquaculture. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Zheng, D.; Chang, Q.; Gao, M.; She, Z.; Jin, C.; Guo, L.; Zhao, Y.; Wang, S.; Wang, X. Performance evaluation and microbial community of a sequencing batch biofilm reactor (SBBR) treating mariculture wastewater at different chlortetracycline concentrations. J. Environ. Manag. 2016, 182, 496–504. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Wang, L.; Zhu, M.; Zhu, X.; Qian, C.; Li, W. Responses of biofilm microorganisms from moving bed biofilm reactor to antibiotics exposure: Protective role of extracellular polymeric substances. Bioresour. Technol. 2018, 254, 268–277. [Google Scholar] [CrossRef]
- Li, Z.; Chang, Q.; Li, S.; Gao, M.; She, Z.; Guo, L.; Zhao, Y.; Jin, C.; Zheng, D.; Xu, Q. Impact of sulfadiazine on performance and microbial community of a sequencing batch biofilm reactor treating synthetic mariculture wastewater. Bioresour. Technol. 2017, 235, 122–130. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Jie, M.; Zhang, K.; Qian, Y.; Ma, J. Performance and microbial communities of different biofilm membrane bioreactors with pre-anoxic tanks treating mariculture wastewater. Bioresour. Technol. 2019, 295, 122302. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Li, L.; Sun, X.; Lv, A.; Chen, C. Characterization of aerobic denitrification genome sequencing of Vibrio parahaemolyticus strain HA2 from recirculating mariculture system in China. Aquaculture 2020, 526, 735295. [Google Scholar] [CrossRef]
- Huang, F.; Pan, L.; Lv, N.; Tang, X. Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification. J. Biosci. Bioeng. 2017, 124, 564–571. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, L.; Liao, Q.; Zhang, Z.; Zhao, Y.; Gao, M.; Jin, C.; She, Z.; Wang, G. Mariculture wastewater treatment with Bacterial-Algal Coupling System (BACS): Effect of light intensity on microalgal biomass production and nutrient removal. Environ. Res. 2021, 201, 111578. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Zhang, Z.; Guo, L.; Liao, Q.; Wang, Y.; Zhao, Y.; Jin, C.; Gao, M.; She, Z.; Wang, G. Integrating acidogenic fermentation and microalgae cultivation of bacterial-algal coupling system for mariculture wastewater treatment. Bioresour. Technol. 2020, 320, 124335. [Google Scholar] [CrossRef]
- Zheng, L.; Feng, H.; Liu, Y.; Gao, J.; Sarkar, D.; Deng, Y. Chemically enhanced primary treatment of municipal wastewater with ferrate(VI). Water Environ. Res. 2020, 93, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, H.; Yan, B.; Shutes, B.; Bañuelos, G.; Wen, H. Bioaugmented constructed wetlands for denitrification of saline wastewater: A boost for both microorganisms and plants. Environ. Int. 2020, 138, 105628. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Liu, L.; Wei, L.; Huang, X.; Liu, C. Recycling of rural abandoned constructed wetlands: Mariculture wastewater treatment. J. Water Reuse Desalin. 2021, 11, 279–288. [Google Scholar] [CrossRef]
- Opstvedt, J.; Aksnes, A.; Hope, B.; Pike, I.H. Efficiency of feed utilization in Atlantic salmon (Salmo salar L.) fed diets with increasing substitution of fish meal with vegetable proteins. Aquaculture 2003, 221, 365–379. [Google Scholar] [CrossRef]
- Grossowicz, M.; Tchernov, D.; Gildor, H. A Quantitative Management Tool Reflecting Impact of Nutrient Enrichment from Mariculture in the Levantine Basin. Front. Mar. Sci. 2017, 4, 134. [Google Scholar] [CrossRef] [Green Version]
- Meng, W.; Feagin, R.A. Mariculture is a double-edged sword in China. Estuar. Coast. Shelf Sci. 2019, 222, 147–150. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Li, Q.; Liu, Y.; Song, J.; Zhang, Y. Environmental response to long-term mariculture activities in the Weihai coastal area, China. Sci. Total Environ. 2017, 601–602, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Lai, D.Y.; Jin, B.; Bastviken, D.; Tan, L.; Tong, C. Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary, China: Concentrations, fluxes and environmental loads. Sci. Total Environ. 2017, 603–604, 256–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Du, J.; Dong, X.; Huang, Y.; Xie, H.; Chen, J.; Li, X.; Kadokami, K. Occurrence and ecological risks of 156 pharmaceuticals and 296 pesticides in seawater from mariculture areas of Northeast China. Sci. Total Environ. 2021, 792, 148375. [Google Scholar] [CrossRef] [PubMed]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquac. 2019, 12, 640–663. [Google Scholar] [CrossRef]
- MNR. Bulletin of China Marine Disaster in 2020; Ministry of Natural Resources: Beijing, China, 2021. [Google Scholar]
- MEE. Bulletin of Marine Ecology and Environment Status of China in 2020, 2021 ed.; National Marine Environment Monitoring Center: Dalian, China, 2021. [Google Scholar]
- Bol, R.; Gruau, G.; Mellander, P.-E.; Dupas, R.; Bechmann, M.; Skarbøvik, E.; Bieroza, M.; Djodjic, F.; Glendell, M.; Jordan, P.; et al. Challenges of Reducing Phosphorus Based Water Eutrophication in the Agricultural Landscapes of Northwest Europe. Front. Mar. Sci. 2018, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.F.; Zhao, S.; Zhang, X.R.; Wang, X.L.; Song, C.; Wang, S.G. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Lu, S.; Pei, L.; Bai, X. Study on method of domestic wastewater treatment through new-type multi-layer artificial wetland. Int. J. Hydrogen Energy 2015, 40, 11207–11214. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zuo, J.; Wang, Y.; Zhao, J.; Tang, L.; Li, Z. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium. Water Res. 2016, 93, 74–83. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, L.; Jin, C.; Zhao, Y.; Gao, M.; She, Z.; Wang, G. Metagenomics and network analysis elucidating the coordination between fermentative bacteria and microalgae in a novel bacterial-algal coupling reactor (BACR) for mariculture wastewater treatment. Water Res. 2022, 215, 118256. [Google Scholar] [CrossRef]
- Xie, B.; Li, Z.; Si, D.; Yang, X.; Qu, X.; Liang, H.; Yan, Z.; You, H. Enhancement of the mariculture wastewater treatment based on the bacterial-microalgal consortium. Mater. Sci. Energy Technol. 2021, 5, 110–115. [Google Scholar] [CrossRef]
- Zhang, C.; Hasunuma, T.; Lam, S.S.; Kondo, A.; Ho, S.-H. Salinity-induced microalgal-based mariculture wastewater treatment combined with biodiesel production. Bioresour. Technol. 2021, 340, 125638. [Google Scholar] [CrossRef] [PubMed]
- Tadda, M.A.; Altaf, R.; Gouda, M.; Rout, P.R.; Shitu, A.; Ye, Z.; Zhu, S.; Liu, D. Impact of Saddle-Chips biocarrier on treating mariculture wastewater by moving bed biofilm reactor (MBBR): Mechanism and kinetic study. J. Environ. Chem. Eng. 2021, 9, 106710. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y.; Zheng, Y.; Meng, F. Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects. Environ. Pollut. 2021, 293, 118541. [Google Scholar] [CrossRef] [PubMed]
- Shitu, A.; Liu, G.; Muhammad, A.I.; Zhang, Y.; Tadda, M.A.; Qi, W.; Liu, D.; Ye, Z.; Zhu, S. Recent advances in application of moving bed bioreactors for wastewater treatment from recirculating aquaculture systems: A review. Aquac. Fish. 2021, 7, 244–258. [Google Scholar] [CrossRef]
- Wang, X.; Cuthbertson, A.; Gualtieri, C.; Shao, D. A Review on Mariculture Effluent: Characterization and Management Tools. Water 2020, 12, 2991. [Google Scholar] [CrossRef]
- Karki, R.; Chuenchart, W.; Surendra, K.; Shrestha, S.; Raskin, L.; Sung, S.; Hashimoto, A.; Khanal, S.K. Anaerobic co-digestion: Current status and perspectives. Bioresour. Technol. 2021, 330, 125001. [Google Scholar] [CrossRef]
- Li, C.; Liang, J.; Lin, X.; Xu, H.; Tadda, M.A.; Lan, L.; Liu, D. Fast start-up strategies of MBBR for mariculture wastewater treatment. J. Environ. Manag. 2019, 248, 109267. [Google Scholar] [CrossRef]
- Rose, J.M.; Bricker, S.B.; Ferreira, J.G. Comparative analysis of modeled nitrogen removal by shellfish farms. Mar. Pollut. Bull. 2015, 91, 185–190. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Gao, P.; Yu, D.; Yao, Z.; Gao, M.; Zhao, Y.; Jin, C.; She, Z. Thermophilic bacteria combined with alkyl polyglucose pretreated mariculture solid wastes using as denitrification carbon source for marine recirculating aquaculture wastewater treatment. Sci. Total Environ. 2021, 792, 148447. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, L.; Shao, M.; Hu, F.; Wang, G.; Zhao, Y.; Gao, M.; Jin, C.; She, Z. Heterotrophic denitrification strategy for marine recirculating aquaculture wastewater treatment using mariculture solid wastes fermentation liquid as carbon source: Optimization of COD/NO3−-N ratio and hydraulic retention time. Bioresour. Technol. 2020, 304, 122982. [Google Scholar] [CrossRef]
- Kampman, C.; Piai, L.; Temmink, H.; Hendrickx, T.L.G.; Zeeman, G.; Buisman, C.J.N. Effect of low concentrations of dissolved oxygen on the activity of denitrifying methanotrophic bacteria. Water Sci. Technol. 2018, 77, 2589–2597. [Google Scholar] [CrossRef]
- Park, E.-J.; Seo, J.-K.; Kim, M.-R.; Jung, I.-H.; Kim, J.Y.; Kim, S.-K. Salinity acclimation of immobilized freshwater denitrifier. Aquac. Eng. 2001, 24, 169–180. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, Z.; Zhao, Q.; Chen, J.; Li, J.; Chen, L.; Shi, W.; An, P.; Wang, G.; Xu, G. A pilot-scale study of a novel two-stage denitrification filter. J. Water Process Eng. 2020, 39, 101873. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, S.; Zhang, J.; Huang, D.; Zheng, Z. Advanced nitrogen removal from municipal wastewater treatment plant secondary effluent using a deep bed denitrification filter. Water Sci. Technol. 2018, 77, 2723–2732. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Zhao, Y.-G.; Maqbool, F.; Guo, L.; Gao, M.; Jin, C.; Ji, J. Control of toxic sulfide in mariculture environment by iron-coated ceramsite and immobilized sulfur oxidizing bacteria. Sci. Total Environ. 2021, 793, 148658. [Google Scholar] [CrossRef]
- Zhou, J.-M.; Song, Z.-Y.; Yan, D.-J.; Liu, Y.-L.; Yang, M.-H.; Cao, H.-B.; Xing, J.-M. Performance of a haloalkaliphilic bioreactor under different NO3-/SO42- ratios. Bioresour. Technol. 2014, 153, 216–222. [Google Scholar] [CrossRef]
- García-Ruiz, M.; Castellano-Hinojosa, A.; González-López, J.; Osorio, F. Effects of salinity on the nitrogen removal efficiency and bacterial community structure in fixed-bed biofilm CANON bioreactors. Chem. Eng. J. 2018, 347, 156–164. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, Q.; She, Z.; Gao, M.; Zhao, Y.; Guo, L.; Jin, C. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. Sci. Total Environ. 2019, 697, 134047. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Wang, D.; Chen, F.; Li, X.; Zeng, G.; Yang, Q. Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag. 2017, 67, 308–314. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, R.; He, Q.; Ji, B.; Wang, H.; Yang, K. Adaptation to salinity: Response of biogas production and microbial communities in anaerobic digestion of kitchen waste to salinity stress. J. Biosci. Bioeng. 2020, 130, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, L.; Liao, Q.; Gao, M.; Zhao, Y.; Jin, C.; She, Z.; Wang, G. Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation. Bioresour. Technol. 2021, 338, 125574. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Liu, L.; Wang, A.; Wang, Y. Effects of temperature, algae biomass and ambient nutrient on the absorption of dissolved nitrogen and phosphate by Rhodophyte Gracilaria asiatica. Chin. J. Oceanol. Limnol. 2012, 31, 353–365. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Santos, F.M.; Gonçalves, A.L.; Pires, J.C.M. Chapter 1—Negative emission technologies. In Bioenergy with Carbon Capture and Storage; Pires, J.C.M., Gonçalves, A.L.D.C., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–13. [Google Scholar]
- Manariotis, I.D.; Grigoropoulos, S.G.; Hung, Y.-T. Anaerobic Treatment of Low-Strength Wastewater by a Biofilm Reactor. In Environmental Bioengineering; Wang, L.K., Tay, J.-H., Tay, S.T.L., Hung, Y.-T., Eds.; Humana Press: Totowa, NJ, USA, 2010; Volume 11, pp. 445–496. [Google Scholar]
- van Kessel, M.A.; Harhangi, H.R.; van de Pas-Schoonen, K.; van de Vossenberg, J.; Flik, G.; Jetten, M.S.; Klaren, P.H.; Camp, H.J.O.D. Biodiversity of N-cycle bacteria in nitrogen removing moving bed biofilters for freshwater recirculating aquaculture systems. Aquaculture 2010, 306, 177–184. [Google Scholar] [CrossRef]
- Huang, J.; Wen, Y.; Ding, N.; Xu, Y.; Zhou, Q. Effect of sulfate on anaerobic reduction of nitrobenzene with acetate or propionate as an electron donor. Water Res. 2012, 46, 4361–4370. [Google Scholar] [CrossRef]
- Yu, M.; Lu, H.; Wu, D.; Zhao, Q.; Meng, F.; Wang, Y.; Hao, X.; Chen, G.-H. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR). Sci. Rep. 2016, 6, 23221. [Google Scholar] [CrossRef]
Mariculture Species | Output/t | Discharge Capacity/kg | ||
---|---|---|---|---|
Total Nitrogen | Total Phosphorus | COD (Chemical Oxygen Demand) | ||
Fish | 53,776 | 110,725 | 70,662 | 4,379,894 |
Shrimp | 14,093 | 43,590 | 20,674 | 1,543,113 |
Abalone | 2600 | 52,520 | 1063 | 117,263 |
Sea cucumber | 56,380 | 378,761 | 205,392 | 1,725,341 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Liu, Q.; Liu, J.; Xiao, J.; Xu, G. Pollution Control of Industrial Mariculture Wastewater: A Mini-Review. Water 2022, 14, 1390. https://doi.org/10.3390/w14091390
Zheng L, Liu Q, Liu J, Xiao J, Xu G. Pollution Control of Industrial Mariculture Wastewater: A Mini-Review. Water. 2022; 14(9):1390. https://doi.org/10.3390/w14091390
Chicago/Turabian StyleZheng, Lina, Qi Liu, Jiajing Liu, Jingni Xiao, and Guangjing Xu. 2022. "Pollution Control of Industrial Mariculture Wastewater: A Mini-Review" Water 14, no. 9: 1390. https://doi.org/10.3390/w14091390
APA StyleZheng, L., Liu, Q., Liu, J., Xiao, J., & Xu, G. (2022). Pollution Control of Industrial Mariculture Wastewater: A Mini-Review. Water, 14(9), 1390. https://doi.org/10.3390/w14091390