Appendix A.1. Tables
Table A1.
Input weights and biases of the ANN model for anaerobic digestion.
Table A1.
Input weights and biases of the ANN model for anaerobic digestion.
Position of Neurons | Weights (Wi) |
---|
Qin | OLR | CODin | BODin | TSSin | pH Inlet | Bias (b1) |
---|
1 | 1.024 | 1.272 | 0.888 | 1.098 | −0.962 | −0.508 | 0.115 |
2 | −0.186 | −0.093 | 0.101 | 0.162 | 0.072 | 0.234 | −0.224 |
3 | −0.627 | −0.517 | −0.073 | 0.099 | 0.851 | 0.721 | 0.497 |
4 | −0.253 | −0.793 | −0.902 | −0.717 | 0.150 | 1.080 | −0.482 |
5 | −0.237 | 0.126 | 0.127 | −0.082 | −1.021 | 1.599 | −0.095 |
6 | 0.979 | 0.100 | −0.352 | −0.397 | −1.760 | 0.567 | 0.255 |
7 | −0.196 | −0.654 | −1.175 | −1.024 | −0.655 | 1.396 | 0.233 |
8 | 0.205 | 0.211 | −0.338 | −0.379 | 0.307 | −0.493 | 0.476 |
9 | −1.154 | −1.319 | −0.189 | −0.074 | 0.527 | 0.516 | −0.981 |
10 | −0.708 | −0.976 | −0.560 | −0.472 | −0.145 | −0.142 | 0.711 |
11 | −0.140 | 0.124 | −0.275 | −0.279 | −0.464 | −1.125 | −0.515 |
12 | 0.811 | 0.624 | −0.171 | −0.124 | −0.659 | 0.274 | −0.308 |
Table A2.
Output weights and biases of the ANN model for anaerobic digestion.
Table A2.
Output weights and biases of the ANN model for anaerobic digestion.
Outputs | Weights (Wi) |
---|
W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W10 | W12 | Bias (b2) |
---|
COD removal (%) | −1.063 | 0.429 | 1.101 | −0.703 | −0.120 | 1.323 | −0.969 | −0.919 | −1.369 | 0.268 | 0.140 | −0.356 | −0.582 |
Methane purity | 1.264 | 0.305 | 0.734 | 1.137 | −1.341 | 0.053 | 0.194 | −0.322 | −0.805 | 1.082 | −0.448 | 0.025 | −0.642 |
Methane yield (m3CH4/gCOD removed) | −0.681 | 0.022 | −0.423 | 0.088 | −0.078 | 1.028 | −1.140 | −0.306 | −0.788 | 0.716 | −0.929 | −0.979 | −0.515 |
Table A3.
Best performance result of the ANN model for anaerobic digestion.
Table A3.
Best performance result of the ANN model for anaerobic digestion.
% of Separation | Number of Sample | Type of Sample | MSE |
---|
70% | 16 | Training | 2.26 × 10−14 |
15% | 4 | Validation | 1.246496 |
15% | 4 | Testing | N/A |
100% | 24 | All | - |
Table A4.
Input weights and biases of the ANN model for aerobic process.
Table A4.
Input weights and biases of the ANN model for aerobic process.
Position of Neurons | Weights (Wi) |
---|
OLR | CODin | BODin | TSSin | MLSS (mg/L) | DO (mg/L) | F/M (kgCOD/kg MLVSS. Day) | Bias (b1) |
---|
1 | −2.047 | 0.130 | −1.591 | −0.541 | 0.631 | 0.595 | −0.882 | −1.786 |
2 | −1.069 | 0.913 | −0.580 | 0.076 | −1.382 | −0.366 | 0.373 | −1.803 |
3 | 0.149 | −0.504 | 0.333 | −1.105 | 1.741 | −2.891 | −0.174 | −1.809 |
4 | −0.021 | 0.591 | 0.022 | 0.758 | −1.117 | 0.761 | −0.692 | 0.722 |
5 | 0.024 | 1.695 | 0.313 | −0.086 | −1.043 | 0.041 | 0.665 | 0.793 |
6 | 0.875 | −0.339 | −1.303 | 0.010 | 1.688 | 0.684 | 0.585 | 0.510 |
Table A5.
Output weights and biases of the ANN model for aerobic process.
Table A5.
Output weights and biases of the ANN model for aerobic process.
Outputs | Weight (Wi) |
---|
W1 | W2 | W3 | W4 | W5 | W6 | Bias (b2) |
---|
COD removal | −1.67677 | 0.391637 | −2.03913 | −0.07522 | −1.51773 | −0.8974 | −0.35335 |
BOD removal | −1.40607 | −1.66764 | −1.98104 | −0.33949 | −1.19136 | −1.31442 | −1.69595 |
TSS removal | 1.159768 | −2.19573 | −0.8436 | −1.68153 | 0.573482 | −0.69684 | −0.45734 |
Table A6.
Best performance result of the ANN model for aerobic process.
Table A6.
Best performance result of the ANN model for aerobic process.
% of Separation | Number of Sample | Type of Sample | MSE |
---|
70% | 16 | Training | 0.115 |
15% | 4 | Validation | 3.804727 |
15% | 4 | Testing | N/A |
100% | 24 | All | - |
Table A7.
R value for COD removal (%) for different training algorithms at different number of hidden neurons.
Table A7.
R value for COD removal (%) for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 0.823 | 0.657 | 0.759 | 0.767 | 0.820 | 0.773 | 0.732 | 0.775 | 0.770 | 0.523 | 0.762 | 0.733 |
2 | 0.940 | 0.922 | 0.930 | 0.900 | 0.925 | 0.938 | 0.912 | 0.935 | 0.900 | 0.795 | 0.962 | 0.635 |
3 | 0.953 | 0.863 | 0.930 | 0.930 | 0.909 | 0.901 | 0.915 | 0.928 | 0.938 | 0.565 | 0.958 | 0.658 |
4 | 0.908 | 0.943 | 0.951 | 0.896 | 0.903 | 0.884 | 0.931 | 0.895 | 0.886 | 0.534 | 0.962 | 0.649 |
5 | 0.964 | 0.891 | 0.948 | 0.935 | 0.935 | 0.929 | 0.967 | 0.921 | 0.908 | 0.721 | 0.988 | 0.651 |
6 | 0.953 | 0.832 | 0.943 | 0.891 | 0.941 | 0.939 | 0.924 | 0.946 | 0.897 | 0.618 | 0.981 | 0.773 |
7 | 0.973 | 0.924 | 0.918 | 0.826 | 0.962 | 0.914 | 0.960 | 0.904 | 0.954 | 0.393 | 0.994 | 0.634 |
8 | 0.899 | 0.950 | 0.903 | 0.906 | 0.912 | 0.924 | 0.936 | 0.921 | 0.962 | 0.452 | 0.990 | 0.542 |
9 | 0.953 | 0.917 | 0.852 | 0.872 | 0.899 | 0.918 | 0.901 | 0.940 | 0.927 | 0.531 | 0.994 | 0.625 |
10 | 0.921 | 0.762 | 0.863 | 0.944 | 0.936 | 0.904 | 0.946 | 0.873 | 0.922 | 0.574 | 0.987 | 0.698 |
11 | 0.945 | 0.848 | 0.940 | 0.874 | 0.862 | 0.899 | 0.946 | 0.902 | 0.881 | 0.734 | 0.994 | 0.568 |
12 | 0.916 | 0.924 | 0.924 | 0.880 | 0.930 | 0.863 | 0.910 | 0.922 | 0.922 | 0.682 | 0.998 | 0.419 |
13 | 0.960 | 0.819 | 0.930 | 0.903 | 0.880 | 0.849 | 0.964 | 0.882 | 0.830 | 0.599 | 0.989 | 0.711 |
14 | 0.973 | 0.878 | 0.888 | 0.914 | 0.960 | 0.928 | 0.905 | 0.889 | 0.900 | 0.510 | 0.995 | 0.871 |
15 | 0.964 | 0.821 | 0.933 | 0.931 | 0.894 | 0.928 | 0.883 | 0.885 | 0.904 | 0.498 | 0.996 | 0.574 |
16 | 0.933 | 0.824 | 0.887 | 0.907 | 0.906 | 0.911 | 0.954 | 0.841 | 0.846 | 0.554 | 0.989 | 0.615 |
17 | 0.959 | 0.891 | 0.956 | 0.818 | 0.928 | 0.795 | 0.919 | 0.905 | 0.935 | 0.626 | 0.995 | 0.543 |
18 | 0.955 | 0.880 | 0.909 | 0.928 | 0.972 | 0.946 | 0.945 | 0.963 | 0.783 | 0.603 | 0.998 | 0.344 |
19 | 0.944 | 0.910 | 0.923 | 0.884 | 0.967 | 0.892 | 0.910 | 0.955 | 0.943 | 0.346 | 0.992 | 0.495 |
20 | 0.968 | 0.873 | 0.921 | 0.840 | 0.930 | 0.935 | 0.928 | 0.895 | 0.905 | 0.499 | 0.997 | 0.693 |
Table A8.
MAE for COD removal (%) for different training algorithms at different number of hidden neurons.
Table A8.
MAE for COD removal (%) for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 5.208 | 0.026 | 4.252 | 4.403 | 5.083 | 4.442 | 5.338 | 4.740 | 4.819 | 7.765 | 4.123 | 4.973 |
2 | 3.224 | 3.386 | 3.248 | 3.797 | 3.716 | 2.843 | 3.758 | 3.333 | 4.105 | 29.537 | 2.098 | 18.369 |
3 | 12.120 | 3.730 | 3.140 | 3.111 | 3.524 | 3.853 | 3.531 | 3.285 | 2.890 | 15.200 | 1.616 | 9.097 |
4 | 2.487 | 3.071 | 2.970 | 3.263 | 4.319 | 4.150 | 2.985 | 3.497 | 4.189 | 10.127 | 1.057 | 19.697 |
5 | 2.119 | 3.668 | 2.931 | 3.372 | 3.260 | 3.351 | 2.047 | 2.611 | 3.665 | 37.161 | 0.656 | 23.856 |
6 | 1.981 | 4.685 | 2.948 | 3.829 | 2.337 | 2.797 | 2.668 | 2.828 | 4.045 | 34.257 | 0.834 | 9.163 |
7 | 1.345 | 3.238 | 3.529 | 4.521 | 2.331 | 3.031 | 2.349 | 3.569 | 1.939 | 50.897 | 0.453 | 11.841 |
8 | 2.320 | 2.243 | 3.802 | 3.058 | 2.952 | 2.905 | 2.657 | 3.143 | 2.295 | 40.457 | 0.501 | 15.996 |
9 | 1.880 | 3.135 | 4.485 | 4.250 | 4.225 | 3.290 | 3.294 | 3.008 | 2.555 | 49.306 | 0.476 | 14.285 |
10 | 2.004 | 5.698 | 4.169 | 2.488 | 3.124 | 3.494 | 2.146 | 3.763 | 3.135 | 15.346 | 0.741 | 6.472 |
11 | 2.132 | 3.821 | 1.961 | 2.839 | 3.695 | 3.822 | 1.982 | 2.877 | 3.206 | 34.591 | 0.434 | 9.620 |
12 | 1.850 | 2.769 | 3.516 | 3.171 | 2.648 | 3.366 | 3.274 | 2.918 | 2.670 | 27.077 | 0.211 | 27.139 |
13 | 1.476 | 3.947 | 2.105 | 3.805 | 4.438 | 4.195 | 1.869 | 3.096 | 2.781 | 32.379 | 0.509 | 11.513 |
14 | 1.320 | 3.029 | 3.929 | 2.710 | 2.245 | 2.352 | 2.505 | 3.755 | 3.744 | 23.346 | 0.416 | 5.579 |
15 | 1.690 | 4.082 | 2.656 | 1.918 | 2.808 | 3.195 | 3.229 | 2.735 | 2.554 | 32.215 | 0.358 | 11.765 |
16 | 2.286 | 3.770 | 3.555 | 2.533 | 3.784 | 3.000 | 1.962 | 4.028 | 3.515 | 17.154 | 0.644 | 23.895 |
17 | 2.152 | 3.646 | 2.431 | 3.573 | 2.869 | 4.038 | 2.861 | 2.435 | 2.818 | 51.956 | 0.377 | 7.989 |
18 | 1.140 | 3.748 | 3.107 | 2.687 | 1.528 | 2.428 | 1.902 | 1.888 | 4.336 | 41.445 | 0.220 | 30.201 |
19 | 2.307 | 3.223 | 2.828 | 3.514 | 2.118 | 3.643 | 3.570 | 2.399 | 2.661 | 95.015 | 0.462 | 30.494 |
20 | 1.454 | 3.149 | 2.186 | 3.469 | 2.399 | 2.721 | 2.535 | 3.099 | 2.803 | 32.193 | 0.238 | 31.910 |
Table A9.
MAPE for COD removal (%) for different training algorithms at different number of hidden neurons.
Table A9.
MAPE for COD removal (%) for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 0.07 | 0.1 | 0.06 | 0.06 | 0.07 | 0.06 | 0.08 | 0.07 | 0.07 | 0.11 | 0.066 | 0.07 |
2 | 0.04 | 0.05 | 0.04 | 0.05 | 0.05 | 0.04 | 0.06 | 0.05 | 0.06 | 0.41 | 0.034 | 0.27 |
3 | 0.16 | 0.05 | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.21 | 0.025 | 0.13 |
4 | 0.04 | 0.04 | 0.04 | 0.05 | 0.06 | 0.06 | 0.04 | 0.05 | 0.06 | 0.15 | 0.022 | 0.26 |
5 | 0.03 | 0.05 | 0.04 | 0.05 | 0.04 | 0.05 | 0.03 | 0.03 | 0.05 | 0.51 | 0.014 | 0.33 |
6 | 0.03 | 0.07 | 0.04 | 0.05 | 0.03 | 0.04 | 0.04 | 0.04 | 0.06 | 0.47 | 0.016 | 0.13 |
7 | 0.02 | 0.04 | 0.05 | 0.06 | 0.03 | 0.04 | 0.03 | 0.05 | 0.02 | 0.68 | 0.011 | 0.17 |
8 | 0.03 | 0.03 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | 0.55 | 0.017 | 0.22 |
9 | 0.02 | 0.04 | 0.06 | 0.06 | 0.06 | 0.04 | 0.05 | 0.04 | 0.03 | 0.68 | 0.018 | 0.19 |
10 | 0.03 | 0.08 | 0.06 | 0.03 | 0.04 | 0.05 | 0.03 | 0.05 | 0.04 | 0.21 | 0.009 | 0.09 |
11 | 0.03 | 0.05 | 0.03 | 0.03 | 0.05 | 0.05 | 0.03 | 0.04 | 0.05 | 0.48 | 0.006 | 0.14 |
12 | 0.02 | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.39 | 0.003 | 0.37 |
13 | 0.02 | 0.06 | 0.03 | 0.05 | 0.06 | 0.06 | 0.02 | 0.05 | 0.04 | 0.45 | 0.006 | 0.16 |
14 | 0.02 | 0.05 | 0.05 | 0.03 | 0.03 | 0.03 | 0.03 | 0.05 | 0.05 | 0.32 | 0.006 | 0.07 |
15 | 0.02 | 0.06 | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | 0.46 | 0.005 | 0.15 |
16 | 0.03 | 0.06 | 0.05 | 0.03 | 0.05 | 0.04 | 0.02 | 0.05 | 0.05 | 0.23 | 0.009 | 0.32 |
17 | 0.03 | 0.05 | 0.03 | 0.05 | 0.04 | 0.06 | 0.04 | 0.04 | 0.04 | 0.71 | 0.005 | 0.12 |
18 | 0.01 | 0.05 | 0.04 | 0.03 | 0.02 | 0.03 | 0.03 | 0.02 | 0.06 | 0.56 | 0.003 | 0.39 |
19 | 0.03 | 0.04 | 0.04 | 0.05 | 0.03 | 0.05 | 0.05 | 0.03 | 0.04 | 0.77 | 0.006 | 0.42 |
20 | 0.02 | 0.04 | 0.03 | 0.05 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | 0.44 | 0.003 | 0.42 |
Table A10.
MSE for COD removal (%) for different training algorithms at different number of hidden neurons.
Table A10.
MSE for COD removal (%) for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 39.37 | 72.07 | 50.14 | 51.13 | 41.25 | 49.97 | 55.26 | 47.20 | 48.22 | 97.30 | 52.79 | 59.20 |
2 | 14.22 | 18.03 | 16.17 | 23.44 | 19.69 | 15.09 | 26.29 | 15.00 | 22.39 | 924.88 | 9.30 | 426.35 |
3 | 13.95 | 30.34 | 16.70 | 16.75 | 21.25 | 22.39 | 22.69 | 16.65 | 15.44 | 321.74 | 10.81 | 125.63 |
4 | 21.99 | 16.24 | 11.56 | 25.80 | 23.18 | 30.01 | 16.00 | 24.50 | 26.58 | 185.53 | 9.61 | 477.13 |
5 | 9.69 | 26.75 | 12.21 | 15.85 | 14.75 | 17.01 | 7.80 | 18.43 | 21.22 | 1442.88 | 2.83 | 799.09 |
6 | 13.95 | 38.86 | 13.58 | 24.97 | 15.91 | 15.68 | 17.47 | 13.06 | 24.18 | 1257.65 | 5.13 | 112.85 |
7 | 7.90 | 20.31 | 20.34 | 37.70 | 9.08 | 20.92 | 10.47 | 23.30 | 10.98 | 2773.36 | 1.70 | 199.71 |
8 | 23.24 | 11.57 | 22.00 | 21.45 | 21.46 | 17.36 | 14.91 | 18.08 | 9.08 | 2060.30 | 2.53 | 441.06 |
9 | 12.52 | 19.59 | 32.82 | 31.10 | 25.68 | 19.67 | 25.95 | 14.15 | 16.82 | 2551.04 | 1.47 | 432.19 |
10 | 18.66 | 55.96 | 31.23 | 13.72 | 16.06 | 21.73 | 52.87 | 28.60 | 21.58 | 337.34 | 4.03 | 67.22 |
11 | 13.24 | 33.81 | 15.46 | 31.13 | 32.03 | 23.43 | 12.64 | 24.86 | 29.99 | 1251.08 | 1.45 | 156.54 |
12 | 21.69 | 17.52 | 19.06 | 27.49 | 16.14 | 30.96 | 20.70 | 18.28 | 17.75 | 1251.11 | 0.43 | 1106.73 |
13 | 11.95 | 40.31 | 16.34 | 23.61 | 43.13 | 33.02 | 8.37 | 27.08 | 39.50 | 1151.90 | 2.63 | 215.13 |
14 | 7.09 | 29.06 | 25.47 | 20.52 | 10.34 | 16.63 | 23.32 | 27.41 | 22.65 | 841.85 | 1.17 | 49.48 |
15 | 9.64 | 39.72 | 16.80 | 15.95 | 26.48 | 17.25 | 26.72 | 27.73 | 21.89 | 1571.34 | 1.05 | 259.51 |
16 | 17.96 | 38.19 | 25.85 | 23.69 | 24.83 | 20.15 | 11.35 | 38.12 | 38.28 | 390.73 | 2.88 | 831.74 |
17 | 11.02 | 25.80 | 10.52 | 42.45 | 17.09 | 47.26 | 19.29 | 22.07 | 15.62 | 2797.18 | 1.27 | 99.43 |
18 | 11.08 | 27.99 | 22.01 | 16.75 | 6.70 | 12.45 | 12.59 | 9.00 | 81.80 | 1933.79 | 0.59 | 982.16 |
19 | 13.09 | 20.65 | 19.75 | 26.84 | 7.95 | 26.28 | 21.74 | 10.74 | 13.23 | 9769.54 | 2.20 | 1096.88 |
20 | 8.43 | 30.78 | 18.04 | 39.58 | 19.50 | 15.82 | 19.11 | 23.55 | 23.10 | 1232.83 | 0.70 | 1261.02 |
Table A11.
R value for CH4 percentage in biogas for different training algorithms at different number of hidden neurons.
Table A11.
R value for CH4 percentage in biogas for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 0.571 | 0.653 | 0.565 | 0.542 | 0.568 | 0.529 | 0.600 | 0.517 | 0.517 | 0.523 | 0.569 | 0.531 |
2 | 0.810 | 0.710 | 0.720 | 0.794 | 0.810 | 0.764 | 0.809 | 0.745 | 0.789 | 0.795 | 0.824 | 0.691 |
3 | 0.901 | 0.852 | 0.801 | 0.761 | 0.836 | 0.755 | 0.890 | 0.779 | 0.807 | 0.565 | 0.904 | 0.424 |
4 | 0.909 | 0.739 | 0.802 | 0.846 | 0.813 | 0.835 | 0.856 | 0.798 | 0.814 | 0.534 | 0.915 | 0.634 |
5 | 0.864 | 0.745 | 0.834 | 0.816 | 0.783 | 0.813 | 0.852 | 0.845 | 0.711 | 0.721 | 0.989 | 0.454 |
6 | 0.901 | 0.826 | 0.785 | 0.769 | 0.865 | 0.845 | 0.857 | 0.799 | 0.823 | 0.618 | 0.989 | 0.671 |
7 | 0.831 | 0.849 | 0.804 | 0.785 | 0.841 | 0.828 | 0.790 | 0.810 | 0.843 | 0.393 | 0.985 | 0.714 |
8 | 0.936 | 0.737 | 0.713 | 0.821 | 0.846 | 0.870 | 0.816 | 0.633 | 0.827 | 0.452 | 0.992 | 0.684 |
9 | 0.907 | 0.806 | 0.808 | 0.775 | 0.763 | 0.770 | 0.863 | 0.734 | 0.872 | 0.531 | 0.984 | 0.707 |
10 | 0.954 | 0.724 | 0.812 | 0.826 | 0.883 | 0.816 | 0.861 | 0.632 | 0.852 | 0.574 | 0.993 | 0.573 |
11 | 0.909 | 0.744 | 0.900 | 0.870 | 0.716 | 0.703 | 0.920 | 0.889 | 0.847 | 0.734 | 0.985 | 0.428 |
12 | 0.971 | 0.767 | 0.751 | 0.770 | 0.884 | 0.717 | 0.933 | 0.879 | 0.788 | 0.682 | 0.983 | 0.704 |
13 | 0.964 | 0.693 | 0.887 | 0.804 | 0.772 | 0.772 | 0.873 | 0.815 | 0.848 | 0.599 | 0.997 | 0.560 |
14 | 0.965 | 0.655 | 0.811 | 0.773 | 0.859 | 0.812 | 0.908 | 0.850 | 0.634 | 0.510 | 0.984 | 0.637 |
15 | 0.975 | 0.749 | 0.923 | 0.912 | 0.812 | 0.732 | 0.892 | 0.822 | 0.789 | 0.498 | 0.977 | 0.571 |
16 | 0.952 | 0.817 | 0.817 | 0.808 | 0.644 | 0.687 | 0.850 | 0.778 | 0.872 | 0.554 | 0.990 | 0.601 |
17 | 0.931 | 0.752 | 0.731 | 0.842 | 0.890 | 0.784 | 0.883 | 0.907 | 0.809 | 0.626 | 0.984 | 0.606 |
18 | 0.949 | 0.780 | 0.874 | 0.741 | 0.821 | 0.705 | 0.852 | 0.759 | 0.890 | 0.603 | 0.982 | 0.581 |
19 | 0.907 | 0.868 | 0.775 | 0.907 | 0.887 | 0.697 | 0.838 | 0.746 | 0.619 | 0.346 | 0.976 | 0.574 |
20 | 0.908 | 0.608 | 0.876 | 0.824 | 0.820 | 0.595 | 0.804 | 0.815 | 0.791 | 0.499 | 0.991 | 0.256 |
Table A12.
MAE for percentage of CH4 in biogas for different training algorithms at different number of hidden neurons.
Table A12.
MAE for percentage of CH4 in biogas for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 1.642 | 6.822 | 1.397 | 1.378 | 1.621 | 1.462 | 1.525 | 1.488 | 1.49 | 2.392 | 1.337 | 1.538 |
2 | 1.111 | 1.75 | 1.414 | 1.431 | 1.399 | 1.365 | 1.257 | 1.839 | 1.551 | 4.669 | 1.129 | 2.918 |
3 | 2.86 | 1.121 | 1.08 | 1.675 | 1.122 | 1.488 | 0.915 | 1.29 | 1.174 | 2.392 | 0.831 | 2.025 |
4 | 0.806 | 1.435 | 1.157 | 1.032 | 1.536 | 1.242 | 1.028 | 1.22 | 1.109 | 3.127 | 0.606 | 1.673 |
5 | 0.937 | 1.322 | 1.246 | 1.281 | 1.719 | 1.189 | 1.032 | 0.944 | 1.562 | 1.902 | 0.114 | 3.519 |
6 | 0.624 | 1.11 | 1.235 | 1.27 | 0.93 | 1.066 | 1.046 | 1.176 | 1.093 | 8.924 | 0.134 | 1.414 |
7 | 0.587 | 1.085 | 1.057 | 1.333 | 1.106 | 1.196 | 1.224 | 1.336 | 1.046 | 6.414 | 0.142 | 1.393 |
8 | 0.408 | 1.294 | 1.445 | 1.126 | 0.939 | 0.983 | 1.103 | 1.456 | 1.147 | 10.763 | 0.105 | 4.515 |
9 | 0.463 | 1.197 | 1.95 | 1.265 | 1.336 | 1.074 | 0.965 | 1.326 | 0.982 | 14.349 | 0.143 | 15.518 |
10 | 0.332 | 1.294 | 1.276 | 1.073 | 0.922 | 1.067 | 0.952 | 1.552 | 1.058 | 8.583 | 0.088 | 4.126 |
11 | 0.648 | 1.433 | 0.863 | 0.731 | 1.34 | 1.343 | 0.648 | 0.92 | 0.966 | 4.209 | 0.162 | 3.029 |
12 | 0.358 | 1.308 | 1.332 | 1.122 | 0.92 | 1.146 | 0.646 | 1.078 | 1.519 | 3.296 | 0.147 | 3.621 |
13 | 0.334 | 1.508 | 0.882 | 1.208 | 1.222 | 1.32 | 0.853 | 1.174 | 1.009 | 8.283 | 0.072 | 4.256 |
14 | 0.422 | 1.633 | 1.173 | 1.357 | 1.056 | 1.15 | 0.878 | 1.496 | 1.498 | 5.281 | 0.179 | 2.824 |
15 | 0.331 | 1.13 | 0.725 | 0.84 | 1.231 | 1.348 | 0.888 | 1.071 | 1.267 | 12.657 | 0.201 | 4.762 |
16 | 0.384 | 1.197 | 1.167 | 0.95 | 1.211 | 1.301 | 0.915 | 1.201 | 0.955 | 5.027 | 0.13 | 8.688 |
17 | 0.912 | 1.219 | 1.566 | 0.991 | 0.945 | 1.152 | 0.939 | 0.768 | 1.273 | 1.66 | 0.144 | 3.503 |
18 | 0.37 | 1.336 | 0.905 | 1.178 | 1.084 | 1.381 | 0.816 | 1.211 | 0.868 | 12.714 | 0.145 | 3.806 |
19 | 0.731 | 0.896 | 1.351 | 0.801 | 1.119 | 1.61 | 1.093 | 1.186 | 1.863 | 5.1 | 0.199 | 3.972 |
20 | 0.45 | 1.454 | 0.978 | 1.238 | 0.951 | 1.495 | 1.084 | 1.182 | 1.07 | 5.171 | 0.119 | 19.23 |
Table A13.
MAPE for percentage of CH4 in biogas for different training algorithms at different number of hidden neurons.
Table A13.
MAPE for percentage of CH4 in biogas for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.03 | 0.02 | 0.02 | 0.04 | 0.020 | 0.03 |
2 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.08 | 0.020 | 0.05 |
3 | 0.05 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 | 0.010 | 0.03 |
4 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.05 | 0.010 | 0.03 |
5 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.001 | 0.06 |
6 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.15 | 0.003 | 0.02 |
7 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.11 | 0.001 | 0.02 |
8 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.18 | 0.001 | 0.07 |
9 | 0.01 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.24 | 0.002 | 0.25 |
10 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.14 | 0.001 | 0.07 |
11 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.07 | 0.003 | 0.05 |
12 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.05 | 0.001 | 0.06 |
13 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.14 | 0.001 | 0.07 |
14 | 0.01 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.09 | 0.003 | 0.05 |
15 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.21 | 0.003 | 0.08 |
16 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.08 | 0.002 | 0.14 |
17 | 0.01 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.03 | 0.002 | 0.06 |
18 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.21 | 0.002 | 0.06 |
19 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.08 | 0.003 | 0.07 |
20 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.09 | 0.002 | 0.32 |
Table A14.
MSE for percentage of CH4 in biogas for different training algorithms at different number of hidden neurons.
Table A14.
MSE for percentage of CH4 in biogas for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 3.77 | 3.14 | 3.76 | 3.95 | 3.77 | 4.35 | 3.52 | 4.03 | 4.10 | 9.00 | 3.77 | 4.70 |
2 | 1.94 | 4.52 | 2.69 | 3.15 | 2.77 | 2.89 | 2.02 | 5.23 | 3.22 | 25.78 | 1.78 | 11.64 |
3 | 1.16 | 1.76 | 1.98 | 3.90 | 1.69 | 3.44 | 1.31 | 2.32 | 1.91 | 8.57 | 0.99 | 6.17 |
4 | 0.97 | 2.81 | 2.04 | 1.55 | 3.89 | 2.34 | 1.49 | 2.09 | 1.90 | 14.69 | 0.98 | 4.64 |
5 | 1.39 | 2.78 | 2.49 | 2.13 | 4.25 | 2.10 | 1.54 | 1.62 | 3.78 | 5.66 | 0.13 | 23.74 |
6 | 1.16 | 1.75 | 2.10 | 2.42 | 1.58 | 1.74 | 1.48 | 2.01 | 1.76 | 87.02 | 0.13 | 3.83 |
7 | 1.71 | 1.54 | 1.98 | 2.72 | 1.70 | 2.18 | 2.16 | 2.42 | 1.68 | 46.60 | 0.19 | 2.85 |
8 | 0.80 | 2.64 | 3.61 | 1.77 | 1.57 | 1.37 | 1.89 | 3.48 | 1.91 | 123.63 | 0.09 | 30.70 |
9 | 0.97 | 2.02 | 6.12 | 2.66 | 2.56 | 2.30 | 1.42 | 3.17 | 1.44 | 209.59 | 0.19 | 267.10 |
10 | 0.55 | 2.99 | 2.75 | 1.87 | 1.37 | 1.85 | 7.03 | 3.78 | 1.56 | 87.74 | 0.08 | 20.69 |
11 | 1.14 | 3.25 | 1.04 | 1.43 | 2.74 | 3.11 | 0.85 | 1.16 | 1.63 | 23.20 | 0.17 | 12.12 |
12 | 0.37 | 2.31 | 2.50 | 2.53 | 1.20 | 2.86 | 0.88 | 1.74 | 3.32 | 13.03 | 0.19 | 18.95 |
13 | 0.46 | 3.22 | 1.26 | 2.41 | 2.30 | 2.49 | 1.51 | 2.05 | 1.66 | 87.05 | 0.03 | 26.11 |
14 | 0.49 | 4.17 | 2.24 | 3.63 | 1.98 | 1.86 | 1.03 | 3.93 | 4.19 | 36.49 | 0.20 | 10.95 |
15 | 0.32 | 2.44 | 0.83 | 1.00 | 2.56 | 2.93 | 1.13 | 1.85 | 2.09 | 174.16 | 0.29 | 29.62 |
16 | 0.53 | 2.05 | 1.92 | 2.06 | 3.34 | 2.91 | 1.59 | 2.31 | 1.40 | 32.86 | 0.14 | 92.72 |
17 | 1.18 | 2.89 | 3.43 | 1.61 | 1.24 | 2.18 | 1.36 | 0.98 | 2.25 | 4.54 | 0.18 | 16.35 |
18 | 0.57 | 2.45 | 1.32 | 2.46 | 1.93 | 3.04 | 1.66 | 2.44 | 1.27 | 210.13 | 0.20 | 22.09 |
19 | 1.27 | 1.39 | 2.82 | 0.98 | 1.61 | 3.81 | 1.71 | 2.45 | 4.66 | 37.64 | 0.28 | 26.60 |
20 | 0.97 | 4.41 | 1.31 | 1.95 | 1.94 | 3.53 | 2.24 | 2.35 | 2.19 | 34.99 | 0.10 | 398.13 |
Table A15.
R value for methane yield in biogas for different training algorithms at different number of hidden neurons.
Table A15.
R value for methane yield in biogas for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 0.741 | 0.594 | 0.665 | 0.644 | 0.769 | 0.665 | 0.614 | 0.693 | 0.679 | 0.467 | 0.659 | 0.603 |
2 | 0.926 | 0.644 | 0.908 | 0.879 | 0.926 | 0.844 | 0.834 | 0.834 | 0.779 | 0.683 | 0.935 | 0.548 |
3 | 0.930 | 0.797 | 0.817 | 0.886 | 0.814 | 0.888 | 0.870 | 0.840 | 0.671 | 0.477 | 0.894 | 0.845 |
4 | 0.790 | 0.842 | 0.827 | 0.857 | 0.752 | 0.796 | 0.913 | 0.800 | 0.839 | 0.629 | 0.872 | 0.530 |
5 | 0.838 | 0.626 | 0.733 | 0.704 | 0.881 | 0.692 | 0.915 | 0.915 | 0.757 | 0.496 | 0.941 | 0.563 |
6 | 0.930 | 0.639 | 0.670 | 0.915 | 0.666 | 0.676 | 0.855 | 0.858 | 0.727 | 0.420 | 0.978 | 0.529 |
7 | 0.914 | 0.505 | 0.645 | 0.684 | 0.716 | 0.551 | 0.936 | 0.663 | 0.612 | 0.653 | 0.989 | 0.314 |
8 | 0.949 | 0.427 | 0.713 | 0.692 | 0.780 | 0.779 | 0.895 | 0.822 | 0.770 | 0.560 | 0.990 | 0.457 |
9 | 0.925 | 0.417 | 0.807 | 0.640 | 0.678 | 0.724 | 0.899 | 0.655 | 0.650 | 0.554 | 0.992 | 0.494 |
10 | 0.925 | 0.584 | 0.692 | 0.642 | 0.771 | 0.617 | 0.933 | 0.841 | 0.622 | 0.577 | 0.989 | 0.534 |
11 | 0.956 | 0.497 | 0.706 | 0.579 | 0.777 | 0.794 | 0.912 | 0.581 | 0.665 | 0.267 | 0.993 | 0.664 |
12 | 0.914 | 0.473 | 0.555 | 0.628 | 0.691 | 0.622 | 0.886 | 0.641 | 0.706 | 0.549 | 0.990 | 0.531 |
13 | 0.958 | 0.578 | 0.585 | 0.570 | 0.721 | 0.644 | 0.839 | 0.653 | 0.704 | 0.491 | 0.988 | 0.450 |
14 | 0.891 | 0.662 | 0.675 | 0.708 | 0.556 | 0.602 | 0.902 | 0.573 | 0.742 | 0.495 | 0.990 | 0.587 |
15 | 0.943 | 0.476 | 0.649 | 0.576 | 0.667 | 0.603 | 0.873 | 0.662 | 0.600 | 0.597 | 0.996 | 0.485 |
16 | 0.963 | 0.530 | 0.603 | 0.637 | 0.771 | 0.593 | 0.912 | 0.618 | 0.669 | 0.409 | 0.984 | 0.404 |
17 | 0.964 | 0.673 | 0.591 | 0.658 | 0.638 | 0.638 | 0.882 | 0.506 | 0.519 | 0.443 | 0.992 | 0.480 |
18 | 0.953 | 0.544 | 0.624 | 0.631 | 0.567 | 0.644 | 0.933 | 0.512 | 0.578 | 0.514 | 0.993 | 0.539 |
19 | 0.958 | 0.427 | 0.698 | 0.640 | 0.634 | 0.672 | 0.906 | 0.601 | 0.666 | 0.721 | 0.994 | 0.384 |
20 | 0.961 | 0.692 | 0.512 | 0.669 | 0.647 | 0.675 | 0.834 | 0.642 | 0.647 | 0.438 | 0.995 | 0.629 |
Table A16.
MAE for methane yield for different training algorithms at different number of hidden neurons.
Table A16.
MAE for methane yield for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 0.015 | 1.389 | 0.042 | 0.020 | 0.024 | 0.020 | 0.016 | 0.061 | 0.044 | 0.046 | 0.033 | 0.077 |
2 | 0.048 | 0.031 | 0.016 | 0.065 | 0.097 | 0.016 | 0.011 | 0.082 | 0.064 | 0.042 | 0.033 | 0.073 |
3 | 0.086 | 0.068 | 0.027 | 0.080 | 0.024 | 0.115 | 0.012 | 0.012 | 0.051 | 0.079 | 0.028 | 0.021 |
4 | 0.014 | 0.050 | 0.020 | 0.073 | 0.071 | 0.128 | 0.010 | 0.055 | 0.028 | 0.106 | 0.021 | 0.052 |
5 | 0.038 | 0.025 | 0.024 | 0.025 | 0.012 | 0.078 | 0.009 | 0.040 | 0.023 | 0.034 | 0.007 | 0.052 |
6 | 0.008 | 0.072 | 0.023 | 0.037 | 0.061 | 0.068 | 0.012 | 0.018 | 0.108 | 0.119 | 0.004 | 0.116 |
7 | 0.009 | 0.048 | 0.033 | 0.017 | 0.023 | 0.078 | 0.008 | 0.061 | 0.092 | 0.030 | 0.004 | 0.072 |
8 | 0.007 | 0.028 | 0.071 | 0.034 | 0.027 | 0.034 | 0.011 | 0.160 | 0.103 | 0.095 | 0.003 | 0.057 |
9 | 0.009 | 0.086 | 0.068 | 0.099 | 0.077 | 0.021 | 0.010 | 0.130 | 0.053 | 0.083 | 0.002 | 0.103 |
10 | 0.008 | 0.047 | 0.094 | 0.025 | 0.119 | 0.065 | 0.008 | 0.035 | 0.081 | 0.042 | 0.001 | 0.058 |
11 | 0.007 | 0.059 | 0.033 | 0.070 | 0.033 | 0.182 | 0.010 | 0.109 | 0.018 | 0.146 | 0.002 | 0.052 |
12 | 0.008 | 0.067 | 0.081 | 0.058 | 0.119 | 0.060 | 0.013 | 0.155 | 0.123 | 0.100 | 0.001 | 0.058 |
13 | 0.005 | 0.103 | 0.059 | 0.018 | 0.023 | 0.094 | 0.015 | 0.097 | 0.097 | 0.132 | 0.003 | 0.052 |
14 | 0.011 | 0.075 | 0.023 | 0.071 | 0.057 | 0.055 | 0.011 | 0.068 | 0.163 | 0.062 | 0.002 | 0.149 |
15 | 0.006 | 0.030 | 0.091 | 0.033 | 0.160 | 0.032 | 0.012 | 0.108 | 0.141 | 0.066 | 0.002 | 0.089 |
16 | 0.004 | 0.104 | 0.061 | 0.086 | 0.019 | 0.060 | 0.012 | 0.057 | 0.175 | 0.124 | 0.002 | 0.047 |
17 | 0.009 | 0.050 | 0.087 | 0.100 | 0.141 | 0.104 | 0.013 | 0.083 | 0.054 | 0.053 | 0.003 | 0.092 |
18 | 0.006 | 0.105 | 0.032 | 0.177 | 0.091 | 0.045 | 0.008 | 0.186 | 0.084 | 0.066 | 0.003 | 0.083 |
19 | 0.006 | 0.167 | 0.057 | 0.050 | 0.039 | 0.074 | 0.011 | 0.142 | 0.056 | 0.047 | 0.002 | 0.078 |
20 | 0.005 | 0.103 | 0.062 | 0.089 | 0.107 | 0.025 | 0.012 | 0.043 | 0.121 | 0.049 | 0.001 | 0.043 |
Table A17.
MAPE methane yield for different training algorithms at different number of hidden neurons.
Table A17.
MAPE methane yield for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 0.08 | 0.22 | 0.19 | 0.10 | 0.12 | 0.10 | 0.09 | 0.31 | 0.20 | 0.21 | 0.160 | 0.34 |
2 | 0.22 | 0.16 | 0.08 | 0.32 | 0.47 | 0.09 | 0.06 | 0.41 | 0.29 | 0.22 | 0.160 | 0.36 |
3 | 0.39 | 0.33 | 0.14 | 0.40 | 0.14 | 0.55 | 0.06 | 0.07 | 0.25 | 0.39 | 0.140 | 0.12 |
4 | 0.08 | 0.26 | 0.10 | 0.36 | 0.35 | 0.62 | 0.05 | 0.27 | 0.14 | 0.51 | 0.110 | 0.26 |
5 | 0.18 | 0.14 | 0.12 | 0.12 | 0.06 | 0.39 | 0.05 | 0.20 | 0.11 | 0.17 | 0.040 | 0.26 |
6 | 0.04 | 0.32 | 0.13 | 0.18 | 0.28 | 0.31 | 0.06 | 0.08 | 0.52 | 0.57 | 0.020 | 0.55 |
7 | 0.05 | 0.25 | 0.16 | 0.09 | 0.11 | 0.39 | 0.04 | 0.29 | 0.44 | 0.16 | 0.020 | 0.36 |
8 | 0.03 | 0.15 | 0.34 | 0.18 | 0.13 | 0.17 | 0.06 | 0.77 | 0.50 | 0.46 | 0.010 | 0.27 |
9 | 0.04 | 0.41 | 0.33 | 0.47 | 0.38 | 0.10 | 0.05 | 0.62 | 0.25 | 0.38 | 0.010 | 0.50 |
10 | 0.04 | 0.22 | 0.46 | 0.12 | 0.57 | 0.31 | 0.04 | 0.17 | 0.40 | 0.21 | 0.006 | 0.28 |
11 | 0.04 | 0.29 | 0.16 | 0.34 | 0.15 | 0.85 | 0.05 | 0.53 | 0.10 | 0.69 | 0.012 | 0.26 |
12 | 0.04 | 0.32 | 0.37 | 0.27 | 0.56 | 0.27 | 0.06 | 0.75 | 0.59 | 0.46 | 0.007 | 0.29 |
13 | 0.02 | 0.48 | 0.30 | 0.10 | 0.11 | 0.44 | 0.07 | 0.47 | 0.46 | 0.64 | 0.014 | 0.25 |
14 | 0.06 | 0.35 | 0.12 | 0.34 | 0.27 | 0.26 | 0.05 | 0.32 | 0.75 | 0.29 | 0.008 | 0.68 |
15 | 0.03 | 0.14 | 0.44 | 0.17 | 0.74 | 0.15 | 0.06 | 0.52 | 0.67 | 0.31 | 0.009 | 0.42 |
16 | 0.02 | 0.50 | 0.30 | 0.39 | 0.09 | 0.29 | 0.06 | 0.28 | 0.82 | 0.58 | 0.011 | 0.23 |
17 | 0.04 | 0.23 | 0.40 | 0.46 | 0.68 | 0.48 | 0.06 | 0.39 | 0.27 | 0.25 | 0.014 | 0.44 |
18 | 0.03 | 0.50 | 0.15 | 0.82 | 0.45 | 0.22 | 0.04 | 0.88 | 0.41 | 0.32 | 0.013 | 0.39 |
19 | 0.03 | 0.79 | 0.28 | 0.24 | 0.19 | 0.36 | 0.06 | 0.69 | 0.26 | 0.22 | 0.010 | 0.39 |
20 | 0.02 | 0.47 | 0.29 | 0.43 | 0.51 | 0.12 | 0.06 | 0.20 | 0.58 | 0.23 | 0.007 | 0.19 |
Table A18.
MSE for methane yield for different training algorithms at different number of hidden neurons.
Table A18.
MSE for methane yield for different training algorithms at different number of hidden neurons.
Hidden Neurons | Training Algorithm |
---|
LM | GDX | CGP | SCG | BFG | OSS | RP | CGB | CGF | GD | BR | GDm |
---|
1 | 0.0004 | 0.0023 | 0.0019 | 0.0008 | 0.0007 | 0.0008 | 0.0006 | 0.0043 | 0.0021 | 0.0023 | 0.0014 | 0.0066 |
2 | 0.0025 | 0.0015 | 0.0003 | 0.0045 | 0.0095 | 0.0005 | 0.0003 | 0.0072 | 0.0046 | 0.0023 | 0.0014 | 0.0061 |
3 | 0.0001 | 0.0050 | 0.0011 | 0.0069 | 0.0011 | 0.0135 | 0.0002 | 0.0003 | 0.0032 | 0.0073 | 0.0011 | 0.0010 |
4 | 0.0004 | 0.0030 | 0.0006 | 0.0055 | 0.0054 | 0.0166 | 0.0002 | 0.0034 | 0.0011 | 0.0126 | 0.0008 | 0.0036 |
5 | 0.0018 | 0.0011 | 0.0007 | 0.0011 | 0.0002 | 0.0066 | 0.0002 | 0.0018 | 0.0007 | 0.0020 | 0.0001 | 0.0032 |
6 | 0.0001 | 0.0057 | 0.0010 | 0.0015 | 0.0042 | 0.0053 | 0.0003 | 0.0005 | 0.0121 | 0.0190 | 2.32 × 10−05 | 0.0158 |
7 | 0.0002 | 0.0030 | 0.0019 | 0.0006 | 0.0007 | 0.0070 | 0.0001 | 0.0047 | 0.0095 | 0.0013 | 3.22 × 10−05 | 0.0072 |
8 | 0.0001 | 0.0012 | 0.0055 | 0.0015 | 0.0009 | 0.0015 | 0.0002 | 0.0261 | 0.0111 | 0.0108 | 2.16 × 10−05 | 0.0041 |
9 | 0.0001 | 0.0103 | 0.0050 | 0.0119 | 0.0065 | 0.0007 | 0.0002 | 0.0177 | 0.0036 | 0.0076 | 1.45 × 10−05 | 0.0125 |
10 | 0.0001 | 0.0027 | 0.0093 | 0.0013 | 0.0146 | 0.0064 | 0.0006 | 0.0015 | 0.0071 | 0.0028 | 2.27 × 10−05 | 0.0038 |
11 | 0.0001 | 0.0047 | 0.0017 | 0.0070 | 0.0013 | 0.0346 | 0.0002 | 0.0132 | 0.0005 | 0.0259 | 1.39 × 10−05 | 0.0037 |
12 | 0.0002 | 0.0070 | 0.0071 | 0.0039 | 0.0161 | 0.0041 | 0.0002 | 0.0246 | 0.0160 | 0.0109 | 2.06 × 10−05 | 0.0040 |
13 | 0.0001 | 0.0120 | 0.0043 | 0.0007 | 0.0008 | 0.0099 | 0.0003 | 0.0101 | 0.0104 | 0.0197 | 2.21 × 10−05 | 0.0043 |
14 | 0.0002 | 0.0084 | 0.0010 | 0.0059 | 0.0048 | 0.0038 | 0.0002 | 0.0071 | 0.0298 | 0.0057 | 2.11 × 10−05 | 0.0336 |
15 | 0.0001 | 0.0014 | 0.0089 | 0.0017 | 0.0311 | 0.0013 | 0.0002 | 0.0123 | 0.0219 | 0.0057 | 7.39 × 10−06 | 0.0096 |
16 | 0.0001 | 0.0169 | 0.0045 | 0.0115 | 0.0006 | 0.0044 | 0.0002 | 0.0041 | 0.0329 | 0.0197 | 3.30 × 10−05 | 0.0031 |
17 | 0.0001 | 0.0031 | 0.0114 | 0.0162 | 0.0220 | 0.0172 | 0.0002 | 0.0087 | 0.0041 | 0.0038 | 1.62 × 10−05 | 0.0104 |
18 | 0.0001 | 0.0164 | 0.0014 | 0.0404 | 0.0108 | 0.0039 | 0.0001 | 0.0407 | 0.0083 | 0.0060 | 1.36 × 10−05 | 0.0086 |
19 | 0.0001 | 0.0358 | 0.0045 | 0.0041 | 0.0027 | 0.0058 | 0.0002 | 0.0211 | 0.0052 | 0.0035 | 1.10 × 10−05 | 0.0080 |
20 | 0.0001 | 0.0155 | 0.0068 | 0.0104 | 0.0128 | 0.0012 | 0.0003 | 0.0023 | 0.0155 | 0.0040 | 8.63 × 10−06 | 0.0043 |
Table A19.
R, MAE, MAPE, MSE value for COD removal for different training algorithms at different number of hidden neurons (aerobic process).
Table A19.
R, MAE, MAPE, MSE value for COD removal for different training algorithms at different number of hidden neurons (aerobic process).
Hidden Neuron | Training Algorithm |
---|
LM | BR |
---|
R | MAE | MAPE | MSE | R | MAE | MAPE | MSE |
---|
1 | 0.923 | 4.401 | 0.061 | 31.3975 | 0.845 | 5.963 | 0.080 | 61.8890 |
2 | 0.938 | 3.420 | 0.048 | 26.3683 | 0.960 | 3.146 | 0.040 | 16.2590 |
3 | 0.982 | 1.920 | 0.021 | 7.3187 | 0.904 | 2.575 | 0.030 | 47.6270 |
4 | 0.887 | 3.365 | 0.038 | 58.1403 | 0.975 | 1.497 | 0.020 | 10.5095 |
5 | 0.955 | 2.851 | 0.036 | 27.3267 | 0.995 | 0.651 | 0.010 | 2.2123 |
6 | 0.935 | 2.827 | 0.032 | 44.2447 | 0.997 | 0.459 | 0.005 | 1.0288 |
7 | 0.909 | 3.131 | 0.036 | 60.1302 | 0.997 | 0.321 | 0.004 | 1.0767 |
8 | 0.963 | 1.525 | 0.016 | 19.0559 | 0.982 | 0.956 | 0.010 | 7.9566 |
9 | 0.966 | 1.954 | 0.022 | 16.4031 | 0.980 | 1.070 | 0.016 | 12.4715 |
10 | 0.943 | 2.503 | 0.028 | 27.9288 | 0.996 | 0.605 | 0.007 | 1.9727 |
11 | 0.967 | 2.754 | 0.034 | 15.7244 | 0.991 | 0.674 | 0.010 | 4.7788 |
12 | 0.916 | 4.015 | 0.044 | 46.5166 | 0.993 | 0.601 | 0.007 | 2.9810 |
13 | 0.875 | 4.688 | 0.059 | 91.5153 | 0.991 | 0.664 | 0.008 | 3.5952 |
14 | 0.939 | 2.823 | 0.034 | 27.3849 | 0.978 | 1.136 | 0.017 | 13.6653 |
15 | 0.922 | 4.054 | 0.053 | 30.8332 | 0.997 | 0.359 | 0.004 | 1.1977 |
16 | 0.954 | 2.748 | 0.035 | 19.0488 | 0.997 | 0.372 | 0.004 | 1.5340 |
17 | 0.913 | 3.774 | 0.042 | 47.5349 | 0.983 | 1.026 | 0.012 | 7.4674 |
18 | 0.866 | 3.264 | 0.036 | 74.7672 | 0.997 | 0.528 | 0.006 | 1.0595 |
19 | 0.898 | 4.005 | 0.046 | 54.9089 | 0.991 | 0.639 | 0.007 | 4.0884 |
20 | 0.929 | 2.818 | 0.03 | 33.8239 | 0.989 | 0.830 | 0.012 | 5.6022 |
Table A20.
R, MAE, MAPE, MSE value for BOD removal for different training algorithms at different number of hidden neurons (aerobic process).
Table A20.
R, MAE, MAPE, MSE value for BOD removal for different training algorithms at different number of hidden neurons (aerobic process).
Hidden Neuron | Training Algorithm |
---|
LM | BR |
---|
R | MAE | MAPE | MSE | R | MAE | MAPE | MSE |
---|
1 | 0.447 | 2.918 | 0.031 | 12.5023 | 0.502 | 2.727 | 0.030 | 11.8510 |
2 | 0.875 | 1.235 | 0.013 | 4.6747 | 0.674 | 2.565 | 0.030 | 9.3357 |
3 | 0.929 | 1.260 | 0.013 | 2.2124 | 0.948 | 0.829 | 0.010 | 1.6992 |
4 | 0.939 | 0.930 | 0.010 | 1.9114 | 0.920 | 1.230 | 0.010 | 2.3544 |
5 | 0.927 | 1.172 | 0.012 | 2.2400 | 0.956 | 0.833 | 0.010 | 1.3128 |
6 | 0.935 | 0.874 | 0.009 | 2.3717 | 0.981 | 0.459 | 0.005 | 0.6047 |
7 | 0.928 | 0.848 | 0.009 | 3.4287 | 0.984 | 0.406 | 0.004 | 0.5496 |
8 | 0.957 | 0.578 | 0.006 | 1.3668 | 0.993 | 0.324 | 0.003 | 0.2235 |
9 | 0.936 | 0.889 | 0.009 | 2.2842 | 0.995 | 0.247 | 0.003 | 0.1734 |
10 | 0.945 | 0.606 | 0.006 | 1.6660 | 0.968 | 0.730 | 0.008 | 1.2808 |
11 | 0.944 | 0.709 | 0.007 | 1.8058 | 0.990 | 0.329 | 0.004 | 0.3182 |
12 | 0.932 | 1.056 | 0.011 | 2.1750 | 0.991 | 0.387 | 0.004 | 0.3320 |
13 | 0.908 | 1.240 | 0.013 | 6.0826 | 0.986 | 0.378 | 0.004 | 0.5745 |
14 | 0.938 | 0.735 | 0.008 | 2.3268 | 0.990 | 0.321 | 0.003 | 0.3284 |
15 | 0.938 | 0.975 | 0.010 | 1.9248 | 0.985 | 0.261 | 0.003 | 0.4613 |
16 | 0.933 | 0.961 | 0.010 | 2.2338 | 0.976 | 0.362 | 0.004 | 0.8479 |
17 | 0.876 | 1.203 | 0.012 | 3.7892 | 0.981 | 0.418 | 0.005 | 0.6142 |
18 | 0.929 | 0.603 | 0.006 | 2.3706 | 0.964 | 0.814 | 0.009 | 1.1946 |
19 | 0.942 | 0.734 | 0.008 | 1.7587 | 0.984 | 0.463 | 0.005 | 0.5261 |
20 | 0.960 | 0.612 | 0.006 | 1.5370 | 0.986 | 0.338 | 0.004 | 0.5504 |
Table A21.
R, MAE, MAPE, MSE value for TSS removal for different training algorithms at different number of hidden neurons (aerobic process).
Table A21.
R, MAE, MAPE, MSE value for TSS removal for different training algorithms at different number of hidden neurons (aerobic process).
Hidden Neuron | Training Algorithm |
---|
LM | BR |
---|
R | MAE | MAPE | MSE | R | MAE | MAPE | MSE |
---|
1 | 0.638 | 4.535 | 0.050 | 27.0476 | 0.637 | 4.629 | 0.050 | 27.6880 |
2 | 0.682 | 4.265 | 0.047 | 24.6278 | 0.833 | 3.284 | 0.040 | 14.1102 |
3 | 0.918 | 1.930 | 0.021 | 7.2376 | 0.918 | 1.867 | 0.020 | 7.5477 |
4 | 0.925 | 1.707 | 0.018 | 7.5925 | 0.982 | 0.712 | 0.010 | 1.6731 |
5 | 0.935 | 1.667 | 0.018 | 6.9112 | 0.981 | 0.720 | 0.010 | 1.7804 |
6 | 0.983 | 0.583 | 0.007 | 1.8520 | 0.995 | 0.399 | 0.004 | 0.5560 |
7 | 0.923 | 1.189 | 0.013 | 6.7818 | 0.991 | 0.408 | 0.005 | 0.9309 |
8 | 0.959 | 0.880 | 0.009 | 3.9917 | 0.984 | 0.503 | 0.006 | 1.4665 |
9 | 0.992 | 0.382 | 0.004 | 0.7541 | 0.978 | 0.576 | 0.007 | 2.1969 |
10 | 0.937 | 1.210 | 0.013 | 6.2074 | 0.974 | 0.944 | 0.011 | 2.4801 |
11 | 0.890 | 1.720 | 0.019 | 9.4141 | 0.984 | 0.525 | 0.006 | 1.7226 |
12 | 0.891 | 1.739 | 0.019 | 10.1281 | 0.97 | 0.784 | 0.009 | 3.1270 |
13 | 0.945 | 1.057 | 0.012 | 5.7302 | 0.977 | 0.594 | 0.007 | 2.6534 |
14 | 0.943 | 1.276 | 0.014 | 6.0531 | 0.985 | 0.524 | 0.006 | 1.7528 |
15 | 0.951 | 1.637 | 0.018 | 5.3287 | 0.981 | 0.459 | 0.005 | 2.0162 |
16 | 0.957 | 1.584 | 0.018 | 4.8823 | 0.965 | 0.687 | 0.008 | 3.4741 |
17 | 0.930 | 1.633 | 0.018 | 7.2215 | 0.99 | 0.482 | 0.005 | 1.0659 |
18 | 0.891 | 1.419 | 0.015 | 10.3910 | 0.975 | 0.915 | 0.010 | 2.3832 |
19 | 0.893 | 1.400 | 0.015 | 9.8483 | 0.984 | 0.569 | 0.006 | 1.6107 |
20 | 0.903 | 1.654 | 0.018 | 9.9505 | 0.983 | 0.496 | 0.006 | 1.5933 |
Appendix A.2. MATLAB CODE
clear all
load(’finalone.mat’)
x = Input’;
t = Output’;
for k=1:20 ;% for 1 hidden neurons to 20 hidden neurons
load(’finalone.mat’)
x = Input’;
t = Output’;
trainFcn = ’trainlm’;% Levenberg-Marquardt backpropagation.
% Create a Fitting Network
for i=1:1000
hiddenLayerSize = (k);
net = fitnet(hiddenLayerSize,trainFcn);
% Choose Input and Output Pre/Post-Processing Functions
net.input.processFcns = {’removeconstantrows’,’mapminmax’};
net.output.processFcns = {’removeconstantrows’,’mapminmax’};
% Setup Division of Data for Training, Validation, Testing
net.divideFcn = ’dividerand’; % Divide data randomly
net.divideMode = ’sample’; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
% Choose a Performance Function
net.performFcn = ’mse’; % Mean Squared Error
% Choose Plot Functions
net.plotFcns = {’plotperform’,’plottrainstate’,’ploterrhist’, ...
’plotregression’, ’plotfit’};
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y);
valPerformance = perform(net,valTargets,y);
testPerformance = perform(net,testTargets,y);
%extraction of weight and biases
w1(i)=net.IW(1,1);
w2(i)=net.LW(2,1);
b1(i)=net.b(1);
b2(i)=net.b(2);
Rval(:,i)=regression(t,y);
Predval(i)={y};
MSEtrain(i)=trainPerformance;
MSEval(i)=valPerformance;
MSEtest(i)=testPerformance;
MAE(i)={1/96*sum(abs(Output-y’))};
MAPE(i)={(1/96*(sum(rdivide(abs(Output-y’),Output))))};
MSE(i)={(sum((Output-y’).^2))/24};
end
%R value
R=regression(t,y);
%extract predicted value
m=cell2mat(Predval);
p=cell2mat(MAE);
c=cell2mat(MAPE);
d=cell2mat(MSE);
%To export to excel
filename=[’gdm’,’.xlsx’];
Sheet=sprintf(’neuron%d’,k);
col_header={’R value’,’’,’’,’Sum of R2value’,’Average if R2
value’,’Best R2 value’,’’,’MAEvalue’,’’,’’,’’,’SUM of MAE’,’’,’MAPE value’,’’,’’,’’,’Sum of MAPE’,’’,’MSE
value’,’’,’’,’’,’Sum of MSE’,’’,’Predvalue’,’’,’’,’Position’,’’,’Expval’};
sumofr2={’=SUM(A2:C2)’,’’,’=MAX(D:D)’};
match1={’=MATCH(F2,D:D,0)’};
maeoffset={’=OFFSET($H$2,COLUMNS($H2:H2)-1+(ROWS($2:2)-
1)*3,0)’,’’,’’,’=SUM(I2:K2)’,’=MIN(L2:L1001)’};
match2={’=MATCH(M2,L:L,0)’};
mapeoffset1={’=OFFSET($N$2,COLUMNS($N2:N2)-1+(ROWS($2:2)-
1)*3,0)’,’’,’’,’=SUM(O2:Q2)’,’=MIN(R2:R1001)’};
match3={’=MATCH(S2,R:R,0)’};
mseoffset1={’=OFFSET($T$2,COLUMNS($T2:T2)-1+(ROWS($2:2)-
1)*3,0)’,’’,’’,’=SUM(U2:W2)’,’=MIN(X2:X1001)’};
match4={’=MATCH(Y2,X:X,0)’};
position1={’=INT((ROW(E1)-1)/24)+1’};
xlswrite(filename,col_header,Sheet,’A1’);
xlswrite(filename,sumofr2,Sheet,’D2’);
xlswrite(filename,match1,Sheet,’F3’);
xlswrite(filename,maeoffset,Sheet,’I2’);
xlswrite(filename,match2,Sheet,’M3’);
xlswrite(filename,mapeoffset1,Sheet,’O2’);
xlswrite(filename,match3,Sheet,’S3’);
xlswrite(filename,mseoffset1,Sheet,’U2’);
xlswrite(filename,match4,Sheet,’Y3’);
xlswrite(filename,position1,Sheet,’AC2’);
xlswrite(filename,Rval’,Sheet,’A2’)
xlswrite(filename,p’,Sheet,’H2’)
xlswrite(filename,c’,Sheet,’N2’)
xlswrite(filename,d’,Sheet,’T2’)
xlswrite(filename,m’,Sheet,’Z2’)
xlswrite(filename,t’,Sheet,’AE2’)
save([’workspacefor’ num2str(k)])
clear all
end