Large Scale Laboratory Experiment: The Impact of the Hydraulic Characteristics of Flood Waves Caused by Gradual Levee Failure on Inundation Areas
Abstract
:1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Experimental Conditions
3. Results
3.1. Speed of the Wave Front
3.2. Morphological Characteristics of the Flood Wave
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petroski, H. Levees and other raised ground. Am. Sci. 2006, 94, 7–11. [Google Scholar] [CrossRef]
- Lee, S.; Yoon, K.; Lee, J.; Hong, S.H. Estimates of discharge coefficient in levee breach under two different approach flow types. Sustainability 2019, 11, 2374. [Google Scholar] [CrossRef] [Green Version]
- Alderman, K.; Turner, L.; Tong, S. Floods and human health: A systematic review. Environ. Int. 2012, 47, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, J. Mid-Michigan flooding and dam failure confirm the value of the Mackinac center. IMPACT Mag. 2020, 19. [Google Scholar]
- Yoon, K.S. Study on behavior of flood wave front varied with levee breach speed in flat inundation Area. J. Korea Acad.-Ind. Coop. Soc. 2017, 18, 537–544. [Google Scholar]
- Haltas, I.; Elci, S.; Tayfur, G. Numerical simulation of flood wave propagation in two-dimensions in densely populated urban areas due to dam break. Water Resour. Manag. 2016, 30, 5699–5721. [Google Scholar] [CrossRef] [Green Version]
- Pilotti, M.; Maranzoni, A.; Tomirotti, M.; Valerio, G. 1923 Gleno dam break: Case study and numerical modeling. J. Hydraul. Eng. 2011, 137, 480–492. [Google Scholar] [CrossRef] [Green Version]
- Shige-eda, M.; Akiyama, J. Numerical and experimental study of two-dimensional flood flows with and without structures. J. Hydraul. Eng. 2003, 129, 817–821. [Google Scholar] [CrossRef]
- Soares-frazao, S.; Zech, Y. Dam-break flow through an idealized city. J. Hydraul. Res. 2008, 46, 648–658. [Google Scholar] [CrossRef] [Green Version]
- Castro-Orgaz, O.; Chanson, H. Ritter’s dry-bed dam-break flows: Positive and negative wave dynamics. Environ. Fluid Mech. 2017, 17, 665–694. [Google Scholar] [CrossRef]
- Larocque, L.; Imran, J.; Chaudhry, M.H. 3D numerical simulation of partial breach dam-break flow using the LES and k-e turbulence models. J. Hydraul. Res. 2013, 51, 145–157. [Google Scholar] [CrossRef]
- Zhang, T.; Fang, F.; Feng, P. Simulation of dam/levee-break hydrodynamics with a three-dimensional implicit unstructured-mesh finite element model. Environ. Fluid Mech. 2017, 17, 959–979. [Google Scholar] [CrossRef]
- Yanmaz, A.M.; Seçkiner, G.; Ozaydın, V. A method for optimum layout design of concrete gravity Dams. Int. J. Korea Water Resour. Assoc. 2001, 2, 199–207. [Google Scholar]
- Macchione, F. Model for predicting floods due to earthen dam breaching. I. Formulation and evaluation. J. Hydraul. Eng. 2008, 134, 1688–1696. [Google Scholar] [CrossRef]
- Froehlich, D.C. Embankment dam breach parameters and their uncertainties. J. Hydraul. Eng. 2008, 134, 1708–1721. [Google Scholar] [CrossRef]
- Brufau, P.; Vazquez-Cendon, M.E.; Garcia-Navarro, P. A numerical model for flooding and drying of irregular domains. Int. J. Numer. Methods Fluids 2002, 39, 247–275. [Google Scholar] [CrossRef]
- Qi, H.; Altinakar, M. GIS-based decision support system for Dam break flood management under uncertainty with two-dimensional numerical simulations. J. Water Resour. Plan. Manag. 2012, 138, 334–341. [Google Scholar] [CrossRef]
- Mahdizadeh, H.; Stansby, P.K.; Rogers, B.D. Flood wave modeling based on a two-dimensional modified wave propagation algorithm coupled to a full-pipe network solver. J. Hydraul. Eng. 2012, 138, 247–259. [Google Scholar] [CrossRef]
- Soares-frazao, S.; Zech, Y. Experimental study of dam-break flow against an isolated obstacle. J. Hydraul. Res. 2007, 45, 27–36. [Google Scholar] [CrossRef]
- Soares-Frazão, S.; Canelas, R.; Cao, Z.; Cea, L.; Chaudhry, H.M.; Die Moran, A.; Zech, Y. Dam-break flows over mobile beds: Experiments and benchmark tests for numerical models. J. Hydraul. Res. 2012, 50, 364–375. [Google Scholar] [CrossRef]
- Roger, S.; Dewals, B.J.; Erpicum, S.; Schwanenberg, D.; Schüttrumpf, H.; Köngeter, J.; Pirotton, M. Experimental and numerical investigations of dike-break induced flows. J. Hydraul. Res. 2009, 47, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Aureli, F.; Dazzi, S.; Maranzoni, A.; Mignosa, P.; Vacondio, R. Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure. Adv. Water Resour. 2015, 76, 29–42. [Google Scholar] [CrossRef]
- Lauber, G.; Hager, W.H. Experiments to dambreak wave: Horizontal channel. J. Hydraul. Res. 1998, 36, 291–307. [Google Scholar] [CrossRef]
- Ritter, A. Die Fortpflanzung von Wasserwellen. Z. Ver. Dtsch. Ing. 1982, 36, 947–954. [Google Scholar]
- Lai, C.; Liu, C.; Lin, Y. Experiments on flood-wave propagation in compound channel. J. Hydraul. Eng. 2000, 126, 492–501. [Google Scholar] [CrossRef]
- Kocaman, S.; Ozmen-Cagatay, H. The effect of lateral channel contraction on dam break flows: Laboratory experiment. J. Hydrol. 2012, 432, 145–153. [Google Scholar] [CrossRef]
- Issakhov, A.; Zhandaulet, Y. Numerical simulation of dam break waves on movable beds for various forms of the obstacle by VOF method. Water Resour. Manag. 2020, 34, 2269–2289. [Google Scholar] [CrossRef]
- Khoshkonesh, A.; Nsom, B.; Gohari, S.; Banejad, H. A comprehensive study on dambreak flow over dry and wet beds. Ocean Eng. 2019, 188, 106279. [Google Scholar] [CrossRef]
- Kocaman, S.; Güzel, H.; Evangelista, S.; Ozmen-Cagatay, H.; Viccione, G. Experimental and numerical analysis of a dam-break flow through different contraction geometries of the channel. Water 2020, 12, 1124. [Google Scholar] [CrossRef] [Green Version]
- Fent, I.; Zech, Y.; Soares-Frazao, S. Dam-break flow experiments over mobile bed: Velocity profile. J. Hydraul. Res. 2019, 57, 131–138. [Google Scholar] [CrossRef]
- Akanbi, A.; Katopodes, N. Model for flood propagation on initially dry land. J. Hydraul. Eng. 1988, 114, 689–706. [Google Scholar] [CrossRef]
- Han, K.; Lee, J.; Park, J. Flood inundation analysis resulting from Levee-break. J. Hydraul. Res. 1998, 36, 747–759. [Google Scholar] [CrossRef]
- Cunge, J.A.; Holly, F.M., Jr.; Verwey, A. Practical Aspects of Computational River Hydraulics. Pitman Pub: Boston, MA, USA; London, UK, 1980. [Google Scholar]
- Cea, L.; Costabile, P. Flood Risk in Urban Areas: Modelling, Management and Adaptation to Climate Change. A Review. Hydrology 2022, 9, 50. [Google Scholar] [CrossRef]
- Lee, J.; Han, K. A forecasting model for the flooded area resulting from breached levee. J. Korean Assoc. Hydrol. Sci. 1989, 22, 223–231. (In Korean) [Google Scholar]
- Singh, K.P.; Snorrason, A. Sensitivity of Outflow Peaks and Flood Stages to the Selection of Dam Breach Parameters and Simulation Models; Final Report; Illinois Department of Energy and Natural Resources: Champaign, IL, USA, 1982.
- MacDonald, T.C.; Langridge-Monopolis, J. Breaching characteristics of dam failures. J. Hydraul. Div. 1984, 110, 567–586. [Google Scholar] [CrossRef]
- Bahmanpouri, F.; Daliri, M.; Khoshkonesh, A.; Namin, M.M.; Buccino, M. Bed compaction effect on dam break flow over erodible bed; experimental and numerical modeling. J. Hydrol. 2021, 594, 125645. [Google Scholar] [CrossRef]
- Bos, M.G. Discharge Measurement Structures; Publication20; International Institute of Land Reclamation and Improvement: Wageningen, The Netherlands, 1989. [Google Scholar]
- ASCE. Hydraulic Modeling: Concepts and Practice; ASCE Manual No. 97; ASCE: Reston, VA, USA, 2000. [Google Scholar]
- Sturm, T.W. Open Channel Hydraulics; McGraw Hill: New York, NY, USA, 2001. [Google Scholar]
- Garoosi, F.; Merabtebe, T.; Mahdi, T. Numerical simulation of merging to two rising bubbles with different densities and diameters using an enhanced Volume-Of-Fluid(VOF) model. Ocean. Eng. 2022, 247, 110711. [Google Scholar] [CrossRef]
Width of the Bottom Opening, B (m) | Shape of the Failure * | Initial Head over the Opening, (m) | Width of the Channel, (m) | Speed of the Failure, (m/s) |
---|---|---|---|---|
0.5, 1.0, 1.5, 2.0, 2.5, 3.0 | Trapezoidal 1V:0.3H | 0.30, 0.35, 0.40, 0.45, 0.50, 0.55 | 5 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, K.S.; Rehman, K.; Yoo, H.J.; Lee, S.O.; Hong, S.H. Large Scale Laboratory Experiment: The Impact of the Hydraulic Characteristics of Flood Waves Caused by Gradual Levee Failure on Inundation Areas. Water 2022, 14, 1446. https://doi.org/10.3390/w14091446
Yoon KS, Rehman K, Yoo HJ, Lee SO, Hong SH. Large Scale Laboratory Experiment: The Impact of the Hydraulic Characteristics of Flood Waves Caused by Gradual Levee Failure on Inundation Areas. Water. 2022; 14(9):1446. https://doi.org/10.3390/w14091446
Chicago/Turabian StyleYoon, Kwang Seok, Khawar Rehman, Hyung Ju Yoo, Seung Oh Lee, and Seung Ho Hong. 2022. "Large Scale Laboratory Experiment: The Impact of the Hydraulic Characteristics of Flood Waves Caused by Gradual Levee Failure on Inundation Areas" Water 14, no. 9: 1446. https://doi.org/10.3390/w14091446
APA StyleYoon, K. S., Rehman, K., Yoo, H. J., Lee, S. O., & Hong, S. H. (2022). Large Scale Laboratory Experiment: The Impact of the Hydraulic Characteristics of Flood Waves Caused by Gradual Levee Failure on Inundation Areas. Water, 14(9), 1446. https://doi.org/10.3390/w14091446