Performance Assessment of Different Precipitation Databases (Gridded Analyses and Reanalyses) for the New Brazilian Agricultural Frontier: SEALBA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Region of Study
2.2. Gridded Analysis Data
2.2.1. MERGE
2.2.2. CHIRPS
2.3. Reanalysis Data
ERA5 and ERA5Land
2.4. Methodology for Intercomparison
3. Results and Discussions
3.1. Precipitation Regimes
3.2. Comparison between Points and Stations in the Monthly Time Scale
3.3. Intercomparison between Databases in SEALBA
3.4. Susceptibility to Droughts
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IBGE—Agência IBGE News. IBGE Predicts Record Grain Harvest in 2020. Available online: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/26537-ibge-preve-safra-recorde-de-graos-in-2020 (accessed on 20 April 2020).
- Schuh, G.E.; Alves, E.R.A. O Desenvolvimento da Agricultura no Brasil; APEC: Rio de Janeiro, RJ, Brazil, 1971; p. 369. [Google Scholar]
- Alves, E.R.A.; Souza, G.S.; Gomes, E.G. Contribuição da Embrapa para o Desenvolvimento da Agricultura no Brasil; Embrapa: Brasília, DF, Brazil, 2013; p. 291. [Google Scholar]
- Alves, E.R.A.; Souza, G.S.; Marra, R. Papel da Embrapa no desenvolvimento do agronegócio. In A Contribuição da Ciência e da Tecnologia para o Desenvolvimento do Agronegócio; Teixeira, E.C., Protil, R.M., Lima, A.L.R., Eds.; UFV: Viçosa, MG, Brazil, 2013; pp. 125–171. [Google Scholar]
- Buainain, A.M.; Alves, E.R.A.; Silveira, J.M.; Navarro, Z. (Eds.) O Mundo Rural no Brasil do Século 21: A Formação de Um Novo Padrão Agrário e Agrícola; Embrapa: Brasília, DF, Brazil, 2014; p. 1182. [Google Scholar]
- Alves, E.R.A.; Santana, C.A.M.; Contini, E. Extensão Rural: Seu Problema Não É a Comunicação. In Agricultura, Transformação Produtiva e Sustentabilidade; Vieira Filho, J.E.R., Gasques, J.G., Carvalho, A.X.Y., Eds.; Ipea: Brasília, DF, Brazil, 2016; pp. 65–86. [Google Scholar]
- CEPEA—AGRIBUSINESS GDP. Cepea/USP, CNA and Fealq. Available online: https://www.cepea.esalq.usp.br/upload/kceditor/files/Cepea_PIB_CNA_2019.pdf (accessed on 1 April 2020).
- Araújo, M.L.S.; Sano, E.E.; Bolfe, E.L.; Santos, J.R.N.; Santos, J.S.; Silva, F.B. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy 2019, 80, 57–67. [Google Scholar] [CrossRef]
- Borghi, E.; Avanzi, J.C.; Bortolon, L.; Luchiari Junior, A.; Bortolon, E.S.O. Adoption and use of precision agriculture in Brazil: Perception of growers and service dealership. J. Agric. Sci. 2016, 8, 89. [Google Scholar] [CrossRef]
- Salvador, M.A.; Brito, J.I.B. Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil. Theor. Appl. Climatol. 2018, 133, 253–261. [Google Scholar] [CrossRef]
- Silva, F.D.S.; Rocha Junior, R.L.; Costa, R.L.; Silva, D.F.; Pereira, M.P.S. SEALBA, Características Climáticas da Nova Fronteira Agrícola Brasileira. In Meteorologia em Tópicos, 1st ed.; Nunes, A.B., Mariano, G.L., Eds.; DR LTDA: Pelotas, RS, Brazil, 2020; Volume 7, pp. 200–246. [Google Scholar]
- Reis, L.; Silva, C.M.S.; Bezerra, B.G.; Mutti, P.R.; Spyrides, M.H.C.; Silva, P.; Magalhães, T.; Ferreira, R.; Rodrigues, D.; Andrade, L. Influence of Climate Variability on Soybean Yield in MATOPIBA, Brazil. Atmosphere 2020, 11, 1130. [Google Scholar] [CrossRef]
- Shen, Z.; Fu, G.; Yu, C.; Sun, W.; Zhang, X. Relationship between the Growing Season Maximum Enhanced Vegetation Index and Climatic Factors on the Tibetan Plateau. Remote Sens. 2014, 6, 6765–6789. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-H.; Sun, W.; Li, S.-H.; Shen, Z.-X.; Fu, G. Interannual Variation of the Growing Season Maximum Normalized Difference Vegetation Index, MNDVI, and Its Relationship with Climatic Factors on the Tibetan Plateau. Pol. J. Ecol. 2015, 6i3, 424–439. [Google Scholar] [CrossRef]
- Fu, G.; Shen, Z.-X.; Zhang, X.-Z. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau. Agric. For. Meteorol. 2018, 249, 11–21. [Google Scholar] [CrossRef]
- Yu, C.-Q.; Wang, J.-W.; Shen, Z.-X.; Fu, G. Effects of experimental warming and increased precipitation on soil respiration in an alpine meadow in the Northern Tibetan Plateau. Sci. Total Environ. 2019, 647, 1490–1497. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Yu, C.; Fu, G. The Change in Environmental Variables Linked to Climate Change Has a Stronger Effect on Aboveground Net Primary Productivity than Does Phenological Change in Alpine Grasslands. Front. Plant Sci. 2022, 12, 798633. [Google Scholar] [CrossRef]
- Hirakuri, M.H.; Balbinot Júnior, A.A.; Procópio, S.O.; Castro, C. Perspectiva Geral para a Introdução da Soja Nos Sistemas de Produção Agrícola da Região do SEALBA; Nota Técnica; Embrapa Soja: Londrina, PR, Brazil, 2016; 39p. [Google Scholar]
- Procópio, S.O.; Cruz, M.A.S.; Almeida, M.R.; Nogueira Junior, L.R.; Jesus Júnior, L.A.; Santos, N.S. SEALBA: Região de Alto Potencial Agrícola do Nordeste; Nota Técnica; Embrapa Tabuleiros Costeiros: Aracaju, SE, Brazil, 2019; p. 62.
- Rozante, J.R.; Moreira, D.S.; de Goncalves, L.G.G.; Vila, D.A. Combining TRMM and Surface Observations of Precipitation: Technique and Validation over South America. Weather Forecast. 2010, 25, 885–894. [Google Scholar] [CrossRef] [Green Version]
- Rozante, J.R.; Vila, D.A.; Chiquetto, J.B.; Fernandes, A.A.; Alvim, D.S. Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sens. 2018, 10, 882. [Google Scholar] [CrossRef] [Green Version]
- Rozante, J.R.; Gutierrez, E.R.; Fernandes, A.A.; Vila, D.A. Performance of precipitation products obtained from combinations of satellite and surface observations. Int. J. Remote Sens. 2020, 41, 7585–7604. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations: A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paredes-Trejo, F.J.; Barbosa, H.A.; Lakshmi Kumar, T.V. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
- Cavalcante, R.B.L.; Ferreira, D.B.S.; Pontes, P.R.M.; Tedeschi, R.G.; Costa, C.P.W.; Souza, E.B. Evaluation of extreme precipitation indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmos. Res. 2020, 238, 104879. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsl. 2016, 147, 7. [Google Scholar]
- Hersbach, H.; de Rosnay, P.; Bell, B.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Balmaseda, M.A.; Balsamo, G.; Bechtold, P.; et al. Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Rep. Ser. 2018, 27, 63. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Carvalho, L.M.V. Assessing precipitation trends in the Americas with historical data: A review. WIREs Climate Change 2020, 11, e627. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.L.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, S.N.; Bonatti, J.P.; Kubota, P.Y.; Grell, G.A.; Morrison, H.; Barros, S.R.M.; Fernandez, J.P.R.; Ramirez, E.; Siqueira, L.; Luzia, G.; et al. The Brazilian Global Atmospheric Model (BAM): Performance for Tropical Precipitation Forecasting and Sen-sitivity to Convective Scheme and Horizontal Resolution. Weather Forecast. 2016, 31, 1547–1572. [Google Scholar] [CrossRef]
- Procópio, S.O.; Cruz, M.A.S.; Almeida, M.R.; Nogueira Junior, L.R.; Jesus Júnior, L.A.; Santos, N.S. SEALBA: Região de Alto Potencial Agrícola do Nordeste; Nota Técnica; Embrapa Tabuleiros Costeiros: Aracaju, SE, Brazil, 2016; p. 37. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T. Transition of 3B42/3B43 Research Product from Monthly to Climatological Calibration/Adjustment. 2015; 11p. Available online: https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_TMPA_restart.pdf (accessed on 30 November 2021).
- Michot, V.; Vila, D.; Arvor, D.; Corpetti, T.; Ronchail, J.; Funatsu, B.M.; Dubreuil, V. Performance of TRMM TMPA 3B42 V7 in Replicating Daily Precipitation and Regional Precipitation Regimes in the Amazon Basin (1998–2013). Remote Sens. 2018, 10, 1879. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Saurral, R.I.; Camilloni, I.A.; Barros, V.R. Low-frequency variability and trends in centennial precipitation stations in southern South America. Int. J. Climatol. 2016, 37, 1774–1793. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrea, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The Era-Interim reanalysis: Configuration and performance of the data assimilation system. Int. J. Climatol. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Munoz-Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef] [Green Version]
- Uppala, S.M.; Kallberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The era-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar] [CrossRef]
- Júnior, R.L.D.R.; Silva, F.D.D.S.; Costa, R.L.; Gomes, H.B.; Herdies, D.L.; Silva, V.D.P.R.D.; Xavier, A.C. Analysis of the Space–Temporal Trends of Wet Conditions in the Different Rainy Seasons of Brazilian Northeast by Quantile Regression and Bootstrap Test. GeoSciences 2019, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Liu, F.; Wang, C.; Mei, S. Unit commitment considering flexibility and uncertainty of wind power generation. Power Syst. Technol. 2015, 39, 730–736. [Google Scholar]
- Demirtas, M.; Nance, L.; Barnardet, L.; Lin, Y.; Chuang, H.-Y.; Loughe, A.; Mahoney, J.; Gall, R.; Koch, S. The Developmental Testbed Center Verification System; WRF/MM5 Users’ Workshop; NCAR: Boulder, CO, USA, 2005. [Google Scholar]
- Rodrigues, D.T.; Silva, C.M.S.; Reis, J.S.; Palharini, R.S.A.; Cabral Júnior, J.B.; Silva, H.J.F.; Mutti, P.R.; Bezerra, B.G.; Gonçalves, W.A. Evaluation of the Integrated Multi-SatellitE Retrievals for the Global Precipitation Measurement (IMERG) Product in the São Francisco Basin (Brazil). Water 2021, 13, 2714. [Google Scholar] [CrossRef]
- Fu, G.; Shen, Z.; Zhang, X.; Shi, P.; Zhang, Y.; Wu, J. Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecol. Sin. 2011, 31, 8–13. [Google Scholar] [CrossRef]
- Fu, G.; Sun, W.; Li, S.; Zhang, J.; Yu, C.; Shen, Z. Modeling Aboveground Biomass Using MODIS Images and Climatic Data in Grasslands on the Tibetan Plateau. J. Resour. Ecol. 2017, 8, 42–49. [Google Scholar]
- Wu, J.S.; Fu, G. Modelling aboveground biomass using MODIS FPAR/LAI data in alpine grasslands of the Northern Tibetan Plateau. Remote Sens. Lett. 2018, 9, 150–159. [Google Scholar] [CrossRef]
- Costa, R.L.; Gomes, H.B.; Pinto, D.D.C.; Júnior, R.L.D.R.; Silva, F.D.D.S.; Gomes, H.B.; Silva, M.C.L.D.; Herdies, D.L. Gap Filling and Quality Control Applied to Meteorological Variables Measured in the Northeast Region of Brazil. Atmosphere 2021, 12, 1278. [Google Scholar] [CrossRef]
- Al-Achi, A. The Student’ s t-Test: A Brief Description. Res. Rev. J. Hosp. Clin. Pharm. 2019, 5, 1–3. [Google Scholar]
- Souza, D.C.; Oyama, M.D. Breeze Potential along the Brazilian Northern and Northeastern Coast. J. Aerospace Technol. Manag. 2017, 9, 368–378. [Google Scholar] [CrossRef]
- Köppen, W. Climatologia: Con Un Estudio de los Climas de la Tierra; Fondo de Cultura Econômica: Ciudad de Mexico, México, 1948; p. 479. [Google Scholar]
- Sentelhas, P.C.; Battisti, R.; Monteiro, L.A.; Duarte, Y.C.N.; Visses, F.A. Yield gap—Conceitos, definições e exemplos. Inform. Agron. 2016, 155, 9–12. [Google Scholar]
- Gomes, H.B.; Ambrizzi, T.; Herdies, D.L.; Hodges, K.; Da Silva, B.F.P. Easterly Wave Disturbances over Northeast Brazil: An Observational Analysis. Adv. Meteorol. 2015, 2015, 176238. [Google Scholar] [CrossRef] [Green Version]
- Gomes, H.B.; Ambrizzi, T.; Da Silva, B.F.P.; Hodges, K.; Dias, P.L.S.; Herdies, D.; Silva, M.C.L.; Gomes, H.B. Climatology of easterly wave disturbances over the tropical South Atlantic. Clim. Dyn. 2019, 53, 1393–1411. [Google Scholar] [CrossRef] [Green Version]
- Nóbrega, R.S.; Souza, E.P.; Cavalcanti, E.P. Energia Estática na Atmosfera sobre o Nordeste do Brasil: Fluxo e Variação Sazonal de Energia. Rev. Bras. Eng. Agríc. Ambient. 2006, 10, 132–139. [Google Scholar] [CrossRef]
- Alcântara, C.R.; Souza, E.P. Teoria para o trabalho de expansão aplicada às brisas do nordeste Brasileiro. Rev. Bras. Meteorol. 2009, 24, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.F.P.; Fedorova, N.; Levit, V.; Peresetsky, A.; Brito, B.M. Sistemas sinóticos associados às precipitações intensas no Estado de Alagoas. Rev. Bras. Meteorol. 2011, 26, 323–338. [Google Scholar] [CrossRef]
- Anjos, M.; Lopes, A. Sea breeze front identification on the northeastern coast of Brazil and its implications for meteorological conditions in the Sergipe region. Theor. Appl. Climatol. 2019, 137, 2151–2165. [Google Scholar] [CrossRef] [Green Version]
- Uvo, C.R.B.; Nobre, C.A. Zona de convergência intertropical (ZCIT) e a precipitação no Norte do Nordeste do Brasil. Bol. Monit. Anál. Clim. 1989, 4, 34–40. [Google Scholar]
- Molion, L.C.B.; Bernardo, S.O. Uma revisão da dinâmica das chuvas no nordeste brasileiro. Rev. Bras. Meteorol. 2002, 17, 1–10. [Google Scholar]
- Reboita, M.S.; Gan, M.A.; Rocha, R.P.; Ambrizzi, T. Regimes de precipitação na América do Sul: Uma revisão bibliográfica. Rev. Bras. Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Carvalho, M.A.V.; Oyama, M.D. Variabilidade da largura e intensidade da Zona de Convergência Intertropical Atlântica: Aspectos observacionais. Rev. Bras. Meteorol. 2013, 28, 305–316. [Google Scholar] [CrossRef]
- Costa, R.L.; Souza, E.P.; Silva, F.D.S. An application of a thermodynamic theory on studying an Upper-Tropospheric Clyclonic Vortex over northeast Brazil. Rev. Bras. Meteorol. 2014, 29, 96–104. [Google Scholar]
- Nóbrega, R.S.; Santiago, G.A.C.F. Tendência de temperatura na superfície do mar nos oceanos atlântico e pacífico e variabilidade de precipitação em Pernambuco. Mercator 2014, 13, 107–118. [Google Scholar] [CrossRef]
- Assis, J.M.O.; Souza, W.M.; Sobral, M.C.M. Climate analysis of the precipitation in the lower-middle stretch of the São Francisco river basin based on the rain anomaly index. Rev. Bras. Ciênc. Ambient. 2015, 2, 188–202. [Google Scholar]
- Lyra, M.J.A.; Fedorova, N.; Levit, V.; Freitas, I.G.F. Características dos Complexos Convectivos de Mesoescala no Nordeste Brasileiro. Rev. Bras. Meteorol. 2020, 35, 727–734. [Google Scholar] [CrossRef]
- Cavalcante, L.C.V.; Fedorova, N.; Levit, V. Influência dos Distúrbios Tropicais na Formação de Fenômenos Adversos de Atmosfera Estável no Nordeste Brasileiro. Rev. Bras. Climatol. 2020, 35, 735–743. [Google Scholar] [CrossRef]
- Veber, M.E.; Fedorova, N.; Levit, V. Desenvolvimento de Atividades Convectivas Sobre a Região Nordeste do Brasil, Organizada Pela Extremidade Frontal. Rev. Bras. Climatol. 2020, 35, 995–1003. [Google Scholar] [CrossRef]
- Repinaldo, H.F.B.; Fedorova, N.; Levit, V.; Repinaldo, C.R.R. Upper Tropospheric Cyclonic Vortex and Brazilian Northeast Jet Stream over Alagoas State: Circulation Patterns and Precipitation. Rev. Bras. Climatol. 2020, 35, 745–754. [Google Scholar] [CrossRef]
- Júnior, R.L.D.R.; Pinto, D.D.C.; Silva, F.D.D.S.; Gomes, H.B.; Gomes, H.B.; Costa, R.L.; Pereira, M.P.S.; Peña, M.; Coelho, C.A.S.; Herdies, D.L. An Empirical Seasonal Precipitation Forecasting Model for the Northeast Region of Brazil. Water 2021, 13, 1613. [Google Scholar] [CrossRef]
- Pelosi, A.; Terribile, F.; D’ Urso, G.; Chirico, G.B. Comparison of ERA5-Land and UERRA MESCAN-SURFEX Reanalysis Data with Spatially Interpolated Weather Observations for the Regional Assessment of Reference Evapotranspiration. Water 2020, 12, 1669. [Google Scholar] [CrossRef]
- Santos, S.R.Q.; Cunha, A.P.M.A.; Ribeiro-Neto, G.G. Avaliação de dados de precipitação para o monitoramento do padrão espaço-temporal da seca no Nordeste do Brasil. Rev. Bras. Climatol. 2019, 25, 80–100. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Giusti, M. ERA5-Land: Data Documentation, CDS Dataset Documentation, European Centre for Medium-Range Weather Forecasts (ECMWF). Available online: https://confluence.ecmwf.int/display/CKB/ERA5-Land%3A+data+documentation (accessed on 20 February 2022).
- Hennermann, K.; Guillory, A. ERA5: Uncertainty Estimation, CDS Dataset Documentation, European Centre for 790 Medium-Range Weather Forecasts (ECMWF). Available online: https://confluence.ecmwf.int/display/CKB/ERA5%3A+uncertainty+estimation (accessed on 20 April 2022).
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil-past, present, and future. Theor. Appl. Climatol. 2016, 129, 1189–1200. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding the Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Cabral Júnior, J.B.; Santos e Silva, C.M.; Almeida, H.A.; Bezerra, B.G.; Spyrides, M.H.C. Detecting linear trend of reference evapotranspiration in irrigated farming areas in Brazil’ s semiarid region. Theor. Appl. Climatol. 2019, 138, 215–225. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; Kenawy, A.E. A new global 0.5 degrees gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.B.S.; Kousky, V.E.; Silva, F.D.S.; Salvador, M.A.; Aravequia, J.A. The 2012 severe drought over Northeast Brazil. Bull. Am. Meteorol. Soc. 2013, 94, S240. [Google Scholar]
- Cunha, A.P.M.A.; Alvalá, R.C.S.; Nobre, C.A.; Carvalho, M.A. Monitoring vegetative drought dynamics in the Brazilian semiarid Region. Agric. For. Meteorol. 2015, 214, 494–505. [Google Scholar] [CrossRef]
- Alvala, R.C.S.; Cunha, A.P.M.A.; Brito, S.S.B.; Seluchi, M.E.; Marengo, J.A.; Moraes, O.L.L.; Carvalho, M.A. Drought monitoring in the Brazilian Semiarid region. An. Acad. Bras. Ciênc. 2017, 91, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.P.M.A.; Tomasella, J.; Ribeiro-Neto, G.G.; Brown, M.; Garcia, S.R.; Brito, S.B.; Carvalho, M.A. Changes in the spatial-temporal patterns of droughts in the Brazilian Northeast. Atmos. Sci. Lett. 2018, 19, e855. [Google Scholar] [CrossRef] [Green Version]
- Martins, E.S.P.R.; Coelho, C.A.S.; Haarsma, R.; Otto, F.E.L.; King, A.D.; Van Oldenborgh, G.J.; Kew, S.; Philip, S.; Júnior, F.C.V.; Cullen, H. A multimethod attribution analysis of the prolonged northeast Brazil hydrometeorological drought (2012–2016). Bull. Am. Meteorol. Soc. 2018, 99, 65–69. [Google Scholar] [CrossRef]
- Martins, M.A.; Tomasella, J.; Rodriguez, D.A.; Alvalá, R.C.; Giarolla, A.; Garofolo, L.L.; Júnior, J.L.S.; Paolicchi, L.T.; Pinto, G.L. Improving drought management in the Brazilian semiarid through crop forecasting. Agric. Syst. 2018, 160, 21–30. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Leal, K.D.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- De Medeiros, F.J.; De Oliveira, C.P.; Silva, C.M.S.E.; De Araújo, J.M. Numerical simulation of the circulation and tropical teleconnection mechanisms of a severe drought event (2012–2016) in Northeastern Brazil. Clim. Dyn. 2020, 54, 4043–4057. [Google Scholar] [CrossRef]
- Freitas, A.A.; Drumond, A.; Carvalho, V.S.B.; Reboita, M.S.; Silva, B.C.; Uvo, C.B. Drought Assessment in São Francisco River Basin, Brazil: Characterization through SPI and Associated Anomalous Climate Patterns. Atmosphere 2022, 13, 41. [Google Scholar] [CrossRef]
- Júnior, R.L.D.R.; Silva, F.D.D.S.; Costa, R.L.; Gomes, H.B.; Pinto, D.D.C.; Herdies, D.L. Bivariate Assessment of Drought Return Periods and Frequency in Brazilian Northeast Using Joint Distribution by Copula Method. GeoSciences 2020, 10, 135. [Google Scholar] [CrossRef] [Green Version]
Municipality with Weather Station | State | Latitude (°) | Longitude (°) | Altitude (m) |
---|---|---|---|---|
Maceió | AL | −9.67 | −35.70 | 64.50 |
Palmeira dos Índios | AL | −9.45 | −36.70 | 274.90 |
Porto de Pedras | AL | −9.18 | −35.43 | 50.02 |
Aracajú | SE | −10.95 | −37.05 | 4.72 |
Itabaianinha | SE | −11.27 | −37.79 | 208.00 |
Propriá | SE | −10.21 | −36.84 | 19.92 |
Alagoinhas | BA | −12.15 | −38.43 | 130.92 |
Weather Station | Index | Data Base | |||
---|---|---|---|---|---|
MERGE | CHIRPS | ERA5 | ERA5 LAND | ||
Porto de Pedras/AL | r | 0.96 *** | 0.72 *** | 0.71 *** | 0.85 *** |
RMSE | 34.6 | 92.8 | 107.9 | 85.0 | |
MAE | 20.0 | 53.1 | 72.1 | 56.7 | |
Palmeiras dos Índios/AL | r | 0.95 *** | 0.81 *** | 0.72 *** | 0.82 *** |
RMSE | 24.0 | 46.4 | 49.9 | 45.6 | |
MAE | 12.1 | 29.9 | 38.1 | 30.6 | |
Maceió/AL | r | 0.99 *** | 0.85 *** | 0.81 *** | 0.9 *** |
RMSE | 24.5 | 71.5 | 108.3 | 91.2 | |
MAE | 13.8 | 43.9 | 67.7 | 59.9 | |
Propriá/SE | r | 0.97 *** | 0.89 *** | 0.72 *** | 0.78 *** |
RMSE | 17.4 | 35.9 | 52.2 | 56.4 | |
MAE | 9.3 | 22.7 | 39.5 | 38.2 | |
Aracajú/SE | r | 0.93 *** | 0.95 *** | 0.67 *** | 0.85 *** |
RMSE | 31.8 | 31.1 | 70.1 | 52.0 | |
MAE | 20.27 | 22.22 | 47.77 | 34.82 | |
Itabaianinha/SE | r | 0.96 *** | 0.85 *** | 0.64 *** | 0.82 *** |
RMSE | 23.5 | 44.7 | 58.9 | 55.3 | |
MAE | 15.1 | 30.1 | 43.7 | 37.9 | |
Alagoinhas/BA | r | 0.97 *** | 0.87 *** | 0.62 *** | 0.77 *** |
RMSE | 16.1 | 33.0 | 52.7 | 50.4 | |
MAE | 9.8 | 24.4 | 41.5 | 36.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, E.H.d.L.; Silva, F.D.d.S.; Junior, R.S.d.S.; Pinto, D.D.C.; Costa, R.L.; Gomes, H.B.; Júnior, J.B.C.; de Freitas, I.G.F.; Herdies, D.L. Performance Assessment of Different Precipitation Databases (Gridded Analyses and Reanalyses) for the New Brazilian Agricultural Frontier: SEALBA. Water 2022, 14, 1473. https://doi.org/10.3390/w14091473
Silva EHdL, Silva FDdS, Junior RSdS, Pinto DDC, Costa RL, Gomes HB, Júnior JBC, de Freitas IGF, Herdies DL. Performance Assessment of Different Precipitation Databases (Gridded Analyses and Reanalyses) for the New Brazilian Agricultural Frontier: SEALBA. Water. 2022; 14(9):1473. https://doi.org/10.3390/w14091473
Chicago/Turabian StyleSilva, Ewerton Hallan de Lima, Fabrício Daniel dos Santos Silva, Rosiberto Salustiano da Silva Junior, David Duarte Cavalcante Pinto, Rafaela Lisboa Costa, Heliofábio Barros Gomes, Jório Bezerra Cabral Júnior, Ismael Guidson Farias de Freitas, and Dirceu Luís Herdies. 2022. "Performance Assessment of Different Precipitation Databases (Gridded Analyses and Reanalyses) for the New Brazilian Agricultural Frontier: SEALBA" Water 14, no. 9: 1473. https://doi.org/10.3390/w14091473
APA StyleSilva, E. H. d. L., Silva, F. D. d. S., Junior, R. S. d. S., Pinto, D. D. C., Costa, R. L., Gomes, H. B., Júnior, J. B. C., de Freitas, I. G. F., & Herdies, D. L. (2022). Performance Assessment of Different Precipitation Databases (Gridded Analyses and Reanalyses) for the New Brazilian Agricultural Frontier: SEALBA. Water, 14(9), 1473. https://doi.org/10.3390/w14091473