Response of Domestic Water in Beijing to Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Research Methodology
2.2.1. Anomaly Analysis
2.2.2. Variability Analysis
2.2.3. Coefficient of Variation
2.2.4. Grey Correlation Analysis
2.2.5. Polynomial Simulation Method
3. Results
3.1. Changes in Climate Change and Water Consumption from 1990 to 2019 in Beijing
3.2. Factors Influencing Domestic Water Consumption
3.3. Extraction of Climate Water Use
3.4. Domestic Water Use Response to Climate Change under Future Climate Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eshkevardalili, S.; Motawef, S.; Alipoori, E. Water source planning in arid zones using low impact development (lid) approach (case study: The basin of salt lake and central desert, Iran). Ukr. J. Ecol. 2022, 8, 293–303. Available online: https://www.proquest.com/scholarly-journals/water-source-planning-arid-zones-using-low-impact/docview/2371741568/se-2 (accessed on 7 November 2021).
- World Economic Forum. Global Risks Report 2015, 10th ed.; World Economic Forum: Cologny, Switzerland, 2015. [Google Scholar]
- The New Climate Economy. Unlocking the Inclusive Growth Story of the 21st Century: Accelerating Climate Action in Urgent Times; New Climate Economy c/o World Resources Institute: Washington, DC, USA, 2018. [Google Scholar]
- WHO; UNICEF. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; Phoenix Design Aid A/S: Randers, Denmark, 2017. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.Q.; Wang, H.; Yang, X.L. Water Resources Science; Science Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Bai, H.; Tang, K.; Zhao, X.; Yu, Z. Water policy and regional economic development: Evidence from henan province, China. Water Policy 2021, 23, 397–416. [Google Scholar] [CrossRef]
- Mogaka, H.; Gichere, S.; Davis, R.; Hirji, R. Climate Variability and Water Resources Degradation in Kenya: Improving Water Resources Development and Management; World Bank Publications: Washington, DC, USA, 2005; Available online: https://www.proquest.com/books/climate-variability-water-resources-degradation/docview/2131389125/se-2?accountid=41280 (accessed on 10 November 2021).
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Getachew, B.; Manjunatha, B.R.; Bhat, H.G. Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the lake tana basin, upper blue nile river basin, ethiopia. J. Hydrol. 2021, 595, 125974. [Google Scholar] [CrossRef]
- Maharjan, M.; Aryal, A.; Talchabhadel, R.; Thapa, B.R. Impact of climate change on the streamflow modulated by changes in precipitation and temperature in the north latitude watershed of nepal. Hydrology 2021, 8, 117. [Google Scholar] [CrossRef]
- Maviza, A.; Ahmed, F. Climate change/variability and hydrological modelling studies in zimbabwe: A review of progress and knowledge gaps. SN Appl. Sci. 2021, 3, 549. [Google Scholar] [CrossRef]
- Samsudin, M.F.; Mohd Amin, M.F.; Sharifah Aisyah, S.O.; Mohd Sukhairi, M.R.; Salam, M.A. Analysis of water stress index (WSI) for district surrounding ulu sat forest reserve, kelantan, malaysia. IOP Conf. Ser. Earth Environ. Sci. 2020, 549, 12015. [Google Scholar] [CrossRef]
- Babel, M.S.; Gupta, A.D.; Pradhan, P. A multivariate econometric approach for domestic water demand modeling: An application to Kathmandu, Nepal. Water Resour. Manag. 2007, 21, 573–589. [Google Scholar] [CrossRef]
- Xiao-Jun, W.; Jian-Yun, Z.; Shahid, S.; Xie, W.; Chao-Yang, D.; Xiao-Chuan, S.; Zhang, X. Modeling domestic water demand in huaihe river basin of China under climate change and population dynamics. Environ. Dev. Sustain. 2018, 20, 911–924. [Google Scholar] [CrossRef]
- Zhang, H.L.; Dong, J.; Yan, J.P. Urban Domestic Water Consumption’s Response to Climate Change in Xi’an city. Resour. Sci. 2009, 31, 1040–1045. (In Chinese) [Google Scholar]
- Shahid, S.; Wang, X.; Harun, S.B.; Shamsudin, S.B.; Ismail, T.; Minhans, A. Climate variability and changes in the major cities of bangladesh: Observations, possible impacts and adaptation. Reg. Environ. Chang. 2016, 16, 459–471. [Google Scholar] [CrossRef]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of climate and land use change on hydrological response in gumara watershed, ethiopia. Int. J. Ecohydrol. Hydrobiol. 2021, 21, 315–332. [Google Scholar] [CrossRef]
- Altunkaynak, A.; Oezger, M.; Cakmakci, M. Water consumption prediction of Istanbul city by using fuzzy logic approach. Water Resour. Manag. 2005, 19, 641–654. [Google Scholar] [CrossRef]
- Babel, M.S.; Bhusal, S.P.; Wahid, S.M.; Agarwal, A. Climate change and water resources in the bagmati river basin, nepal. Theor. Appl. Climatol. 2014, 115, 639–654. [Google Scholar] [CrossRef]
- House-Peters, L.A.; Chang, H. Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resour. Res. 2011, 47, W05401. [Google Scholar] [CrossRef] [Green Version]
- Warziniack, T.; Arabi, M.; Brown, T.C.; Froemke, P.; Ghosh, R.; Rasmussen, S.; Swartzentruber, R. Projections of freshwater use in the united states under climate change. Earth’s Future 2022, 10, 2222. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K. Assessment model application of water supply system management in crisis situations. Glob. Nest J. 2014, 16, 893–900. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K. Failure Prediction in Water Supply System–Current Issues. In Theory and Engineering of Complex Systems and Dependability. DepCoS-RELCOMEX 2015. Advances in Intelligent Systems and Computing; Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 365. [Google Scholar] [CrossRef]
- Liu, D.L.; Zuo, H. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Clim. Chang. 2015, 115, 629–666. [Google Scholar] [CrossRef]
- Tan, L.; Feng, P.; Li, B.; Huang, F.; Liu, d.; Ren, P.; Liu, H.; Srinivasan, R.; Chen, Y. Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China. Agric. Water Manag. 2022, 266, 7560. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, C.; Han, W.; Yu, H. Soil erosion severity evaluation based on the grey correlation analysis and extension theory. Electron. J. Geotech. Eng. 2016, 21, 5919–5930. Available online: https://www.proquest.com/scholarly-journals/soil-erosion-severity-evaluation-based-on-grey/docview/1827900993/se-2?accountid=41280 (accessed on 19 November 2021).
- Feng, Y.; Hong, Z.; Jia, L.; Tan, J.; Cheng, J. Low carbon-oriented optimal reliability design with interval product failure analysis and grey correlation analysis. Sustainability 2017, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Bai, P.; Liu, M.C. Evolution and attribution analysis of water use structure in Beijing. South North Water Transf. Water Sci. Technol. 2020, 603, 126990. [Google Scholar]
- Fang, J. Analysis of water use efficiency and influencing factors of agricultural total factors in beijing-tianjin-hebei region. IOP Conf. Ser. Earth Environ. Sci. 2020, 440, 2008. [Google Scholar] [CrossRef]
- Wang, X. Temporal characteristics of tourism climate comfort in kangding city in recent 60 years. Meteorol. Environ. Res. 2020, 11, 26–28. [Google Scholar] [CrossRef]
- Miao, Z.; Sheng, J.; Webber, M.; Baležentis, T.; Geng, Y.; Zhou, W. Measuring water use performance in the cities along china’s south-north water transfer project. Appl. Geogr. 2018, 98, 184–200. [Google Scholar] [CrossRef]
- Zhou, C.L.; Ni, C.; Bian, X.S. Cost calculation and cost reduction measures at the initial stage of operation of Jiangsu South-to-North Water Transfer Project. Mark. Wkly. 2019, 12, 108–109. (In Chinese) [Google Scholar]
- Zheng, Z.; Xu, G.; Wang, Y.; Li, Q.; Li, J. Characteristics and main influence factors of heat waves in Beijing–Tianjin–Shijiazhuang cities of northern china in recent 50 years. Atmos. Sci. Lett. 2020, 21, 10. [Google Scholar] [CrossRef]
- Cao, W.; Huang, L.; Liu, L.; Zhai, J.; Wu, D. Overestimating impacts of urbanization on regional temperatures in developing megacity: Beijing as an example. Adv. Meteorol. 2019, 15, 5715. [Google Scholar] [CrossRef]
- Ji, H.C. Analysis on Temperature Change Characteristics in Beijing City from 1982 to 2012. Mod. Agric. Sci. Technol. 2015, 11, 259–261. (In Chinese) [Google Scholar]
- Wang, J.; Zhang, R.; Wang, Y. Characteristics of precipitation in beijing and the precipitation representativeness of beijing weather observatory. J. Appl. Meteorol. Sci. 2012, 23, 265–273. Available online: https://www.proquest.com/scholarly-journals/characteristics-precipitation-beijing/docview/1722183729/se-2?accountid=41280 (accessed on 1 February 2022).
- Zheng, Z.; Gao, H.; Wang, Z.; Li, Q. Analysis on spatial distribution of precipitation in beijing and its city effect. Plateau Meteorol. 2014, 33, 522–529. [Google Scholar] [CrossRef]
- Dou, Y. Economic growth arid climate change impact on domestic water changes and grey correlation analysis in urumqi city. Water Conserv. Sci. Technol. Econ. 2015, 21, 1–3. [Google Scholar]
- Wei, B.; Yimiti, H.; Wang, Q.; Xu, N.; Li, J. Correlation of burial depth of groundwater and soil water content in the keriya oasis, xinjiang, China. J. Desert Res. 2013, 33, 1110–1116. [Google Scholar] [CrossRef]
- Huanhuan, Q. Numerical groundwater modeling and scenario analysis of beijing plain: Implications for sustainable groundwater management in a region with intense groundwater depletion. Environ. Earth Sci. 2021, 80, 795. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, J.; Huan, H.; Teng, Y. Groundwater dynamic equilibrium evidence for changes of renewability of groundwater in beijing plain. J. Jilin Univ. Earth Sci. Ed. 2012, 42, 198–205. Available online: https://www.proquest.com/scholarly-journals/groundwater-dynamic-equilibrium-evidence-changes/docview/1014105927/se-2?accountid=41280 (accessed on 15 April 2022).
Indicators. | Average Temperature | Maximum Temperature | Minimum Temperature | Precipitation | Relative Humidity |
---|---|---|---|---|---|
Grey relation degree | 0.797 | 0.652 | 0.514 | 0.537 | 0.679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Long, B.; Pan, Z.; Lun, F.; Song, Y.; Wang, J.; Zhang, Z.; Gu, H.; Men, J. Response of Domestic Water in Beijing to Climate Change. Water 2022, 14, 1487. https://doi.org/10.3390/w14091487
Wu H, Long B, Pan Z, Lun F, Song Y, Wang J, Zhang Z, Gu H, Men J. Response of Domestic Water in Beijing to Climate Change. Water. 2022; 14(9):1487. https://doi.org/10.3390/w14091487
Chicago/Turabian StyleWu, Hao, Buju Long, Zhihua Pan, Fei Lun, Yu Song, Jialin Wang, Zhenzhen Zhang, Hongyu Gu, and Jingyu Men. 2022. "Response of Domestic Water in Beijing to Climate Change" Water 14, no. 9: 1487. https://doi.org/10.3390/w14091487
APA StyleWu, H., Long, B., Pan, Z., Lun, F., Song, Y., Wang, J., Zhang, Z., Gu, H., & Men, J. (2022). Response of Domestic Water in Beijing to Climate Change. Water, 14(9), 1487. https://doi.org/10.3390/w14091487