Prediction of Snowmelt Days Using Binary Logistic Regression in the Umbria-Marche Apennines (Central Italy)
Abstract
:1. Introduction
1.1. Main Purpose
1.2. Background on Research Methods in Snowmelt Analysis
1.3. Main Case Studies in Recent Snowmelt Literature
1.4. Research Innovation
1.5. Limitations
2. Study Area
3. Materials and Methods
3.1. Avalanche Risk in the Study Area
3.2. Methods for Snow Melt Analysis and Modelling
4. Results
4.1. Data Analysis and Trend Assessment
4.2. Snow Melt Prediction Model
4.3. Snowmelt and Influence on Watercourses
5. Discussion
5.1. Evaluation of Research Findings against Existing Literature
5.2. Further Research Developments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yamaguchi, S.; Abe, O.; Nakai, S.; Sato, A. Recent fluctuations of meteorological and snow conditions in Japanese mountains. Ann. Glaciol. 2011, 52, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Hock, R. Glacier melt: A review of processes and their modelling. Prog. Phys. Geogr. Earth Environ. 2005, 29, 362–391. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Lu, X.; Nie, L. Assessment of glacier- and snowmelt-driven streamflow in the arid middle Tianshan Mountains of China. Hydrol. Process. 2020, 34, 2750–2762. [Google Scholar] [CrossRef]
- Mori, A.; Subramanian, S.S.; Ishikawa, T.; Komatsu, M. A Case Study of a Cut Slope Failure Influenced by Snowmelt and Rainfall. Procedia Eng. 2017, 189, 533–538. [Google Scholar] [CrossRef]
- Germain, D. Snow avalanche hazard assessment and risk management in northern Quebec, eastern Canada. Nat. Hazards 2015, 80, 1303–1321. [Google Scholar] [CrossRef]
- Tinti, S.; Gallotti, G.; Zieher, T.; Pfeiffer, J.; Zaniboni, F.; Rutzinger, M.; Di Sabatino, S. Modelling the effect of Nature Based Solutions on slope instability. In EGU General Assembly Conference Abstracts; EGU: Wien, Austria, 2020; p. 9867. [Google Scholar]
- Berteni, F.; Grossi, G. Water erosion and climate change in a small alpine catchment. In EGU General Assembly Conference Abstracts; EGU: Wien, Austria, 2017; p. 10391. [Google Scholar]
- Marshall, S.; Roads, J.O.; Glatzmaier, G. Snow Hydrology in a General Circulation Model. J. Clim. 1994, 7, 1251–1269. [Google Scholar] [CrossRef] [Green Version]
- Paudel, K.P.; Andersen, P. Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. Clim. Change 2012, 117, 149–162. [Google Scholar] [CrossRef]
- Ide, R.; Oguma, H. A cost-effective monitoring method using digital time-lapse cameras for detecting temporal and spatial variations of snowmelt and vegetation phenology in alpine ecosystems. Ecol. Inform. 2013, 16, 25–34. [Google Scholar] [CrossRef]
- Gerdol, R.; Siffi, C.; Iacumin, P.; Gualmini, M.; Tomaselli, M. Advanced snowmelt affects vegetative growth and sexual re-production of V accinium myrtillus in a sub-alpine heath. J. Veg. Sci. 2013, 24, 569–579. [Google Scholar] [CrossRef]
- Wipf, S.; Stoeckli, V.; Bebi, P. Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Clim. Change 2009, 94, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Gehrmann, F.; Lehtimäki, I.-M.; Hänninen, H.; Saarinen, T. Sub-Arctic alpine Vaccinium vitis-idaea exhibits resistance to strong variation in snowmelt timing and frost exposure, suggesting high resilience under climatic change. Polar Biol. 2020, 43, 1453–1467. [Google Scholar] [CrossRef]
- Pollock, M.D.; O’Donnell, G.; Quinn, P.; Dutton, M.; Black, A.; Wilkinson, M.E.; Colli, M.; Stagnaro, M.; Lanza, L.G.; Lewis, E.; et al. Quantifying and Mitigating Wind-Induced Undercatch in Rainfall Measurements. Water Resour. Res. 2018, 54, 3863–3875. [Google Scholar] [CrossRef]
- Stigter, E.E.; Wanders, N.; Saloranta, T.M.; Shea, J.M.; Bierkens, M.F.P.; Immerzeel, W.W. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment. Cryosphere 2017, 11, 1647–1664. [Google Scholar] [CrossRef] [Green Version]
- Grusson, Y.; Sun, X.; Gascoin, S.; Sauvage, S.; Raghavan, S.; Anctil, F.; Sáchez-Pérez, J.-M. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. J. Hydrol. 2015, 531, 574–588. [Google Scholar] [CrossRef]
- Li, D.; Qi, Y.; Chen, D. Changes in rain and snow over the Tibetan Plateau based on IMERG and Ground-based observation. J. Hydrol. 2021, 606, 127400. [Google Scholar] [CrossRef]
- Besic, N.; Vasile, G.; Gottardi, F.; Gailhard, J.; Girard, A.; D’Urso, G. Calibration of a distributed SWE model using MODIS snow cover maps and in situ measurements. Remote Sens. Lett. 2014, 5, 230–239. [Google Scholar] [CrossRef]
- Herrero, J.; Polo, M.; Moñino, A.; Losada, M. An energy balance snowmelt model in a Mediterranean site. J. Hydrol. 2009, 371, 98–107. [Google Scholar] [CrossRef]
- Jost, G.; Moore, R.D.; Smith, R.; Gluns, D.R. Distributed temperature-index snowmelt modelling for forested catchments. J. Hydrol. 2012, 420–421, 87–101. [Google Scholar] [CrossRef]
- Irizarry-Ortiz, M.M.; Obeysekera, J.; Park, J.; Trimble, P.; Barnes, J.; Park-Said, W.; Gadzinski, E. Historical trends in Florida temperature and precipitation. Hydrol. Process. 2011, 27, 2225–2246. [Google Scholar] [CrossRef]
- Gentilucci, M.; Materazzi, M.; Pambianchi, G.; Burt, P.; Guerriero, G. Assessment of Variations in the Temperature-Rainfall Trend in the Province of Macerata (Central Italy), Comparing the Last Three Climatological Standard Normals (1961–1990; 1971–2000; 1981–2010) for Biosustainability Studies. Environ. Process. 2019, 6, 391–412. [Google Scholar] [CrossRef]
- Kruger, A.C.; Sekele, S.S. Trends in extreme temperature indices in South Africa: 1962–2009. Int. J. Clim. 2013, 33, 661–676. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; D’Aprile, F.; Zardi, D. Analysis of extreme precipitation indices in the Marche region (central Italy), combined with the assessment of energy implications and hydrogeological risk. Energy Rep. 2020, 6, 804–810. [Google Scholar] [CrossRef]
- Pappenberger, F.; Wetterhall, F.; Dutra, E.; Di Giuseppe, F.; Bogner, K.; Alfieri, L.; Cloke, H.L. Seamless forecasting of extreme events on a global scale. In Climate and Land Surface Changes in Hydrology; Boegh, E., Blyth, E., Hannah, D.M., Hisdal, H., Kunstmann, H., Su, B., Yilmaz, K.K., Eds.; IAHS Publication: Gothenburg, Sweden, 2013; pp. 3–10. [Google Scholar]
- Gentilucci, M.; Barbieri, M.; Lee, H.S.; Zardi, D. Analysis of Rainfall Trends and Extreme Precipitation in the Middle Adriatic Side, Marche Region (Central Italy). Water 2019, 11, 1948. [Google Scholar] [CrossRef] [Green Version]
- Şensoy, A.; Uysal, G. The Value of Snow Depletion Forecasting Methods towards Operational Snowmelt Runoff Estimation Using MODIS and Numerical Weather Prediction Data. Water Resour. Manag. 2012, 26, 3415–3440. [Google Scholar] [CrossRef]
- Muhammad, S.; Thapa, A. An improved Terra–Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002 and 2018. Earth Syst. Sci. Data 2020, 12, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Harpold, A.A.; Brooks, P.D. Humidity determines snowpack ablation under a warming climate. Proc. Natl. Acad. Sci. USA 2018, 115, 1215–1220. [Google Scholar] [CrossRef] [Green Version]
- Girotto, M.; Margulis, S.A.; Durand, M. Probabilistic SWE reanalysis as a generalization of deterministic SWE reconstruction techniques. Hydrol. Process. 2014, 28, 3875–3895. [Google Scholar] [CrossRef]
- Ciapessoni, E.; Cirio, D.; Lacavalla, M.; Sforna, M.; De Nigris, M.; Pitto, A. Risk-Based Security Assessment with Big Data Driven Probabilistic Modeling for WET Snow Extreme Events. In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–7. [Google Scholar]
- Walter, M.T.; Brooks, E.S.; McCool, D.K.; King, L.G.; Molnau, M.; Boll, J. Process-based snowmelt modeling: Does it require more input data than temperature-index modeling? J. Hydrol. 2005, 300, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Tanguang, G.; Shichang, K.; Cuo, L.; Tingjun, Z.; Guoshuai, Z.; Yulan, Z.; Sillanpää, M. Simulation and analysis of glacier runoff and mass balance in the Nam Co basin, southern Tibetan Plateau. J. Glaciol. 2015, 61, 447–460. [Google Scholar] [CrossRef]
- Zuzel, J.F.; Cox, L.M. Relative importance of meteorological variables in snowmelt. Water Resour. Res. 1975, 11, 174–176. [Google Scholar] [CrossRef]
- Green, K.; Pickering, C.M. The Decline of Snowpatches in the Snowy Mountains of Australia: Importance of Climate Warming, Variable Snow, and Wind. Arctic Antarct. Alp. Res. 2009, 41, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Marks, D.; Dozier, J.; Reba, M.; Winstral, A. Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models. Adv. Water Resour. 2013, 56, 77–89. [Google Scholar] [CrossRef]
- Debele, B.; Srinivasan, R.; Gosain, A.K. Comparison of Process-Based and Temperature-Index Snowmelt Modeling in SWAT. Water Resour. Manag. 2009, 24, 1065–1088. [Google Scholar] [CrossRef]
- Gorsevski, P.V.; Gessler, P.E.; Foltz, R.B.; Elliot, W.J. Spatial Prediction of Landslide Hazard Using Logistic Regression and ROC Analysis. Trans. GIS 2006, 10, 395–415. [Google Scholar] [CrossRef]
- Defrance, D.; Catry, T.; Rajaud, A.; Dessay, N.; Sultan, B. Impacts of Greenland and Antarctic Ice Sheet melt on future Köppen climate zone changes simulated by an atmospheric and oceanic general circulation model. Appl. Geogr. 2020, 119, 102216. [Google Scholar] [CrossRef]
- Swart, N.C.; Fyfe, J.C. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett. 2013, 40, 4328–4332. [Google Scholar] [CrossRef]
- Bulthuis, K.; Arnst, M.; Sun, S.; Pattyn, F. Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change. Cryosphere 2019, 13, 1349–1380. [Google Scholar] [CrossRef] [Green Version]
- Vandecrux, B.; Box, J.E.; Wehrlé, A.; Kokhanovsky, A.A.; Picard, G.; Niwano, M.; Hörhold, M.; Faber, A.-K.; Steen-Larsen, H.C. The Determination of the Snow Optical Grain Diameter and Snowmelt Area on the Greenland Ice Sheet Using Spaceborne Optical Observations. Remote Sens. 2022, 14, 932. [Google Scholar] [CrossRef]
- Pan, C.G.; Kirchner, P.B.; Kimball, J.S.; Du, J. A Long-Term Passive Microwave Snowoff Record for the Alaska Region 1988–2016. Remote Sens. 2020, 12, 153. [Google Scholar] [CrossRef] [Green Version]
- Tielidze, L.G.; Jomelli, V.; Nosenko, G.A. Analysis of Regional Changes in Geodetic Mass Balance for All Caucasus Glaciers over the Past Two Decades. Atmosphere 2022, 13, 256. [Google Scholar] [CrossRef]
- Marin, C.; Bertoldi, G.; Premier, V.; Callegari, M.; Brida, C.; Hürkamp, K.; Tschiersch, J.; Zebisch, M.; Notarnicola, C. Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions. Cryosphere 2020, 14, 935–956. [Google Scholar] [CrossRef] [Green Version]
- Ford, C.M.; Kendall, A.D.; Hyndman, D.W. Effects of shifting snowmelt regimes on the hydrology of non-alpine temperate landscapes. J. Hydrol. 2020, 590, 125517. [Google Scholar] [CrossRef]
- Potter, C. Snowmelt timing impacts on growing season phenology in the northern range of Yellowstone National Park estimated from MODIS satellite data. Landsc. Ecol. 2020, 35, 373–388. [Google Scholar] [CrossRef]
- Havens, S.; Marks, D.; FitzGerald, K.; Masarik, M.; Flores, A.N.; Kormos, P.; Hedrick, A. Approximating Input Data to a Snowmelt Model Using Weather Research and Forecasting Model Outputs in Lieu of Meteorological Measurements. J. Hydrometeorol. 2019, 20, 847–862. [Google Scholar] [CrossRef] [Green Version]
- Follum, M.L.; Niemann, J.D.; Fassnacht, S.R. A comparison of snowmelt-derived streamflow from temperature-index and modified-temperature-index snow models. Hydrol. Processes 2019, 33, 3030–3045. [Google Scholar] [CrossRef]
- Thapa, S.; Zhao, Z.; Li, B.; Lu, L.; Fu, D.; Shi, X.; Tang, B.; Qi, H. Snowmelt-Driven Streamflow Prediction Using Machine Learning Techniques (LSTM, NARX, GPR, and SVR). Water 2020, 12, 1734. [Google Scholar] [CrossRef]
- Raparelli, E.; Tuccella, P.; Colaiuda, V.; Marzano, F.S. Snow cover prediction in the Italian Central Apennines using weather forecast and snowpack numerical models. Cryosphere Discuss. 2021, 1–37. [Google Scholar] [CrossRef]
- Chandrakantha, L. Risk Prediction Model for Dengue Transmission Based on Climate Data: Logistic Regression Approach. Stats 2019, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Chun, J.A.; Choi, S.J. Incorporating the logistic regression into a decision-centric assessment of climate change impacts on a complex river system. Hydrol. Earth Syst. Sci. 2019, 23, 1145–1162. [Google Scholar] [CrossRef] [Green Version]
- Gentilucci, M.; Barbieri, M.; Burt, P. Climatic Variations in Macerata Province (Central Italy). Water 2018, 10, 1104. [Google Scholar] [CrossRef] [Green Version]
- Gentilucci, M.; Materazzi, M.; Pambianchi, G.; Burt, P.; Guerriero, G. Temperature variations in Central Italy (Marche region) and effects on wine grape production. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2020, 140, 303–312. [Google Scholar] [CrossRef]
- Tarquini, S.; Isola, I.; Favalli, M.; Battistini, A. TINITALY, a Digital Elevation Model of Italy with a 10 Meters Cell Size (Version 1.0) [Data Set]; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2007. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; Burt, P.; D’Aprile, F. Preliminary data validation and reconstruction of temperature and precipi-tation in Central Italy. Geosciences 2018, 8, 202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cabilio, P.; Nadeem, K. Improved Seasonal Mann–Kendall Tests for Trend Analysis in Water Resources Time Series. In Advances in Time Series Methods and Applications; Springer: New York, NY, USA, 2016; pp. 215–229. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 2000; p. 375. [Google Scholar]
- Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 2011, 405, 123–136. [Google Scholar] [CrossRef]
- WMO. Guide to Climatological Practices; World Meteorological Organization: Geneva, Switzerland, 2018; WMO-No. 100. [Google Scholar]
- Gafurov, A.; Vorogushyn, S.; Farinotti, D.; Duethmann, D.; Merkushkin, A.; Merz, B. Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data. Cryosphere 2015, 9, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Changnon, S.A. Frequency Distributions of Heavy Snowfall from Snowstorms in the United States. J. Hydrol. Eng. 2006, 11, 427–431. [Google Scholar] [CrossRef]
- Henderson, G.R.; Leathers, D.J. European snow cover extent variability and associations with atmospheric forcings. Int. J. Clim. 2009, 30, 1440–1451. [Google Scholar] [CrossRef]
- Xu, M.; Kang, S.; Wu, H.; Yuan, X. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 2018, 203, 141–163. [Google Scholar] [CrossRef]
- Beniston, M. Mountain Weather and Climate: A General Overview and a Focus on Climatic Change in the Alps. Hydrobiologia 2006, 562, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Gentilucci, M.; D’Aprile, F. Variations in trends of temperature and its influence on tree growth in the Tuscan Apennines. Arab. J. Geosci. 2021, 14, 1418. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Gascoin, S.; Herrero, J.; Sproles, E.; Pons, M.; González, E.A.; Hanich, L.; Boudhar, A.; Musselman, K.N.; Molotch, N.P.; et al. Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ. Res. Lett. 2017, 12, 074006. [Google Scholar] [CrossRef]
- Bednorz, E. Snow cover in eastern Europe in relation to temperature, precipitation and circulation. Int. J. Clim. 2004, 24, 591–601. [Google Scholar] [CrossRef]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Sobie, S.R.; Murdock, T.Q. Projections of snow water equivalent using a process-based energy balance snow model in southwestern British Columbia. J. Appl. Meteorol. Clim. 2021, 61, 77–95. [Google Scholar] [CrossRef]
- Guo, H.; Xu, M.; Hu, Q. Changes in near-surface wind speed in China: 1969-2005. Int. J. Clim. 2011, 31, 349–358. [Google Scholar] [CrossRef]
- Semmens, K.A.; Ramage, J. Investigating correlations between snowmelt and forest fires in a high latitude snowmelt dominated drainage basin. Hydrol. Process. 2012, 26, 2608–2617. [Google Scholar] [CrossRef]
- López-Moreno, J.; Fassnacht, S.; Heath, J.; Musselman, K.; Revuelto, J.; Latron, J.; Morán-Tejeda, E.; Jonas, T. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv. Water Resour. 2013, 55, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Dadaser-Celik, F.; Cengiz, E. Wind speed trends over Turkey from 1975 to 2006. Int. J. Clim. 2014, 34, 1913–1927. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Nieto, R.; Gimeno, L.; Azorin-Molina, C.; Drumond, A.; El Kenawy, A.; Dominguez-Castro, F.; Tomas-Burguera, M.; Peña-Gallardo, M. Recent changes of relative humidity: Regional connections with land and ocean processes. Earth Syst. Dyn. 2018, 9, 915–937. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, H.-M.; Lin, Y.-L.; Hsieh, J.-G. Forecasting Violent Behaviors for Schizophrenic Outpatients Using Their Disease Insights: Development of a Binary Logistic Regression Model and a Support Vector Model. Int. J. Ment. Health 2004, 33, 17–31. [Google Scholar] [CrossRef]
W. S. | Lat. | Long. | Alt. | T | P | Sc | Ws | H |
---|---|---|---|---|---|---|---|---|
MB | 42.91 | 13.19 | 1917 | X | X | X | X | X |
MP | 42.87 | 13.21 | 1813 | X | X | X | X | X |
PB | 42.99 | 13.23 | 1360 | X | X | X | X | X |
S | 43.01 | 13.24 | 1365 | X | X | X | X | X |
Year | MB sch | MB scd | MP sch | MP scd | PB sch | PB scd | S sch | S scd |
---|---|---|---|---|---|---|---|---|
2010 | 49.7 | 140 | 62.6 | 142 | 12.4 | 73 | 16.0 | 53 |
2011 | 16.9 | 85 | 24.6 | 118 | 32.6 | 88 | 36.9 | 96 |
2012 | 36.4 | 45 | 35.9 | 54 | 24.2 | 93 | 18.3 | 156 |
2013 | 56.1 | 161 | 64.6 | 167 | 22.2 | 107 | 28.7 | 110 |
2014 | 16.1 | 85 | 21.0 | 92 | 8.9 | 28 | 7.7 | 34 |
2015 | 77.8 | 87 | 70.2 | 95 | 38.1 | 89 | 29.9 | 98 |
2016 | 24.6 | 87 | 26.8 | 96 | 8.8 | 38 | 7.1 | 35 |
2017 | 24.7 | 104 | 38.5 | 108 | 35.0 | 89 | 35.1 | 109 |
2018 | 38.1 | 203 | 74.9 | 170 | 20.0 | 52 | 17.0 | 121 |
2019 | 37.0 | 79 | 20.4 | 90 | 9.5 | 72 | 11.2 | 92 |
2020 | 7.9 | 89 | 19.5 | 104 | 9.8 | 121 | 14.0 | 49 |
Average 2010–2020 | 35.0 | 105.9 | 41.7 | 112.4 | 20.2 | 77.3 | 20.2 | 86.6 |
January | 35.8 | 21.4 | 38.3 | 25.0 | 22.3 | 17.5 | 24.8 | 16.3 |
February | 49.7 | 23.4 | 59.5 | 23.7 | 29.9 | 19.4 | 35.7 | 20.4 |
March | 50.3 | 24.2 | 62.0 | 25.2 | 24.5 | 16.0 | 25.9 | 18.1 |
April | 32.1 | 8.5 | 37.6 | 12.2 | 10.9 | 4.2 | 7.9 | 5.2 |
May | 1.9 | 3.2 | 2.3 | 4.0 | 1.4 | 0.8 | 2.1 | 7.6 |
November | 5.7 | 7.8 | 12.3 | 4.1 | 12.0 | 5.8 | 17.0 | 4.9 |
December | 26.7 | 17.5 | 37.5 | 18.2 | 14.5 | 13.5 | 14.7 | 14.3 |
MB sch | MB scd | MP sch | MP scd | PB sch | PB scd | S sch | S scd | |
---|---|---|---|---|---|---|---|---|
p-value | 0.91 | 0.78 | 0.83 | 1.00 | 0.14 | 0.23 | 0.83 | 0.70 |
τ | −0.01 | 0.04 | −0.03 | 0.00 | −0.16 | −0.13 | −0.03 | −0.04 |
S’ | −3.00 | 6.00 | −5.00 | 0 | −28.00 | −23.00 | −5.00 | −8.00 |
Year | MB T* | MP T* | PB T* | S T* | MB Tm | MP Tm | PB Tm | S Tm | MB TM | MP TM | PB TM | S TM |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 5.5 | 5.0 | 7.5 | 8.0 | 3.0 | 2.5 | 4.8 | 5.4 | 8.3 | 7.8 | 10.3 | 10.6 |
2011 | 5.5 | 6.3 | 8.4 | 8.9 | 3.1 | 3.8 | 5.8 | 6.4 | 8.4 | 9.2 | 11.3 | 11.6 |
2012 | 5.5 | 6.3 | 8.3 | 9.3 | 2.9 | 3.7 | 5.6 | 6.6 | 8.5 | 9.2 | 11.3 | 12.1 |
2013 | 4.9 | 5.5 | 8.3 | 8.7 | 2.5 | 3.1 | 5.6 | 6.2 | 7.6 | 8.4 | 11.2 | 11.4 |
2014 | 4.3 | 6.3 | 8.8 | 8.9 | 2.1 | 3.2 | 6.2 | 6.6 | 6.9 | 10.7 | 11.5 | 11.5 |
2015 | 6.1 | 6.2 | 9.0 | 9.0 | 3.7 | 3.7 | 6.3 | 6.4 | 9.0 | 9.1 | 11.9 | 11.7 |
2016 | 6.6 | 5.7 | 8.7 | 8.6 | 4.1 | 3.3 | 6.0 | 6.0 | 9.5 | 8.5 | 11.5 | 11.3 |
2017 | 7.8 | 6.0 | 9.0 | 9.0 | 4.9 | 3.1 | 6.0 | 6.2 | 11.2 | 9.2 | 12.1 | 11.9 |
2018 | 6.9 | 5.9 | 9.4 | 10.5 | 4.5 | 3.3 | 6.8 | 7.9 | 9.8 | 8.7 | 12.3 | 13.2 |
2019 | 6.2 | 7.0 | 10.1 | 10.3 | 3.7 | 4.4 | 7.3 | 7.6 | 9.1 | 9.8 | 13.1 | 13.38 |
2020 | 6.7 | 7.1 | 10.2 | 10.3 | 4.1 | 4.4 | 7.3 | 7.5 | 9.6 | 10.1 | 13.2 | 13.3 |
Average | 6.0 | 6.1 | 8.9 | 9.2 | 3.5 | 3.5 | 6.2 | 6.6 | 8.9 | 9.2 | 11.8 | 12.0 |
MB T* | MP T* | PB T* | S T* | MB Tm | MP Tm | PB Tm | S Tm | MB TM | MP TM | PB TM | S TM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
p-value | 0.01 | 0.34 | 0.00 | 0.00 | 0.01 | 0.49 | 0.00 | 0.00 | 0.00 | 0.34 | 0.00 | 0.00 |
τ | 0.20 | 0.07 | 0.35 | 0.25 | 0.19 | 0.05 | 0.32 | 0.24 | 0.23 | 0.07 | 0.34 | 0.25 |
S’ | 108 | 38 | 228 | 162 | 100 | 28 | 212 | 160 | 122 | 38 | 224 | 164 |
MB H | MP H | PB H | S H | MB Ws | MP Ws | PB Ws | S Ws | |
---|---|---|---|---|---|---|---|---|
p-value | 0.88 | 0.94 | 0.54 | 0.04 | 0.01 | 0.16 | 0.45 | 0.03 |
τ | −0.01 | −0.01 | −0.04 | 0.14 | 0.18 | 0.10 | 0.06 | 0.16 |
S’ | −8.00 | −4.00 | −28.00 | 94.00 | 118 | 56.00 | 30.00 | 86.00 |
Pearson Correlation | MB | MP | PB | S |
---|---|---|---|---|
sch—T* | −0.42 | −0.44 | −0.45 | −0.45 |
sch—Tm | −0.42 | −0.45 | −0.45 | −0.44 |
sch—TM | −0.41 | −0.42 | −0.43 | −0.43 |
sch—H | 0.15 | 0.15 | 0.16 | 0.18 |
sch—Ws | 0.03 | 0.13 | −0.13 | −0.10 |
B | S.E. | Wald | df | Sig. | Exp (B) | |
---|---|---|---|---|---|---|
T* | 0.111 | 0.009 | 168.219 | 1 | 0.000 | 1.117 |
H | −0.025 | 0.002 | 146.428 | 1 | 0.000 | 0.975 |
Ws | 0.023 | 0.011 | 4.482 | 1 | 0.034 | 1.023 |
constant | 2.393 | 0.176 | 184.272 | 1 | 0.000 | 10.943 |
Observed | Predicted | Forecasting Accuracy (%) | |
---|---|---|---|
s.a. | s.m. | ||
s.a. | 808 | 736 | 52.3 |
s.m. | 431 | 2099 | 83.0 |
Overall percentage | - | - | 71.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentilucci, M.; Pambianchi, G. Prediction of Snowmelt Days Using Binary Logistic Regression in the Umbria-Marche Apennines (Central Italy). Water 2022, 14, 1495. https://doi.org/10.3390/w14091495
Gentilucci M, Pambianchi G. Prediction of Snowmelt Days Using Binary Logistic Regression in the Umbria-Marche Apennines (Central Italy). Water. 2022; 14(9):1495. https://doi.org/10.3390/w14091495
Chicago/Turabian StyleGentilucci, Matteo, and Gilberto Pambianchi. 2022. "Prediction of Snowmelt Days Using Binary Logistic Regression in the Umbria-Marche Apennines (Central Italy)" Water 14, no. 9: 1495. https://doi.org/10.3390/w14091495
APA StyleGentilucci, M., & Pambianchi, G. (2022). Prediction of Snowmelt Days Using Binary Logistic Regression in the Umbria-Marche Apennines (Central Italy). Water, 14(9), 1495. https://doi.org/10.3390/w14091495