Hypersaline Wastewater Produced from Pickled Mustard Tuber (Chinese Zhacai): Current Treatment Status and Prospects
Abstract
:1. Introduction
2. Pickled Mustard Tuber Wastewater’s Characteristics and Environmental Effects
2.1. Pickled Mustard Tuber Wastewater Generation
2.2. Pickled Mustard Tuber Wastewater’s Characteristics
2.3. Pickled Mustard Tuber Wastewater’s Environmental Effects
3. Pickled Mustard Tuber Wastewater Treatment
3.1. Physicochemical Treatment
3.1.1. Thermal Desalination
3.1.2. Chemical Precipitation
3.1.3. Electrochemical Oxidation
3.1.4. Membrane Technology
3.2. Bio-Treatment of Pickled Mustard Tuber Wastewater
3.2.1. Aerobic Oxidation
3.2.2. Anaerobic Digestion
3.2.3. Combined Anaerobic and Aerobic Treatment
3.3. Physicochemical and Biological Hybrid Arts
4. Pickled Mustard Tuber Wastewater’s Reuse
4.1. Nutrient Recollection
4.2. Acids and Alkaline Regeneration
4.3. Renewable Energy Recovery
5. Pickled Mustard Tuber Wastewater’s Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montaño, A.; Sánchez, A.; Beato, V.; López-López, A.; de Castro, A. Pickling. Encycl. Food Health 2016, 369–374. [Google Scholar] [CrossRef]
- Stankus, T. Pickled Vegetable Condiments: A Global Industry and Its Literature. J. Agric. Food Inf. 2014, 15, 3–18. [Google Scholar] [CrossRef]
- Guo, F.; Fu, G.; Zhang, Z.; Zhang, C. Mustard tuber wastewater treatment and simultaneous electricity generation using microbial fuel cells. Bioresour. Technol. 2013, 136, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Guventurk, A.; Ozturk, D.; Ozyildiz, G.; Ayisigi, E.; Guven, D.; Zengin, G.E.; Tas, D.O.; Olmez-Hanci, T.; Pala-Ozkok, I.; Yagci, N. Determination of the potential of pickle wastewater as feedstock for biopolymer production. Water Sci. Technol. 2020, 81, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Xin, H. China Announces Water Pollution Controls. 2014. Available online: http://www.chinadaily.com.cn/china/2015-04/16/content_20449846.htm (accessed on 16 April 2015).
- Chen, F.; Zhang, Z.; Zeng, F.; Yang, Y.; Li, X. Pilot-scale treatment of hypersaline coal chemical wastewater with zero liquid discharge. Desalination 2021, 518, 115303. [Google Scholar] [CrossRef]
- Kim, Y.; Logan, B.E. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems. Desalination 2013, 308, 115–121. [Google Scholar] [CrossRef]
- Li, Z.; Yang, P. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Harbin, China, 8–10 December 2017; Volume 113, p. 012185. [Google Scholar]
- Davenport, D.M.; Deshmukh, A.; Werber, J.R.; Elimelech, M. High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: Current status, design considerations, and research needs. Environ. Sci. Technol. Lett. 2018, 5, 467–475. [Google Scholar] [CrossRef]
- Pang, H.; Xin, X.; He, J.; Cui, B.; Guo, D.; Liu, S.; Yan, Z.; Liu, C.; Wang, X.; Nan, J. Effect of NaCl Concentration on Microbiological Properties in NaCl Assistant Anaerobic Fermentation: Hydrolase Activity and Microbial Community Distribution. Front. Microbiol. 2020, 11, 589222. [Google Scholar] [CrossRef]
- Jiang, M.; Ye, K.; Deng, J.; Lin, J.; Ye, W.; Zhao, S.; Van der Bruggen, B. Conventional Ultrafiltration As Effective Strategy for Dye/Salt Fractionation in Textile Wastewater Treatment. Environ. Sci. Technol. 2018, 52, 10698–10708. [Google Scholar] [CrossRef]
- Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10, 146. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debnath, B.; Ahammed, G.J. Effect of Acid Rain on Plant Growth and Development: Physiological and Molecular Interventions. In Contaminants in Agriculture; Springer Science and Business Media LLC: Heidelberg/Berlin, Germany, 2020; pp. 103–114. [Google Scholar]
- Alqahtani, M.D.S.; Roy, S.J.; Tester, M.A. Increasing Salinity Tolerance of Crop; Springer Nature: New York, NY, USA, 2018. [Google Scholar]
- Somvanshi, P.S.; Pandiaraj, T.; Singh, R.P. An unexplored story of successful green revolution of India and steps towards ever green revolution. J. Pharmacogn. Phytochem. 2020, 9, 1270–1273. [Google Scholar]
- Marathe, D.; Singh, A.; Raghunathan, K.; Thawale, P.; Kumari, K. Current available treatment technologies for saline wastewater and land-based treatment as an emerging environment-friendly technology: A review. Water Environ. Res. 2021, 93, 2461–2504. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Khan, K.M.; Dibaba, D.T.; Khan, A.; Ahmed, A.; Islam, M.Z. Health Implications of Drinking Water Salinity in Coastal Areas of Bangladesh. Int. J. Environ. Res. Public Health 2019, 16, 3746. [Google Scholar] [CrossRef] [Green Version]
- Ajao, V.; Bruning, H.; Rijnaarts, H.; Temmink, H. Natural flocculants from fresh and saline wastewater: Comparative properties and flocculation performances. Chem. Eng. J. 2018, 349, 622–632. [Google Scholar] [CrossRef]
- Sabaghi, S.; Fatehi, P. Phenomenological Changes in Lignin Following Polymerization and Its Effects on Flocculating Clay Particles. Biomacromolecules 2019, 20, 3940–3951. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhuang, X.; Ahmad, S.; Sung, S.; Ni, S.-Q. Biotreatment of high-salinity wastewater: Current methods and future directions. World J. Microbiol. Biotechnol. 2020, 36, 37. [Google Scholar] [CrossRef]
- Panuccio, M.R.S.; Jacobsen, S.-E.; Akhtar, S.S.; Muscolo, A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 2014, 6, plu047. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Jeon, J.; Jeong, H. Effects of Irrigation with Desalinated Water on Lettuce Grown under Greenhouse in South Korea. Appl. Sci. 2020, 10, 2207. [Google Scholar] [CrossRef] [Green Version]
- Von Medeazza, G.M. “Direct” and socially-induced environmental impacts of desalination. Desalination 2005, 185, 57–70. [Google Scholar] [CrossRef]
- Directive, W.F. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Commun. 2000, 22, 2000. [Google Scholar]
- Shatat, M.; Riffat, S.B. Water desalination technologies utilizing conventional and renewable energy sources. Int. J. Low-Carbon Technol. 2012, 9, 1–19. [Google Scholar] [CrossRef]
- Hassanean, M.H.M.; Nafey, A.S.; El-Maghraby, R.M.; Ayyad, F.M. Simulation of Multi-Stage Flash with Brine Circulating Desalination Plant. J. Pet. Min. Eng. 2019, 21, 34–42. [Google Scholar] [CrossRef]
- Srimuk, P. Faradaic Electrode Materials for Next-Generation Electrochemical Water Desalination. Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 2019. [Google Scholar]
- Zhao, D.; Xue, J.; Li, S.; Sun, H.; Zhang, Q.-D. Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater. Desalination 2011, 273, 292–298. [Google Scholar] [CrossRef]
- Awerbuch, L. Vision for Desalination–Challenges and Opportunities. In Proceedings of the IDA World Congress and Water Reuse, Manama, Bahrain, 10 September 2019; Available online: https://www.waterworld.com/home/article/14071194/desalination-opportunities-and-challenges (accessed on 6 April 2022).
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Othman, N.; Asharuddin, S. Applications of natural coagulants to treat wastewater—A review. MATEC Web Conf. 2017, 103, 06016. [Google Scholar] [CrossRef] [Green Version]
- Shammas, N.K. Coagulation and flocculation. In Physicochemical Treatment Processes; Springer: Berlin/Heidelberg, Germany, 2005; pp. 103–139. [Google Scholar]
- Tian, Y.; Zheng, L. Study on characteristics and mechanisms of sauce wastewater’s flocculation treatment. Acta Sci. Circumstantiae 2004, 2, 17. [Google Scholar]
- Liu, G.; Chen, Y.; Yang, Z.; Xie, D.; Tian, W. Treatment of Mustard Wastewater with Coagulation and Sedimentation. J. Southwest Univ. 2011, 33, 122–128. [Google Scholar]
- Borchate, S.; Kullkarni, G.; Kore, V.; Kore, S. A review on applications of coagulation-flocculation and ballast flocculation for water and wastewater. Int. J. Innov. Eng. Technol. 2014, 4, 216–222. [Google Scholar]
- Qu, G.; Zhang, Z.; Zheng, H. Electrochemical oxidation for hypersaline pickle wastewater pretreatment. Res. Environ. Sci. 2012, 25, 785–790. [Google Scholar]
- Qu, G.; Zhang, Z.; Zheng, H. Removal of ammonia nitrogen from hypersaline pickle wastewater by electrochemical oxidation. Chin. J. Environ. Eng. 2013, 7, 815–819. [Google Scholar]
- Sheng, G.; Xiang, P.; Jiang, S.; Ma, D. Electrochemical oxidation of mustard tuber wastewater on boron-doped diamond anode. Desalination Water Treat. 2015, 54, 3184–3191. [Google Scholar] [CrossRef]
- Moraes, J.E.F.; Quina, F.H.; Nascimento, C.A.O.; Silva, D.N.; Chiavone-Filho, O. Treatment of Saline Wastewater Contaminated with Hydrocarbons by the Photo-Fenton Process. Environ. Sci. Technol. 2004, 38, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Diya’uddeen, B.H.; AR, A.A.; Daud, W. On the Limitation of Fenton Oxidation Operational Parameters: A Review. Int. J. Chem. React. Eng. 2012, 10, 10. [Google Scholar] [CrossRef]
- Rype, J.; Jonsson, G. Modeling of Electrically Driven Membrane Processes; Department of Chemical Engineering, Technical University of Denmark: Copenhagen, Denmark, 2002; pp. 147–166. [Google Scholar]
- Van der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Scholz, W.; Lucas, M. Techno-economic evaluation of membrane filtration for the recovery and re-use of tanning chemicals. Water Res. 2003, 37, 1859–1867. [Google Scholar] [CrossRef]
- Vaudevire, E.; Koreman, E. Ion Exchange Brine Treatment: Closing the Loop of NaCl Use and Reducing Disposal towards a Zero Liquid Discharge. Water Is Necessary Life-WIN4Life. 2012. Available online: uest.ntua.gr/win4life/proceedings/papers/Vaudevirekoreman.pdf (accessed on 6 April 2022).
- Zhang, L.; Fu, G.; Zhang, Z. Electricity generation and microbial community in long-running microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioelectrochemistry 2019, 126, 20–28. [Google Scholar] [CrossRef]
- Ludzack, F.J.; Noran, D.K. Tolerance of high salinities by conventional wastewater treatment processes. J.-Water Pollut. Control Fed. 1965, 37, 1404–1416. [Google Scholar]
- Kargi, F.; Dinçer, A.R.; Pala, A. Characterization and biological treatment of pickling industry wastewater. Bioprocess Biosyst. Eng. 2000, 23, 371–374. [Google Scholar] [CrossRef]
- Ping, F.H.H.; Tong, Z. Anaerobic Biotechnology: Environmental Protection and Resource Recovery; Imperial College Press: London, UK, 2015. [Google Scholar]
- Lefebvre, O.; Moletta, R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 2006, 40, 3671–3682. [Google Scholar] [CrossRef]
- Little, L.W.; Lamb, J.C., III; Horney, L.F. Characterization and Treatment of Brine Wastewaters from the Cucumber Pickle Industry; Water Resources Research Institute of the University of North Carolina: Chapel Hill, NC, USA, 1976. [Google Scholar]
- Ni, B.-J. Formation, Characterization and Mathematical Modeling of the Aerobic Granular Sludge; Springer: Berlin/Heidelberg, Germany, 2013; Volume 131. [Google Scholar]
- Weber, S.D.; Ludwig, W.; Schleifer, K.-H.; Fried, J. Microbial Composition and Structure of Aerobic Granular Sewage Biofilms. Appl. Environ. Microbiol. 2007, 73, 6233–6240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassin, J.P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; van Loosdrecht, M.C.M. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure. Appl. Environ. Microbiol. 2011, 77, 7942–7953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, B.; Yang, C.-Z.; Pu, W.-H.; Yang, J.-K.; Jiang, G.-S.; Dan, J.-F.; Li, C.-Y.; Liu, F.-B. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor. Bioresour. Technol. 2014, 166, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Qin, L.; Liu, X.; Li, B.; Chen, J.; You, J.; Shen, Y.; Chen, X. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism. Bioresour. Technol. 2017, 236, 60–67. [Google Scholar] [CrossRef]
- Verawaty, M.; Pijuan, M.; Yuan, Z.; Bond, P. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment. Water Res. 2012, 46, 761–771. [Google Scholar] [CrossRef]
- Moussa, M.; Sumanasekera, D.; Ibrahim, S.; Lubberding, H.; Hooijmans, C.; Gijzen, H.; van Loosdrecht, M. Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers. Water Res. 2006, 40, 1377–1388. [Google Scholar] [CrossRef]
- Lim, J.-M.; Jeon, C.O.; Lee, S.S.; Park, D.-J.; Xu, L.-H.; Jiang, C.-L.; Kim, C.-J. Reclassification of Salegentibacter catena Ying et al. 2007 as Salinimicrobium catena gen. nov., comb. nov. and description of Salinimicrobium xinjiangense sp. nov., a halophilic bacterium isolated from Xinjiang province in China. Int. J. Syst. Evol. Microbiol. 2008, 58, 438–442. [Google Scholar] [CrossRef]
- Esparza-Soto, M.; Westerhoff, P. Biosorption of humic and fulvic acids to live activated sludge biomass. Water Res. 2003, 37, 2301–2310. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.; Guo, G.; Mackey, H.R.; Hao, T.; Chen, G. Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept. Water Res. 2017, 115, 210–219. [Google Scholar] [CrossRef]
- Chai, H.; Li, L.; Wei, Y.; Zhou, J.; Kang, W.; Shao, Z.; He, Q. Optimization of membrane fouling process for mustard tuber wastewater treatment in an anoxic-oxic biofilm-membrane bioreactor. Environ. Eng. Res. 2016, 21, 196–202. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, J. Study on Best Way to Run and Salt Tolerance for Mustard Tuber Wastewater Treatment by Biological Aerated Filter. Technol. Water Treat. 2011, 37, 95–97. [Google Scholar]
- Du, J.; He, Q.; Chai, H.; Zhao, J. Treatment of High-salinity Mustard Tuber Wastewater by Compound-type MBR with Intermittent Aeration. China Water Wastewater 2014, 30, 70–72. [Google Scholar]
- Wang, J.; Zhou, J.; Wang, Y.; Wen, Y.; He, L.; He, Q. Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater: The potential multiple pathways and key microorganisms. Water Res. 2020, 177, 115734. [Google Scholar] [CrossRef]
- Aspe, E.; Marti, M.; Jara, A.; Roeckel, M. Ammonia Inhibition in the Anaerobic Treatment of Fishery Effluents. Water Environ. Res. 2001, 73, 154–164. [Google Scholar] [CrossRef]
- Wan, J.; Gu, J.; Zhao, Q.; Liu, Y. COD capture: A feasible option towards energy self-sufficient domestic wastewater treatment. Sci. Rep. 2016, 6, 25054. [Google Scholar] [CrossRef] [PubMed]
- Lettinga, G. Anaerobic digestion and wastewater treatment systems. Antonie Leeuwenhoek 1995, 67, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.W.; Akin, D.E.; Nordstedt, R.A.; Thomas, M.V.; Aldrich, H.C. Light and Electron Microscopic Examinations of Methane-Producing Biofilms from Anaerobic Fixed-Bed Reactors. Appl. Environ. Microbiol. 1984, 48, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Ismail, S.; de La Parra, C.; Temmink, H.; van Lier, J. Extracellular polymeric substances (EPS) in upflow anaerobic sludge blanket (UASB) reactors operated under high salinity conditions. Water Res. 2010, 44, 1909–1917. [Google Scholar] [CrossRef]
- Yu, H.; Tay, J.; Fang, H.H. The roles of calcium in sludge granulation during uasb reactor start-up. Water Res. 2001, 35, 1052–1060. [Google Scholar] [CrossRef]
- Pevere, A.; Guibaud, G.; van Hullebusch, E.; Boughzala, W.; Lens, P. Effect of Na+ and Ca2+ on the aggregation properties of sieved anaerobic granular sludge. Colloids Surf. A Physicochem. Eng. Asp. 2007, 306, 142–149. [Google Scholar] [CrossRef]
- Ismail, S.B.; Gonzalez, P.; Jeison, D.; Van Lier, J.B. Effects of high salinity wastewater on methanogenic sludge bed systems. Water Sci. Technol. 2008, 58, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Malvankar, N.S.; Yalcin, S.E.; Tuominen, M.T.; Lovley, D.R. Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat. Nanotechnol. 2014, 9, 1012–1017. [Google Scholar] [CrossRef]
- Storck, T.; Virdis, B.; Batstone, D.J. Modelling extracellular limitations for mediated versus direct interspecies electron transfer. ISME J. 2016, 10, 621–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, P.M.; Rotaru, A.-E. Plugging in or going wireless: Strategies for interspecies electron transfer. Front. Microbiol. 2014, 5, 237. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, Q.; Wu, X.; Li, X.; Li, Q.; Wang, Y. Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors. Renew. Sustain. Energy Rev. 2016, 54, 1358–1367. [Google Scholar] [CrossRef]
- Leng, L.; Yang, P.; Singh, S.; Zhuang, H.; Xu, L.; Chen, W.-H.; Dolfing, J.; Li, D.; Zhang, Y.; Zeng, H.; et al. A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresour. Technol. 2018, 247, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- de Bok, F.; Plugge, C.; Stams, A. Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res. 2004, 38, 1368–1375. [Google Scholar] [CrossRef]
- Lovley, D.R. Syntrophy Goes Electric: Direct Interspecies Electron Transfer. Annu. Rev. Microbiol. 2017, 71, 643–664. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Si, B.; Watson, J.; Zhang, Y. Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer. Renew. Sustain. Energy Rev. 2021, 145, 111069. [Google Scholar] [CrossRef]
- Qiao, W.; Takayanagi, K.; Li, Q.; Shofie, M.; Gao, F.; Dong, R.; Li, Y.-Y. Thermodynamically enhancing propionic acid degradation by using sulfate as an external electron acceptor in a thermophilic anaerobic membrane reactor. Water Res. 2016, 106, 320–329. [Google Scholar] [CrossRef]
- Chai, H.; Kang, W. Influence of Biofilm Density on Anaerobic Sequencing Batch Biofilm Reactor Treating Mustard Tuber Wastewater. Appl. Biochem. Biotechnol. 2012, 168, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Kong, X.-J.; Chai, H.-X.; Fan, M.-Y.; Du, J. Efficiency influence of exogenous betaine on anaerobic sequencing batch biofilm reactor treating high salinity mustard tuber wastewater. Environ. Technol. 2012, 33, 1695–1699. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, O.; Vasudevan, N.; Torrijos, M.; Thanasekaran, K.; Moletta, R. Anaerobic digestion of tannery soak liquor with an aerobic post-treatment. Water Res. 2006, 40, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-P.; Ma, T.-F.; Hu, X.; Fang, F.; Shen, Y.; Yang, J.; Guo, J.-S.; Bao, Z.-G.; Yan, P. Start-Up of a Combined Anaerobic/Partial Nitritation/ANAMMOX Process for High-Salt Mustard Wastewater Treatment. Appl. Biochem. Biotechnol. 2015, 175, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Chen, Y.; Guo, J.; Wang, J.; Yan, P.; Yin, W. Treatment of mustard tuber wastewater (MTWW) using a pilot-scale packed cage rotating biological contactor system: Process modeling and optimization. Environ. Sci. Pollut. Res. 2021, 28, 32057–32065. [Google Scholar] [CrossRef]
- Xiao, Y.R.; Roberts, D.J. A review of anaerobic treatment of saline wastewater. Environ. Technol. 2010, 31, 1025–1043. [Google Scholar] [CrossRef]
- Mittal, A. Biological wastewater treatment. Water Today 2011, 1, 32–44. [Google Scholar]
- El-Bestawy, E.; Hussein, H.; Baghdadi, H.H.; El-Saka, M.F. Comparison between biological and chemical treatment of wastewater containing nitrogen and phosphorus. J. Ind. Microbiol. Biotechnol. 2005, 32, 195–203. [Google Scholar] [CrossRef]
- Cusick, R.D.; Kim, Y.; Logan, B.E. Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells. Science 2012, 335, 1474–1477. [Google Scholar] [CrossRef] [Green Version]
- Yin, X. Study on Treatment of High-Salinity Comprehensive Mustard Wasterwater by Combined Process of AerobicMicro-Electrolysis-Electrochemical Oxidation-Sedimentation; Chongqing University: Chongqing, China, 2011. [Google Scholar]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Rollings, R.C.; Kuan, A.T.; Golovchenko, J.A. Ion selectivity of graphene nanopores. Nat. Commun. 2016, 7, 11408. [Google Scholar] [CrossRef] [PubMed]
- Radjenovic, J.; Sedlak, D.L. Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. Environ. Sci. Technol. 2015, 49, 11292–11302. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, J.; Long, T.; Liu, J. Efficiency of phosphorus removal from high-salinity mustard tuber wastewater by combined biological/chemical process. China Water Wastewater 2008, 24, 29–33. [Google Scholar]
- Gao, Y.; Ye, R.; Song, Y.; Yuan, P. Effects of solution conditions on the precipitation of calcium phosphate for recovery. J. Saf. Environ. 2007, 7, 58–62. [Google Scholar]
- Xie, M.; Shon, H.K.; Gray, S.R.; Elimelech, M. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Res. 2016, 89, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, R.; Pérez-González, A.; Gómez, P.; Urtiaga, A.; Ortiz, I. Acid and base recovery from softened reverse osmosis (RO) brines. Experimental assessment using model concentrates. Desalination 2013, 309, 165–170. [Google Scholar] [CrossRef]
- Thiel, G.P.; Kumar, A.; Gómez-González, A.; Lienhard, V.J.H. Utilization of Desalination Brine for Sodium Hydroxide Production: Technologies, Engineering Principles, Recovery Limits, and Future Directions. ACS Sustain. Chem. Eng. 2017, 5, 11147–11162. [Google Scholar] [CrossRef]
- Xu, L.; Dong, F.; Yang, J.; Liu, W.; Zhu, L.; He, Q.; Wang, X.; Li, H.; Wang, X. Electricity generation and acid and alkaline recovery from pickled waters/wastewaters through anaerobic digestion, bipolar membrane electrodialysis and solid oxide fuel cell hybrid system. Energy Convers. Manag. 2021, 251, 114973. [Google Scholar] [CrossRef]
- Chen, X.; Yip, N.Y. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis. Environ. Sci. Technol. 2018, 52, 2242–2250. [Google Scholar] [CrossRef]
- Boo, C.; Winton, R.K.; Conway, K.M.; Yip, N.Y. Membrane-less and Non-Evaporative Desalination of Hypersaline Brines by Temperature Swing Solvent Extraction. Environ. Sci. Technol. Lett. 2019, 6, 359–364. [Google Scholar] [CrossRef]
- Ansari, A.; Hai, F.; Price, W.E.; Drewes, J.E.; Nghiem, L. Forward osmosis as a platform for resource recovery from municipal wastewater—A critical assessment of the literature. J. Membr. Sci. 2017, 529, 195–206. [Google Scholar] [CrossRef] [Green Version]
Pickles | Sources | COD | NH3-N | TN | TP | TS | Cl− | pH |
---|---|---|---|---|---|---|---|---|
mg L−1 | ||||||||
Mustard tuber | 1st pickling | 27,800–38,400 | 264–461 | 1600–2080 | 263–354 | 49,600–52,600 | 30,300–78,300 | 5.9–6.7 |
2nd pickling | 29,300–44,300 | 363–565 | 1620–2500 | 227–364 | 65,650–77,650 | 14,700–71,900 | 4.4–5.4 | |
3rd pickling | 26,200–90,400 | 307–914 | 1640–3150 | 213–407 | 68,150–68,650 | 29,700–104,000 | 3.7–6.6 | |
Comprehensive | 7000–30,000 | 181–545 | 210–2160 | 34–281 | 28,635–31,950 | 7370–33,200 | 4.6–5.5 |
Process | Wastewater Source | Salinity (%) | Max. Cl−1 Tolerance (mg L−1) | Halophilic Bacteria | Module | Objects | Contaminant Removal | Reference |
---|---|---|---|---|---|---|---|---|
Bio-ceramic moving bed biofilm reactor | Mustard tuber wastewater | 0.5–2.0 | 51,840 | No | Lab-scale with 45 L | Optimization of influential factors and tolerance of organic loading shock | 64.71% COD and 58.12% NH3-N | [4] |
Membrane bioreactor system (MBR) | Mustard tuber wastewater | 2.0 | -- | No | Lab-scale with 620 L | The feasibility of Compound-type MBR for Mustard tuber wastewater treatment | 80% COD, 94.16% NH3-N, and 33.94%TP | [5] |
Biological rotating cage | Mustard tuber wastewater | 0.6–0.83 | -- | No | Lab-scale | Microbial communities | 93% COD, 99.13% NH4+-N | [6] |
Anaerobic/partial nitritation/ANAMMOX process | Mustard Wastewater | 12 | -- | No | Lab scale with12 L | Start-up of the combined anaerobic, PN, and anammox process in the treatment of mustard wastewater | 89.7% COD 86.2% TN | [7] |
A/O process | Mustard Wastewater | 2.0 | -- | -- | Practical engineering | Cand N removal | 70–95% COD, 60–80% NH3-N, 70% TP | Our survey |
Anaerobic/Contact oxidation/CASS | Mustard Wastewater | 1.5 | -- | -- | Practical engineering | C and N removal | 80–95% COD, 60–92% NH3-N | Our survey |
A2/O process | Mustard Wastewater | 1.2–2.0 | -- | -- | Practical engineering | C and N removal | 90–95% COD, 80–90% NH3-N | Our survey |
Hydrolysis-acidogenesis-SBR-coagulation | Mustard tuber wastewater | 1.0 | -- | Lab scale with 56 L | Optimizing conditions of combined technique for mustard tuber wastewater treatment | 96% COD, 85.03% SS, 84.9% NH4+-N and 95.32% TP | [8] | |
Biological-chemical | Mustard tuber wastewater | 7–7.5 | Lab scale with 3.5 L | Treating mustard tuber wastewater with high salinity, high phosphorus, and high nitrogen. | 56.6% COD, 20.8% NH3-N, and 22% TP. | [9] | ||
Coagulation, anaerobic and electrode-SBBR integrated process | Mustard tuber wastewater | -- | 14,780 | Lab scale | Find the optimal parameters to improve the performance of the combined system for mustard tuber wastewater treatment | 83.26% COD, 70.98% TN, 52.56% TP | [10] | |
Anoxic-oxic biofilm-membrane bioreactor | Mustard tuber wastewater | 10 | -- | Pilot-scale with 630 L | Developing an optimal condition to obtain the highest treatment efficiency at lowest membrane fouling rate | 90.3% COD, 92.4% NH3-N, 61.6% TN and 98.1% SS | [11] | |
Combined process of aerobicmicro-electrolysis-electrochemical oxidation-sedimentation | Mustard tuber wastewater | 20–30 | -- | Lab scale | Parameter optimization to obtain the highest treatment efficiency | 90.96% COD, 100% NH3-N, 72.3% TN and 100% TP | [12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Pang, Y.; Liu, W.; Chen, H.; Huang, S.; Zhu, L. Hypersaline Wastewater Produced from Pickled Mustard Tuber (Chinese Zhacai): Current Treatment Status and Prospects. Water 2022, 14, 1508. https://doi.org/10.3390/w14091508
Xu L, Pang Y, Liu W, Chen H, Huang S, Zhu L. Hypersaline Wastewater Produced from Pickled Mustard Tuber (Chinese Zhacai): Current Treatment Status and Prospects. Water. 2022; 14(9):1508. https://doi.org/10.3390/w14091508
Chicago/Turabian StyleXu, Linji, Yunsong Pang, Wenzong Liu, Hongna Chen, Shunjun Huang, and Lei Zhu. 2022. "Hypersaline Wastewater Produced from Pickled Mustard Tuber (Chinese Zhacai): Current Treatment Status and Prospects" Water 14, no. 9: 1508. https://doi.org/10.3390/w14091508
APA StyleXu, L., Pang, Y., Liu, W., Chen, H., Huang, S., & Zhu, L. (2022). Hypersaline Wastewater Produced from Pickled Mustard Tuber (Chinese Zhacai): Current Treatment Status and Prospects. Water, 14(9), 1508. https://doi.org/10.3390/w14091508