Study on a Water-Level-Forecast Method Based on a Time Series Analysis of Urban River Basins—A Case Study of Shibuya River Basin in Tokyo
Abstract
:1. Introduction
2. Study Area and Data
3. Analytical Method for Water Level Forecast with Time Series Analysis
3.1. About Vsector Autoregressive Model
3.2. Methods to Design Water Level Forecast Model and Verify Its Accuracy
- Target torrential rainfall event is divided into nine data sets as shown in Figure 3.
- Data from one torrential rainfall event are used as the verification data.
- Data from the remaining seven torrential rainfall events are used as the data set for parameter estimates.
- With the set data, parameters are estimated and the accuracy is verified.
- Steps 2, 3, and 4 are repeated to assess the accuracy of the forecast.
4. Results and Discussions
4.1. Verifying the Accuracy of the Forecast
4.2. The Number of Torrential Rainfall Events Necessary for Stable Water Level Forecast
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century; The World Bank Press: Washington, DC, USA, 2012. [Google Scholar]
- Galloway, G.; Brody, S.; Reilly, A.; Highfield, W.E. The Growing Threat of Urban Flooding: A National Challenge; University of Maryland: College Park, MD, USA; Texas A&M University: Galveston, TX, USA, 2018. [Google Scholar]
- Hollis, G.E. The effects of urbanization on floods of different recurrence interval. Water Resour. Res. 1975, 11, 431–435. [Google Scholar] [CrossRef]
- Morita, S.; Izumi, K. Quantitative analysis, the difference of flood runoff depth associated with urbanization. Proc. Jpn. Conf. Hydraul. 1985, 29, 19–24. [Google Scholar]
- Muis, S.; Güneralp, B.; Jongman, B.; Aerts, J.C.; Ward, P.J. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Sci. Total Environ. 2015, 538, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.H.; Gan, T.Y. Urbanization and climate change implications in flood risk management: Developing an efficient decision support system for flood susceptibility mapping. Sci. Total Environ. 2018, 636, 152–167. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; McGrath, R.; Hanfin, J.; Lynch, P.; Semmler, T.; Nolan, P. The impact of climate change on storm surges over Irish waters. Ocean Model. 2008, 25, 83–94. [Google Scholar] [CrossRef]
- Suzuki, T. Japan’s inundation risk map of storm surge under global warming and inundation damage function of coastal area. Annu. J. Civ. Eng. Ocean. 2012, 68, I-870–I-875. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Li, H.Y.; Leung, L.R.; Guo, J.; Ran, Q.; Demissie, Y.; Sivapalan, M. Understanding flood seasonality and its temporal shifts within the contiguous united states. J. Hydrol. Meteorol. 2017, 18, 1997–2009. [Google Scholar] [CrossRef]
- Iwanaga, Y.; Ideta, k.; Sato, T.; Shimatani, Y. Study on outflow effect of on-site storage and soil improvement for small watershed. J. Jpn. Soc. Civ. Eng. Ser B1 (Hydraul. Eng.) 2016, 72, 49–58. [Google Scholar]
- Tokyo Metropolitan Government: Tokyo Metropolitan Government Basic Policy on Torrential Rainfall Countermeasures (Revised). 2014. Available online: https://www.toshiseibi.metro.tokyo.lg.jp/kiban/gouu_houshin/ (accessed on 28 November 2022).
- Kawaike, K.; Nakagawa, H. Mitigation Effect of ON-SITE Storage Facilities on Pluvial Inundation in Highly Urbanized Area. J. Jpn. Soc. Civ. Eng. Ser. B1 (Hydraul. Eng.) 2018, 74, I-1537–I-1542. [Google Scholar] [CrossRef]
- Hou, J.M.; Liu, F.F.; Tong, Y.; Guo, K.H.; Ma, L.; Li, D. Numerical simulation for runoff regulation in rain garden using 2D hydrodynamic model. Ecol. Eng. 2020, 153, 105794. [Google Scholar] [CrossRef]
- Gagliano, A.; Nocera, F.; Detommaso, M.; Evola, G. Thermal behavior of an extensive green roof: Numerical simulations and experimental investigations. Int. J. Heat Mass Transf. 2016, 34, 226–234. [Google Scholar] [CrossRef]
- Liu, X.; Chui, T.F.M. Evaluation of green roof performance in mitigating the impact of extreme storms. Water 2019, 11, 815. [Google Scholar] [CrossRef]
- CIMA Foundation. Input Paper Prepared for the Global Assessment Report on Disaster Risk Reduction 2015. 2015. Available online: https://www.preventionweb.net/english/hyogo/gar/2015/en/gar-pdf/GAR2015_EN.pdf?_gl=1*q6zrfx*_ga*MTI4MzUyNzU0OS4xNjY3NTY0NTQ3*_ga_D8G5WXP6YM*MTY2NzU2NDU0Ni4xLjEuMTY2NzU2NDYzMS4wLjAuMA (accessed on 28 November 2022).
- JRC. River Flood Hazard Maps at European and Global Scale. Available online: https://data.jrc.ec.europa.eu/collection/id-0054 (accessed on 4 November 2022).
- Winsemius, H.C.; Van Beek, L.P.H.; Jongman, B.; Ward, P.J.; Bouwman, A. A frame work for global river flood risk assessments. Hydrol. Earth Syst. Sci. 2013, 17, 1871–1892. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Land, Infrastructure, Transport and Tourism. Hazard Map Portal Site. Available online: https://disaportal.gsi.go.jp/ (accessed on 4 November 2022).
- Morooka, Y.; Yamada, T. Study on the characteristics of rainfall runoff in the Kinugawa river basin and the evacuation behavior of the residents at the time of Kanto and Tohoku flood disaster in September, 2015. J. Disaster Res. 2017, 12, 176–186. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modeling; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Fotovatikhah, F.; Herrera, M.; Shamshirband, S.; Chau, K.; Faizollahzadeh Ardabili, S.; Piran, M.J. Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work. Eng. Appl. Comp. Fluid Mech. 2018, 12, 411–437. [Google Scholar] [CrossRef] [Green Version]
- Yaseen, Z.M.; Sulaiman, S.O.; Deo, R.C.; Chau, K.W. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 2019, 569, 387–408. [Google Scholar] [CrossRef]
- Cho, M.; Kim, C.; Jung, K.; Jung, H. Water level prediction model applying a long short-term memory (lstm)–gated recurrent unit (gru) method for flood prediction. Water 2022, 14, 2221. [Google Scholar] [CrossRef]
- Makoto, H.; Makoto, S.; Hironobu, M. Application of multivariate autoregressive model to groundwater behavior. J. Hydraul. Eng. 1995, 1995, 93–102. [Google Scholar]
- Hartini, S.; Hadi, M.P.; Sudibyakto, S.; Poniman, A. Application of vector auto regression model for rainfall-river discharge analysis. Forum Geogr. 2015, 29, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Miedzielski, T. A data-based regional scale autoregressive rainfall-runoff model: A study from the odra river. Stoch. Environ. Res. Risk Assess. 2007, 21, 649–664. [Google Scholar] [CrossRef]
- Niedzielski, T.; Miziński, B. Real-time hydrograph modelling in the upper nysa klodzka river basin (sw poland): A Two-Model hydrologic ensemble prediction approach. Stoch. Environ. Res. Risk Assess. 2017, 31, 1555–1576. [Google Scholar] [CrossRef] [Green Version]
- Ali, G. Cointegration VAR and VECM and ARIMAX econometric approaches for water quality variates. J. Stat Econ. Methods 2015, 4, 1–38. [Google Scholar]
- Mignot, E.; Li, X.; Dewals, B. Experimental modelling of urban flooding: A review. J. Hydrol. 2019, 568, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Danish, D. Hydraulic Institutek: Mike Urban, Mike Urban. 2017. Available online: https://www.mikepoweredbydhi.com/products/mike-urban (accessed on 28 November 2022).
- Mwh: InfoWorks CS, Innovyze. 2010. Available online: http://www.innovyze.com/products/infoworks (accessed on 28 November 2022).
- Rossman, L. Storm Water Management Model Users’ Manual, Version 5.1; Environmental Protection Agency: Washington, DC, USA, 2015. [Google Scholar]
- Henonin, J.; Russo, B.; Mark, O.; Gourbesville, P. Real-time urban flood forecasting and modelling—A state of the art. J. Hydroinf. 2013, 15, 717–736. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Guo, Y.; Wu, Z.; Yan, D. Urban flood forecasting based on the coupling of numerical weather model and stormwater model: A case study of zhengzhou city. J. Hydrol. Reg. Stud. 2022, 39, 100985. [Google Scholar] [CrossRef]
- Sidek, L.M.; Jaafar, A.S.; Majid, W.H.A.W.A.; Basri, H.; Marufuzzaman, M.; Fared, M.M.; Moon, W.C. High-resolution hydrological-hydraulic modeling of urban floods using infoworks ICM. Sustainability 2021, 13, 10259. [Google Scholar] [CrossRef]
- Mair, M.; Zischg, J.; Rauch, W.; Sitzenfrei, R. Where to find water pipes and sewers?—On the correlation of infrastructure networks in the urban environment. Water 2017, 9, 146. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Ma, C.; Xu, H.; Chen, Z.; Zhao, K.; Han, H. A review on applications of urban flood models in flood mitigation strategies. Nat. Hazards 2021, 108, 31–62. [Google Scholar] [CrossRef]
- Tokyo Metropolitan Government. Sewerage Registers System. Available online: http://www.gesuijoho.metro.tokyo.jp/semiswebsystem/TspAgreementWeb.aspx (accessed on 4 November 2022).
- Tokyo Metropolitan Government. Comprehensive Information System for Flood and Disaster Prevention. Available online: https://www.kasen-suibo.metro.tokyo.lg.jp/im/uryosuii/tsim0102g.html (accessed on 4 November 2022).
- National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism (NILIM), Japan. Technical Documentation on the Practical Application of XRAIN (X-Band Polarimetric (Multi Parameter) Radar Information Network) Rainfall Observation; Technical Note of NIKIM; NILIM: Tsukuba, Japan, 2016; Volume 909. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Heathmont, VIC, Australia, 2014. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 6, 716–723. [Google Scholar] [CrossRef]
- Lachenbruch, P.A.; Mickey, M.R. Estimation of Error Rates in Discriminant Analysis. Technometrics 1968, 10, 1–11. [Google Scholar] [CrossRef]
- Eiichi, N.; Hiroto, S.; Ryuta, N.; Hiroyuki, Y.; Kosei, Y. Early Detection of Baby-Rain-Cell Aloft in a Severe Storm and Risk Projection for Urban Flash Flood. Adv. Meteorol. 2017, 2017, 5962356. [Google Scholar] [CrossRef]
Time [min.] | Rain 1 [mm/h] | W.L. 1 [m] | Rain 2 [mm/h] | W.L. 2 [m] | Rain 3 [mm/h] | W.L. 3 [m] | Rain 4 [mm/h] | W.L. 4 [m] | Rain 5 [mm/h] | W.L. 5 [m] | Rain 6 [mm/h] | W.L. 6 [m] | Rain 7 [mm/h] | W.L. 7 [m] | Rain 8 [mm/h] | W.L. 8 [m] | Rain 9 [mm/h] | W.L. 9 [m] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.14 | 0 | 0.12 | 0 | 0.12 | 0 | 0.1 | 0 | 0.15 | 0 | 0.23 | 0 | 0.2 | 0 | 0.18 | 0 | 0.19 |
10 | 0 | 0.14 | 0 | 0.12 | 0 | 0.12 | 0 | 0.1 | 0 | 0.15 | 0 | 0.23 | 0 | 0.2 | 0 | 0.18 | 0 | 0.19 |
20 | 0 | 0.13 | 0 | 0.12 | 0 | 0.12 | 0 | 0.1 | 0 | 0.15 | 0 | 0.24 | 0 | 0.2 | 0 | 0.18 | 0 | 0.19 |
30 | 0 | 0.13 | 0 | 0.12 | 0 | 0.12 | 0 | 0.1 | 0 | 0.16 | 0 | 0.24 | 0 | 0.2 | 0 | 0.18 | 0 | 0.2 |
40 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.1 | 0 | 0.16 | 0 | 0.24 | 0 | 0.2 | 0 | 0.18 | 0 | 0.19 |
50 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.1 | 0 | 0.15 | 0 | 0.24 | 0 | 0.2 | 0 | 0.18 | 0 | 0.19 |
60 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.1 | 0 | 0.15 | 0 | 0.24 | 0 | 0.2 | 0.47 | 0.18 | 0 | 0.19 |
70 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0.88 | 0.1 | 0 | 0.15 | 0 | 0.24 | 0 | 0.21 | 1.79 | 0.18 | 0 | 0.19 |
80 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 5.3 | 0.1 | 0 | 0.15 | 0 | 0.24 | 0 | 0.21 | 0.94 | 0.18 | 0 | 0.19 |
90 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0.76 | 0.1 | 0.61 | 0.15 | 0 | 0.25 | 0 | 0.21 | 0.07 | 0.18 | 0 | 0.19 |
100 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0.16 | 0.1 | 1.3 | 0.15 | 0 | 0.25 | 0 | 0.21 | 0.09 | 0.18 | 0 | 0.19 |
110 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.1 | 0.5 | 0.15 | 0 | 0.25 | 0 | 0.21 | 0.16 | 0.18 | 0 | 0.19 |
120 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.1 | 1.04 | 0.16 | 0 | 0.25 | 0 | 0.21 | 1.44 | 0.19 | 0 | 0.19 |
130 | 0 | 0.13 | 0 | 0.12 | 0 | 0.1 | 0 | 0.1 | 1.54 | 0.17 | 0 | 0.25 | 0 | 0.21 | 6.93 | 0.18 | 0 | 0.19 |
140 | 0 | 0.13 | 0 | 0.12 | 0 | 0.1 | 0 | 0.1 | 10.32 | 0.25 | 0 | 0.25 | 0 | 0.21 | 2.25 | 0.18 | 0 | 0.19 |
150 | 0 | 0.13 | 0 | 0.12 | 0 | 0.1 | 0 | 0.1 | 40.22 | 0.98 | 0 | 0.25 | 0 | 0.21 | 3.23 | 0.29 | 0 | 0.19 |
160 | 0 | 0.13 | 0 | 0.12 | 0 | 0.1 | 0 | 0.1 | 79.8 | 1.65 | 0 | 0.25 | 0 | 0.21 | 5.07 | 0.28 | 0 | 0.19 |
170 | 0 | 0.13 | 0 | 0.12 | 0 | 0.1 | 0 | 0.1 | 85.69 | 4.07 | 0 | 0.25 | 0 | 0.21 | 1.22 | 0.27 | 0 | 0.19 |
180 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.1 | 66.18 | 4.56 | 0.03 | 0.25 | 0 | 0.2 | 0 | 0.25 | 0 | 0.19 |
190 | 0 | 0.13 | 0 | 0.12 | 0 | 0.1 | 0 | 0.1 | 28.87 | 4.36 | 0.14 | 0.25 | 0 | 0.21 | 0.01 | 0.21 | 0 | 0.19 |
200 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.1 | 4.82 | 3.76 | 0.65 | 0.25 | 0 | 0.21 | 0.29 | 0.19 | 0 | 0.2 |
210 | 0 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.1 | 3.1 | 2.43 | 0 | 0.25 | 0 | 0.21 | 0.07 | 0.18 | 0 | 0.19 |
220 | 0.26 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.1 | 0.87 | 1.59 | 0 | 0.25 | 0 | 0.2 | 0.11 | 0.18 | 0 | 0.19 |
230 | 0.66 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.1 | 0.15 | 1.03 | 0 | 0.25 | 0 | 0.2 | 1.03 | 0.18 | 0 | 0.19 |
240 | 0.59 | 0.13 | 0 | 0.12 | 0 | 0.1 | 0 | 0.19 | 0 | 0.68 | 0 | 0.25 | 0 | 0.2 | 0.08 | 0.18 | 0 | 0.19 |
250 | 8.87 | 0.13 | 0 | 0.12 | 0 | 0.11 | 0 | 0.19 | 0 | 0.46 | 0 | 0.25 | 0 | 0.2 | 0.01 | 0.18 | 0 | 0.19 |
260 | 36.82 | 0.13 | 0.74 | 0.12 | 0 | 0.11 | 0 | 0.19 | 0 | 0.35 | 0 | 0.25 | 0 | 0.2 | 0.81 | 0.17 | 0 | 0.19 |
270 | 51.2 | 0.15 | 34.96 | 0.12 | 0 | 0.11 | 0 | 0.19 | 0 | 0.28 | 0 | 0.25 | 0 | 0.2 | 1.07 | 0.3 | 0 | 0.19 |
280 | 44.8 | 0.78 | 61 | 0.12 | 0 | 0.11 | 0 | 0.19 | 0 | 0.24 | 0 | 0.25 | 0 | 0.2 | 0.07 | 0.22 | 0 | 0.19 |
290 | 15.89 | 3.04 | 40.29 | 0.12 | 0 | 0.11 | 0 | 0.19 | 0 | 0.21 | 0 | 0.25 | 0 | 0.2 | 0 | 0.18 | 0 | 0.19 |
300 | 0.55 | 2.57 | 8.27 | 3.4 | 0 | 0.11 | 0 | 0.19 | 0 | 0.2 | 0 | 0.25 | 0 | 0.2 | 0.34 | 0.16 | 0 | 0.19 |
310 | 0 | 1.88 | 0.01 | 2.77 | 0 | 0.11 | 0 | 0.19 | 0 | 0.18 | 0 | 0.25 | 0 | 0.2 | 0.2 | 0.16 | 0 | 0.19 |
320 | 0 | 1.21 | 0 | 1.76 | 0 | 0.11 | 0 | 0.18 | 0 | 0.18 | 0 | 0.25 | 0 | 0.2 | 0.27 | 0.16 | 0 | 0.19 |
330 | 0.44 | 0.78 | 0 | 0.95 | 0.04 | 0.11 | 0 | 0.18 | 0 | 0.16 | 0.04 | 0.25 | 0 | 0.2 | 0.17 | 0.16 | 0 | 0.19 |
340 | 0.22 | 0.53 | 0 | 0.56 | 1.42 | 0.11 | 0 | 0.19 | 0 | 0.16 | 0.19 | 0.25 | 1.03 | 0.2 | 0.62 | 0.16 | 0 | 0.19 |
350 | 0.02 | 0.38 | 0 | 0.35 | 0.41 | 0.11 | 0.12 | 0.19 | 0 | 0.15 | 0.09 | 0.25 | 0.02 | 0.19 | 2.25 | 0.18 | 0 | 0.19 |
360 | 0.17 | 0.31 | 0 | 0.25 | 9.97 | 0.11 | 1.96 | 0.19 | 0 | 0.15 | 0.15 | 0.25 | 0 | 0.18 | 0 | 0.18 | 0.12 | 0.19 |
370 | 0.03 | 0.25 | 0 | 0.2 | 8.7 | 0.1 | 5.63 | 0.18 | 0 | 0.15 | 0.32 | 0.25 | 0.21 | 0.17 | 0 | 0.17 | 23.95 | 0.18 |
380 | 0 | 0.22 | 0 | 0.17 | 1.98 | 0.1 | 0.78 | 0.19 | 0 | 0.14 | 0.57 | 0.25 | 24.12 | 0.16 | 0 | 0.16 | 48.66 | 0.88 |
390 | 0 | 0.19 | 0 | 0.15 | 0.55 | 0.1 | 1.29 | 0.18 | 0 | 0.14 | 0.5 | 0.24 | 9 | 0.16 | 0 | 0.16 | 5.26 | 3 |
400 | 0 | 0.18 | 0 | 0.14 | 0.04 | 0.1 | 2.22 | 0.18 | 0 | 0.14 | 12.07 | 0.22 | 3.18 | 0.16 | 0 | 0.16 | 8.91 | 2.57 |
410 | 0 | 0.16 | 0 | 0.13 | 0 | 0.1 | 2.02 | 0.18 | 0 | 0.14 | 14.48 | 0.21 | 1.28 | 0.16 | 0 | 0.16 | 14.06 | 1.75 |
420 | 0 | 0.16 | 0 | 0.12 | 0 | 0.1 | 2.5 | 0.18 | 0.01 | 0.13 | 24.17 | 0.21 | 0.51 | 0.16 | 0.02 | 0.16 | 14.92 | 1.07 |
430 | 0 | 0.15 | 0 | 0.12 | 0 | 0.1 | 3.5 | 0.19 | 0.03 | 0.13 | 34.01 | 0.24 | 0 | 0.16 | 0.06 | 0.16 | 1.57 | 0.87 |
440 | 0 | 0.14 | 0 | 0.11 | 0 | 0.1 | 4.86 | 0.18 | 0 | 0.12 | 58.56 | 0.43 | 0 | 0.16 | 0.3 | 0.16 | 0.04 | 0.59 |
450 | 0 | 0.14 | 0 | 0.11 | 0 | 0.1 | 5.21 | 0.18 | 0 | 0.12 | 41.32 | 1.76 | 0 | 0.16 | 0.18 | 0.16 | 0.18 | 0.4 |
460 | 0.06 | 0.14 | 0 | 0.11 | 0 | 0.1 | 4.56 | 0.31 | 0 | 0.12 | 16.17 | 3.29 | 0 | 0.15 | 0.04 | 0.16 | 0.11 | 0.29 |
470 | 0 | 0.13 | 0 | 0.11 | 0 | 0.1 | 24.93 | 0.67 | 0 | 0.12 | 2.92 | 2.87 | 0 | 0.16 | 0 | 0.16 | 0.04 | 0.23 |
480 | 0 | 0.13 | 0 | 0.11 | 0 | 0.1 | 63.09 | 2.14 | 0 | 0.11 | 0.35 | 2 | 0 | 0.16 | 0.12 | 0.16 | 1.26 | 0.19 |
490 | 0 | 0.13 | 0 | 0.11 | 0.01 | 0.1 | 36.2 | 3.07 | 0 | 0.11 | 0 | 1.21 | 0 | 0.16 | 0 | 0.16 | 3.92 | 0.17 |
500 | 0 | 0.13 | 0 | 0.1 | 1.42 | 0.1 | 39.04 | 2.93 | 5.98 | 0.1 | 0 | 0.75 | 0 | 0.16 | 0 | 0.16 | 0.5 | 0.15 |
510 | 0 | 0.13 | 0 | 0.1 | 10.87 | 0.1 | 28.98 | 2.4 | 10.68 | 0.1 | 0.55 | 0.47 | 0 | 0.16 | 0 | 0.16 | 0.1 | 0.14 |
520 | 0 | 0.13 | 0 | 0.1 | 48.34 | 0.1 | 7.19 | 1.76 | 3.04 | 0.1 | 1.31 | 0.33 | 0 | 0.16 | 0 | 0.16 | 0.58 | 0.13 |
530 | 0 | 0.13 | 0 | 0.1 | 55.49 | 0.1 | 2.61 | 1.17 | 2.65 | 0.1 | 1.7 | 0.25 | 0 | 0.16 | 0 | 0.16 | 0.1 | 0.12 |
540 | 0 | 0.13 | 0 | 0.1 | 45.55 | 0.1 | 1.24 | 0.75 | 0.32 | 0.09 | 1.93 | 0.2 | 0 | 0.16 | 0 | 0.16 | 0.04 | 0.12 |
550 | 0 | 0.13 | 0 | 0.1 | 48.86 | 2.22 | 0.43 | 0.46 | 0.5 | 0.09 | 0.89 | 0.17 | 0 | 0.16 | 0 | 0.16 | 0.42 | 0.11 |
560 | 0 | 0.13 | 0 | 0.1 | 38.94 | 2.74 | 0.01 | 0.3 | 0.19 | 0.09 | 0.65 | 0.15 | 0 | 0.16 | 0 | 0.16 | 0.29 | 0.11 |
570 | 0 | 0.13 | 0 | 0.1 | 34.7 | 2.95 | 0 | 0.22 | 0.01 | 0.09 | 0.23 | 0.14 | 0 | 0.16 | 1.63 | 0.16 | 1.13 | 0.11 |
580 | 0 | 0.13 | 0 | 0.1 | 18.4 | 3.02 | 0 | 0.19 | 0 | 0.09 | 0.14 | 0.13 | 0 | 0.16 | 3.47 | 0.16 | 1.46 | 0.1 |
590 | 0 | 0.13 | 0 | 0.1 | 5.68 | 2.37 | 0 | 0.17 | 0 | 0.09 | 0.04 | 0.12 | 0 | 0.16 | 5.06 | 0.16 | 0.91 | 0.1 |
600 | 0 | 0.13 | 0 | 0.1 | 3.21 | 1.6 | 0 | 0.16 | 0 | 0.09 | 0 | 0.12 | 2.5 | 0.16 | 2.61 | 0.17 | 0.22 | 0.1 |
610 | 0 | 0.12 | 0 | 0.1 | 1.13 | 0.97 | 0 | 0.15 | 0.26 | 0.1 | 0 | 0.12 | 57.05 | 0.16 | 14.52 | 0.17 | 0 | 0.1 |
620 | 0 | 0.12 | 0 | 0.1 | 0.05 | 0.6 | 0 | 0.14 | 0.64 | 0.1 | 0 | 0.11 | 73.98 | 1.31 | 7.66 | 0.2 | 0 | 0.1 |
630 | 0 | 0.12 | 0 | 0.1 | 0 | 0.38 | 0.01 | 0.14 | 3.77 | 0.1 | 0 | 0.11 | 36.22 | 3.71 | 3.91 | 0.26 | 0 | 0.1 |
640 | 0 | 0.12 | 0 | 0.1 | 0.03 | 0.27 | 0.13 | 0.14 | 5.34 | 0.16 | 0.11 | 0.11 | 1.25 | 4.3 | 6.31 | 0.28 | 0 | 0.1 |
650 | 0 | 0.12 | 0 | 0.1 | 0.15 | 0.2 | 0.06 | 0.14 | 3.67 | 0.2 | 2.91 | 0.11 | 0.06 | 2.82 | 8.52 | 0.33 | 0 | 0.1 |
660 | 0 | 0.12 | 0 | 0.1 | 1.15 | 0.17 | 0 | 0.14 | 2.88 | 0.23 | 4.51 | 0.11 | 0.05 | 1.6 | 10.21 | 0.45 | 0 | 0.1 |
670 | 0 | 0.13 | 0 | 0.1 | 0.12 | 0.15 | 0 | 0.14 | 0.17 | 0.19 | 4.14 | 0.11 | 1 | 0.87 | 17.9 | 0.47 | 0 | 0.14 |
680 | 0 | 0.13 | 0 | 0.18 | 0 | 0.13 | 0 | 0.14 | 0 | 0.16 | 3.4 | 0.11 | 1.37 | 0.51 | 15.95 | 0.56 | 0 | 0.17 |
690 | 0 | 0.13 | 0 | 0.19 | 0 | 0.12 | 0 | 0.14 | 0 | 0.13 | 2.43 | 0.13 | 0.15 | 0.32 | 13.43 | 0.82 | 0 | 0.17 |
700 | 0 | 0.13 | 0 | 0.19 | 0 | 0.11 | 0 | 0.14 | 0 | 0.12 | 5.73 | 0.18 | 0 | 0.24 | 40.35 | 1.16 | 0 | 0.17 |
710 | 0 | 0.13 | 0 | 0.19 | 0 | 0.11 | 0 | 0.14 | 0 | 0.1 | 7.65 | 0.18 | 0 | 0.19 | 60.6 | 2.1 | 0 | 0.17 |
720 | 0 | 0.13 | 0 | 0.19 | 0 | 0.1 | 0 | 0.14 | 0 | 0.1 | 4.68 | 0.16 | 0 | 0.16 | 8.27 | 3.2 | 0 | 0.17 |
730 | 0 | 0.12 | 0 | 0.19 | 0 | 0.1 | 0 | 0.14 | 0 | 0.1 | 0.5 | 0.2 | 0 | 0.14 | 4.82 | 2.74 | 0 | 0.18 |
740 | 0 | 0.12 | 0 | 0.19 | 0 | 0.1 | 0 | 0.14 | 0 | 0.1 | 0 | 0.19 | 0 | 0.13 | 2.96 | 1.88 | 0 | 0.17 |
750 | 0 | 0.12 | 0 | 0.19 | 0 | 0.1 | 0 | 0.14 | 0 | 0.09 | 0 | 0.16 | 0 | 0.12 | 0.54 | 1.15 | 0 | 0.17 |
760 | 0 | 0.12 | 0 | 0.19 | 0 | 0.09 | 0 | 0.14 | 0 | 0.09 | 0 | 0.13 | 0 | 0.11 | 0.36 | 0.73 | 0 | 0.17 |
770 | 0 | 0.12 | 0 | 0.19 | 0 | 0.09 | 0 | 0.14 | 0 | 0.09 | 0 | 0.12 | 0 | 0.1 | 0.28 | 0.47 | 0 | 0.17 |
780 | 0 | 0.12 | 0 | 0.19 | 0 | 0.09 | 0 | 0.14 | 0 | 0.09 | 0 | 0.11 | 0 | 0.1 | 0.07 | 0.32 | 0 | 0.17 |
790 | 0 | 0.15 | 0 | 0.19 | 0 | 0.1 | 0 | 0.14 | 0 | 0.1 | 0 | 0.11 | 0 | 0.1 | 0 | 0.24 | 0 | 0.17 |
800 | 0 | 0.18 | 0 | 0.19 | 0 | 0.1 | 0 | 0.14 | 0 | 0.09 | 0 | 0.19 | 0 | 0.1 | 0 | 0.19 | 0 | 0.17 |
810 | 0 | 0.2 | 0 | 0.19 | 0 | 0.1 | 0 | 0.14 | 0 | 0.1 | 0 | 0.19 | 0 | 0.09 | 0 | 0.16 | 0 | 0.17 |
820 | 0 | 0.2 | 0 | 0.19 | 0 | 0.1 | 0 | 0.14 | 0 | 0.1 | 0 | 0.19 | 0 | 0.09 | 0 | 0.15 | 0 | 0.17 |
830 | 0 | 0.21 | 0 | 0.19 | 0 | 0.09 | 0 | 0.14 | 0 | 0.1 | 0 | 0.19 | 0.29 | 0.09 | 0 | 0.13 | 0 | 0.17 |
Number of Flood Events Used | Number of Datasets |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koyama, N.; Sakai, M.; Yamada, T. Study on a Water-Level-Forecast Method Based on a Time Series Analysis of Urban River Basins—A Case Study of Shibuya River Basin in Tokyo. Water 2023, 15, 161. https://doi.org/10.3390/w15010161
Koyama N, Sakai M, Yamada T. Study on a Water-Level-Forecast Method Based on a Time Series Analysis of Urban River Basins—A Case Study of Shibuya River Basin in Tokyo. Water. 2023; 15(1):161. https://doi.org/10.3390/w15010161
Chicago/Turabian StyleKoyama, Naoki, Mizuki Sakai, and Tadashi Yamada. 2023. "Study on a Water-Level-Forecast Method Based on a Time Series Analysis of Urban River Basins—A Case Study of Shibuya River Basin in Tokyo" Water 15, no. 1: 161. https://doi.org/10.3390/w15010161
APA StyleKoyama, N., Sakai, M., & Yamada, T. (2023). Study on a Water-Level-Forecast Method Based on a Time Series Analysis of Urban River Basins—A Case Study of Shibuya River Basin in Tokyo. Water, 15(1), 161. https://doi.org/10.3390/w15010161