Capacity Optimization of Rainwater Harvesting Systems Based on a Cost–Benefit Analysis: A Financial Support Program Review and Parametric Sensitivity Analysis
Abstract
:1. Introduction
2. Methods
2.1. Financial Support Policies for Rainwater Harvesting Systems in South Korea
2.2. Study Area
2.3. Economic Analysis of Rainwater Harvesting Systems
2.3.1. Cost–Benefit Analysis
2.3.2. Discount Rate and Inflation Rate
2.4. Optimum Capacity of Rainwater Harvesting Systems Considering Benefit–Cost Analysis
2.4.1. Simulation Model for Rainwater Harvesting Systems
2.4.2. Optimization Model to Determine the Capacity of Rainwater Harvesting Systems Considering Benefit–Cost Analysis
3. Results
3.1. Water Balance Analysis of the Rainwater Harvesting System
3.2. Comparative Evaluation of Two Cost–Benefit Analysis Methods
3.3. Analysis of the Effectiveness of Financial Support Programs
3.4. Sensitivity Analysis of the Discount Rate and Inflation Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCR | Benefit–cost ratio |
NPV | Net present value |
RWH | Rainwater harvesting |
APSWR | Act for the Promotion and Support of Water Reuse |
PSO | Particle swarm optimization |
Appendix A
Institution/Country | Social Discount Rate | Remark |
---|---|---|
World Bank | Projects for developing countries: 10–12% | |
United States Environmental Protection Agency | Intergenerational discount rate: 2–3% (subject to sensitivity analysis) | [56] |
European Union | Long-term projects/policies: 3% | [57] |
United Kingdom | Standard: 3.5% Long-term projects of 30–125 years: 3%; 125–200 years: 2%; 200+ years: 1.5% | [58] |
France | Standard: 4% Long-term projects/policies: 2% | [59] |
Netherlands | Standard: 5.5% Projects/policies for climate change: 4% | [60] |
Germany | Long-term projects/policies: 1% | |
Japan | Projects within 50 years: 4% | |
Australia | Standard: 7% Subject to sensitivity analysis: 3% and 10% | [20] |
China | Short- and mid-term projects: 8% Long-term projects: less than 8% | [61] |
India | 12% | |
Republic of the Philippines | 15% | |
South Korea | Standard: 4.5% Water resources projects of 0–30 years: 4.5%; 30+ years: 3.5% | [62] |
Classification | Inflation Rate | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
−1.1% | −0.2% | 0.8% | 1.7% | 2.6% | 3.5% | 4.5% | 5.4% | 6.3% | 7.2% | ||
Discount Rate | 1.5% | 447 | 550 | 677 | 837 | 1051 | 1318 | 1648 | 2053 | 2545 | 3144 |
1.9% | 412 | 508 | 623 | 769 | 958 | 1204 | 1504 | 1877 | 2328 | 2878 | |
2.2% | 380 | 468 | 575 | 707 | 876 | 1099 | 1374 | 1715 | 2131 | 2636 | |
2.6% | 352 | 432 | 531 | 651 | 803 | 1002 | 1256 | 1566 | 1950 | 2414 | |
3.0% | 326 | 398 | 490 | 601 | 739 | 915 | 1148 | 1432 | 1784 | 2211 | |
3.3% | 302 | 369 | 453 | 555 | 680 | 839 | 1048 | 1310 | 1631 | 2025 | |
3.7% | 280 | 342 | 418 | 513 | 627 | 771 | 957 | 1198 | 1491 | 1854 | |
4.1% | 260 | 317 | 386 | 474 | 580 | 711 | 877 | 1096 | 1365 | 1697 | |
4.4% | 242 | 294 | 358 | 438 | 536 | 655 | 805 | 1001 | 1250 | 1552 | |
4.8% | 225 | 272 | 332 | 404 | 496 | 605 | 742 | 915 | 1144 | 1421 |
Classification | Inflation Rate | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
−1.1% | −0.2% | 0.8% | 1.7% | 2.6% | 3.5% | 4.5% | 5.4% | 6.3% | 7.2% | ||
Discount Rate | 1.5% | 800 | 837 | 1015 | 1272 | 1602 | 1681 | 1895 | 1992 | 2093 | 2235 |
1.9% | 771 | 840 | 913 | 1054 | 1474 | 1611 | 1801 | 1942 | 2054 | 2222 | |
2.2% | 669 | 825 | 841 | 1032 | 1280 | 1597 | 1682 | 1917 | 1997 | 2096 | |
2.6% | 641 | 804 | 836 | 957 | 1122 | 1578 | 1638 | 1871 | 1951 | 2090 | |
3.0% | 633 | 720 | 823 | 843 | 1051 | 1344 | 1632 | 1732 | 1935 | 1997 | |
3.3% | 617 | 674 | 823 | 844 | 1014 | 1267 | 1607 | 1669 | 1897 | 1986 | |
3.7% | 624 | 635 | 773 | 826 | 894 | 1057 | 1470 | 1633 | 1786 | 1929 | |
4.1% | 537 | 628 | 668 | 823 | 840 | 1045 | 1280 | 1605 | 1692 | 1916 | |
4.4% | 502 | 622 | 680 | 820 | 858 | 987 | 1102 | 1579 | 1647 | 1864 | |
4.8% | 490 | 611 | 631 | 774 | 832 | 847 | 1043 | 1346 | 1612 | 1704 |
References
- Ghisi, E.; Ferreira, D.F. Potential for potable water savings by using rainwater and greywater in a multi-storey residential building in southern Brazil. Build. Environ. 2007, 42, 2512–2522. [Google Scholar] [CrossRef]
- Guo, R.; Guo, Y. Stochastic modelling of the hydrologic operation of rainwater harvesting systems. J. Hydrol. 2018, 562, 30–39. [Google Scholar] [CrossRef]
- Barry, M.E.; Coombes, P.J. Optimisation of mains trickle top-up volumes and rates supplying rainwater tanks in the Australian urban setting. Australas. J. Water Resour. 2008, 12, 171–178. [Google Scholar] [CrossRef]
- Abdulla, F.A.; Al-Shareef, A. Roof rainwater harvesting systems for household water supply in Jordan. Desalination 2009, 243, 195–207. [Google Scholar] [CrossRef]
- Gires, A.; de Gouvello, B. Consequences to water suppliers of collecting rainwater on housing estates. Water Sci. Technol. 2009, 60, 543–553. [Google Scholar] [CrossRef]
- Cheng, C.L.; Liao, M.C. An Evaluation Indicator of Rainwater Harvesting Systems in Northern Taiwan. J. Asian Archit. Build. Eng. 2009, 8, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Tong, D.; Crosson, C.; Zhang, Y. A GIS-based approach to assessing the capacity of rainwater harvesting for addressing outdoor irrigation. Landsc. Urban Plan. 2022, 223, 104416. [Google Scholar] [CrossRef]
- Okoye, C.O.; Solyalı, O.; Akıntuğ, B. Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach. Resour. Conserv. Recycl. 2015, 104, 131–140. [Google Scholar] [CrossRef]
- Emami Javanmard, M.; Ghaderi, S.; Sangari, M.S. Integrating energy and water optimization in buildings using multi-objective mixed-integer linear programming. Sustain. Cities Soc. 2020, 62, 102409. [Google Scholar] [CrossRef]
- Torres, M.N.; Fontecha, J.E.; Zhu, Z.; Walteros, J.L.; Rodriguez, J.P. A participatory approach based on stochastic optimization for the spatial allocation of Sustainable Urban Drainage Systems for rainwater harvesting. Environ. Model. Softw. 2020, 123, 104532. [Google Scholar] [CrossRef]
- Sample, D.J.; Liu, J. Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture. J. Clean. Prod. 2014, 75, 174–194. [Google Scholar] [CrossRef]
- Bocanegra-Martinez, A.; Ponce-Ortega, J.M.; Napoles-Rivera, F.; Serna-Gonzalez, M.; Castro-Montoya, A.J.; El-Halwagi, M.M. Optimal design of rainwater collecting systems for domestic use into a residential development. Resour. Conserv. Recycl. 2014, 84, 44–56. [Google Scholar] [CrossRef]
- Chiu, Y.R.; Liaw, C.H.; Chen, L.C. Optimizing rainwater harvesting systems as an innovative approach to saving energy in hilly communities. Renew. Energy 2009, 34, 492–498. [Google Scholar] [CrossRef]
- Hashim, H.; Hudzori, A.; Yusop, Z.; Ho, W. Simulation based programming for optimization of large-scale rainwater harvesting system: Malaysia case study. Resour. Conserv. Recycl. 2013, 80, 1–9. [Google Scholar] [CrossRef]
- Dogani, A.; Dourandish, A.; Ghorbani, M.; Shahbazbegian, M.R. A Hybrid Meta-Heuristic for a Bi-Objective Stochastic Optimization of Urban Water Supply System. IEEE Access 2020, 8, 135829–135843. [Google Scholar] [CrossRef]
- Semaan, M.; Day, S.D.; Garvin, M.; Ramakrishnan, N.; Pearce, A. Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Resour. Conserv. Recycl. X 2020, 6, 100033. [Google Scholar] [CrossRef]
- Hilmi, F.A.; Khalid, A.A.H. Rainwater Harvesting System: Design Performances of Optimal Tank Size Using Simulation Software. In Proceedings of the 3rd International Conference on Green Environmental Engineering and Technology, Penang, Malaysia, July 2021; Mohamed Noor, N., Sam, S.T., Abdul Kadir, A., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 435–446. [Google Scholar]
- Londra, P.A.; Gkolfinopoulou, P.; Mponou, A.; Theocharis, A.T. Effect of Rainfall Regime on Rainwater Harvesting Tank Sizing for Greenhouse Irrigation Use. Hydrology 2022, 9, 122. [Google Scholar] [CrossRef]
- James, D.; Francisco, H.A. (Eds.) Cost-Benefit Studies of Natural Resource Management in Southeast Asia; Springer Singapore: Singapore, 2015. [Google Scholar] [CrossRef]
- Castillo, J.G.; Zhangallimbay, D. The social discount rate in the evaluation of investment projects: An application for Ecuador. CEPAL Rev. 2021, 134, 75–95. [Google Scholar]
- Zhuang, J.; Liang, Z.; Lin, T.; De Guzman, F. Theory and Practice in the Choice of Social Discount Rate for Cost-Benefit Analysis: A Survey; Technical Report; ERD Working paper Series; ADB: Metro Manila, Philippines, 2007. [Google Scholar]
- Pelak, N.; Porporato, A. Sizing a rainwater harvesting cistern by minimizing costs. J. Hydrol. 2016, 541, 1340–1347. [Google Scholar] [CrossRef] [Green Version]
- Gurung, T.R.; Sharma, A. Communal rainwater tank systems design and economies of scale. J. Clean. Prod. 2014, 67, 26–36. [Google Scholar] [CrossRef]
- Santos, C.; Taveira-Pinto, F. Analysis of different criteria to size rainwater storage tanks using detailed methods. Resour. Conserv. Recycl. 2013, 71, 1–6. [Google Scholar] [CrossRef]
- Ghafourian, M.; Stanchev, P.; Mousavi, A.; Katsou, E. Economic assessment of nature-based solutions as enablers of circularity in water systems. Sci. Total Environ. 2021, 792, 148267. [Google Scholar] [CrossRef]
- Rashid, A.R.M.; Bhuiyan, M.A.; Pramanik, B.; Jayasuriya, N. A comparison of environmental impacts between rainwater harvesting and rain garden scenarios. Process. Saf. Environ. Prot. 2022, 159, 198–212. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, C.; Yin, D.; Xu, J.; Wu, Y.; Jia, H. Environmental and economic cost-benefit comparison of sponge city construction in different urban functional regions. J. Environ. Manag. 2022, 304, 114230. [Google Scholar] [CrossRef]
- Wang, C.H.; Blackmore, J.M. Supply–Demand Risk and Resilience Assessment for Household Rainwater Harvesting in Melbourne, Australia. Water Resour. Manag. 2012, 26, 4381–4396. [Google Scholar] [CrossRef]
- Dallman, S.; Chaudhry, A.M.; Muleta, M.K.; Lee, J. Is Rainwater Harvesting Worthwhile? A Benefit-Cost Analysis. J. Water Resour. Plan. Manag. 2021, 147, 04021011. [Google Scholar] [CrossRef]
- Nandi, S.; Gonela, V. Rainwater harvesting for domestic use: A systematic review and outlook from the utility policy and management perspectives. Util. Policy 2022, 77, 101383. [Google Scholar] [CrossRef]
- Gomez-Monsalve, M.; Dominguez, I.; Yan, X.; Ward, S.; Oviedo-Ocana, E. Environmental performance of a hybrid rainwater harvesting and greywater reuse system: A case study on a high water consumption household in Colombia. J. Clean. Prod. 2022, 345, 131125. [Google Scholar] [CrossRef]
- Fraga, J.P.R.; Okumura, C.K.; Guimaraes, L.F.; de Arruda, R.N.; Becker, B.R.; de Oliveira, A.K.B.; Verol, A.P.; Miguez, M.G. Cost-benefit analysis of sustainable drainage systems considering ecosystems services benefits: Case study of canal do mangue watershed in Rio de Janeiro city, Brazil. Clean Technol. Environ. Policy 2022, 24, 695–712. [Google Scholar] [CrossRef]
- Nunez, J.G.; Martinez, M.G.; Mompremier, R.; Beltran, B.A.G.; Quintal, I.D.B. Methodology to Optimize Rainwater Tank-sizing and Cluster Configuration for a Group of Buildings. Water Resour. Manag. 2022, 36, 5191–5205. [Google Scholar] [CrossRef]
- Jenkins, G.A. Use of continuous simulation for the selection of an appropriate urban rainwater tank. Australas. J. Water Resour. 2007, 11, 231–246. [Google Scholar] [CrossRef]
- Khastagir, A.; Jayasuriya, N. Investment Evaluation of Rainwater Tanks. Water Resour. Manag. 2011, 25, 3769. [Google Scholar] [CrossRef]
- Stec, A.; Zeleŭáková, M. An Analysis of the Effectiveness of Two Rainwater Harvesting Systems Located in Central Eastern Europe. Water 2019, 11, 458. [Google Scholar] [CrossRef] [Green Version]
- Sayl, K.; Adham, A.; Ritsema, C.J. A GIS-Based Multicriteria Analysis in Modeling Optimum Sites for Rainwater Harvesting. Hydrology 2020, 7, 51. [Google Scholar] [CrossRef]
- Islam, M.M.; Afrin, S.; Tarek, M.H.; Rahman, M.M. Reliability and financial feasibility assessment of a community rainwater harvesting system considering precipitation variability due to climate change. J. Environ. Manag. 2021, 289, 112507. [Google Scholar] [CrossRef]
- van Dijk, S.; Lounsbury, A.W.; Hoekstra, A.Y.; Wang, R. Strategic design and finance of rainwater harvesting to cost-effectively meet large-scale urban water infrastructure needs. Water Res. 2020, 184, 116063. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, X.; Zeng, Z.; Shen, P.; Lai, C. A novel spatial optimization approach for the cost-effectiveness improvement of LID practices based on SWMM-FTC. J. Environ. Manag. 2022, 307, 114574. [Google Scholar] [CrossRef]
- Shikuku, J.; Munala, G.; Njuguna, M.; Muhoro, T.; Gremley, A.; Nyakundi, V.; Ali, M. Cost-benefit analysis of water conservation systems installed in household buildings in Nairobi County. Dev. Pract. 2022, 32, 709–724. [Google Scholar] [CrossRef]
- OECD. Managing the Water-Energy-Land-Food Nexus in Korea; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- Korea Land Corporation. Incheon Cheongna District Free Economic Zone Development Project: Measures to Introduce a Sound Water Circulation System; Korea Land Corporation: Jinju, Korea, 2007. [Google Scholar]
- Mun, J.S.; Kim, H.N.; Park, J.B.; Lee, J.H.; Kim, R.H. An economical analysis of the rainwater harvesting (RWH) system at the S residential and commercial complex. J. Archit. Inst. Korea 2009, 25, 173–181. [Google Scholar]
- Lee, W.; Kim, J.; Kang, S.; Jeong, H.; Moon, H.; Hyun, C. Installation Criterion for Rainwater Harvesting Facilities of Multi-Family Housings Using Cost-Benefit Analysis. J. Archit. Inst. Korea Struct. Constr. 2012, 28, 121–130. [Google Scholar] [CrossRef]
- Kim, K.; Park, H.; Kim, T.; Han, M. Evaluation of Stored Rainwater Quality and Economic Efficiency at Yangdo Elementary Rainwater Harvesting System. J. Korean Soc. Environ. Eng. 2014, 36, 173–181. [Google Scholar] [CrossRef]
- CFI Team. Discount Rate. Available online: https://corporatefinanceinstitute.com/resources/valuation/discount-rate/ (accessed on 1 November 2022).
- Mays, L.W.; Tung, Y.K. Hydrosystems Engineering & Management; McGraw Hill, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95—Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Clerc, M.; Kennedy, J. The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Zerbe, R.O.; Bellas, A.S. A Primer for Benefit-Cost Analysis; Edward Elgar Publishing: Northampton, MA, USA, 2006. [Google Scholar]
- Lee, J.; Kim, S.; Kim, K. An Expert Survey on the Social Discount Rate in Korea. Korean Energy Econ. Rev. 2016, 15, 207–237. [Google Scholar] [CrossRef]
- Statistic Korea. Korean Statistical Information Service. Available online: https://kosis.kr/eng/ (accessed on 1 November 2022).
- US Environmental Protection Agency. Guidelines for Preparing Economic Analyses; Environmental Protection Agency, National Center for Environmental Economics Office: Washington, DC, USA, 2010.
- European Commission. Better Regulation Toolbox. Available online: https://commission.europa.eu/law/law-making-process/planning-and-proposing-law/better-regulation/better-regulation-guidelines-and-toolbox/better-regulation-toolbox_en (accessed on 1 November 2022).
- Hurst, M. The Green Book: Central Government Guidance on Appraisal and Evaluation. J. Mega Infrastruct. Sustain. Dev. 2019, 1, 101–103. [Google Scholar] [CrossRef]
- Baumstark, L.; Hirtzman, P.; Lebègue, D. Revision du Taux D’Actualisation des Investissements Publics. Available online: https://www.oieau.fr/eaudoc/system/files/documents/44/223176/223176_doc.pdf (accessed on 1 November 2022).
- ITF. Adapting Transport Policy to Climate Change; OECD Publishing: Paris, France, 2015. [Google Scholar] [CrossRef]
- Jalil, M.M. Approaches to Measuring Social Discount Rate: A Bangladesh Perspective. SSRN Electron. J. 2010. [Google Scholar] [CrossRef]
- Korea Ministry of Economy and Finance. Guidelines for Implementing Preliminary Feasibility Study. Available online: https://www.law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000207680 (accessed on 1 November 2022).
City | Financial Support and Billing Relief | |||
---|---|---|---|---|
Installation Costs | Water Utility Bill | |||
Water Supply Charge | Sewage Charge | Water Usage Charge | ||
Seoul | 90% of installation costs up to KRW 20 million (USD 15,384) | — | — | — |
Incheon | Full or partial support | 10% of RWU 1 | 10% of RWU | 10% of RWU |
Suwon | 90% of installation costs up to KRW 10 million (USD 7692) | Some RWU | Some RWU | Some RWU |
Sejong | Full or partial support | 10% of RWU | 30% of RWU | — |
Busan | 90% of installation costs up to KRW 10 million (USD 7692) | 10% of RWU | — | 10% of RWU |
Classification | Pricing Bracket | Unit Charge | Calculation Details |
---|---|---|---|
() | (KRW/) | ||
Water Supply Charge | 1~300 | 870 (USD 0.67) | 300 870 KRW/ = KRW 261,000 (USD 201) |
More than 300 | 1120 (USD 0.86) | 700 1120 KRW/ = KRW 784,000 (USD 603) | |
Sewage Charge | 1~50 | 490 (USD 0.38) | 50 490 KRW/ = KRW 24,500 (USD 18.8) |
51~100 | 510 (USD 0.39) | 50 510 KRW/ = KRW 25,500 (USD 19.6) | |
101~300 | 1010 (USD 0.78) | 200 1010 KRW/ = KRW 202,000 (USD 155) | |
301~500 | 1100 (USD 0.85) | 200 1100 KRW/ = KRW 220,000 (USD 169) | |
501~1000 | 1130 (USD 0.87) | 500 1130 KRW/ = KRW 565,000 (USD 435) | |
More than 1000 | 1160 (USD 0.89) | - | |
Water Usage Charge | Whole range | 170 (USD 0.13) | 1000 170 KRW/ = KRW 170,000 (USD 131) |
Total Water Utility Bill | KRW 2,432,000 (USD 1871) |
Classification | Category | Content | Remark | |
---|---|---|---|---|
Costs | Installation, construction, equipment, etc. | 350,000–450,000 KRW/ (269–346 USD/) | [44,45] | |
Maintenance expenses (labor, electricity, etc.) | 2% of installation costs | [44,45,46] | ||
Benefits | Savings on water utility bills by replacing water usage with rainwater usage | Equivalent to the amount of rainwater usage | See Table 1 | |
Subsidies for installation costs | Up to KRW 10 million (UDS 7692) | Full or partial support in Incheon, South Korea | ||
Water Utility Bill Concessions | Water supply charge concessions | 10% of water supply charges | Incheon, South Korea | |
Sewage charge concessions | 10% of sewage charges | |||
Water usage charge concessions | 10% of water usage charges |
Classification | Simulation Model | |
---|---|---|
Condition | Equation | |
Mass Balance Equation | — | |
Yield Determination | ||
, and | ||
, and | ||
Spill Determination | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Lee, S.; Kang, T.; Park, J.; Kim, Y. Capacity Optimization of Rainwater Harvesting Systems Based on a Cost–Benefit Analysis: A Financial Support Program Review and Parametric Sensitivity Analysis. Water 2023, 15, 186. https://doi.org/10.3390/w15010186
Jin Y, Lee S, Kang T, Park J, Kim Y. Capacity Optimization of Rainwater Harvesting Systems Based on a Cost–Benefit Analysis: A Financial Support Program Review and Parametric Sensitivity Analysis. Water. 2023; 15(1):186. https://doi.org/10.3390/w15010186
Chicago/Turabian StyleJin, Youngkyu, Sangho Lee, Taeuk Kang, Jongpyo Park, and Yeulwoo Kim. 2023. "Capacity Optimization of Rainwater Harvesting Systems Based on a Cost–Benefit Analysis: A Financial Support Program Review and Parametric Sensitivity Analysis" Water 15, no. 1: 186. https://doi.org/10.3390/w15010186
APA StyleJin, Y., Lee, S., Kang, T., Park, J., & Kim, Y. (2023). Capacity Optimization of Rainwater Harvesting Systems Based on a Cost–Benefit Analysis: A Financial Support Program Review and Parametric Sensitivity Analysis. Water, 15(1), 186. https://doi.org/10.3390/w15010186