Research on Surface Water Quality Assessment and Its Driving Factors: A Case Study in Taizhou City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
- (1)
- The water quality information is sourced from the China Surface Water Quality Automatic Monitoring Real-time Data Release System from 2021 to 2022. (https://szzdjc.cnemc.cn:8070/GJZ/Business/Publish/Main.html accessed on 23 May 2022). The China Environmental Monitoring Center is the provider of the system. The information is derived from the newly constructed and fully operational China Surface Water Quality Automatic Monitoring Station. Check the water quality every 4 h and publish the most recent information. Monitoring indexes included water temperature (WT), pH, Dissolved oxygen (DO), Electrical conductivity (EC), Permanganate index (CODMn), Chemical oxygen demand (COD), Five days biochemical oxygen demand (BOD5), Ammonia nitrogen (NH3-N), Total nitrogen (TN), and Total phosphorus (TP).
- (2)
- Topographic data such as elevation, slope and aspect affect rainfall and surface runoff by influencing the hydrothermal distribution and vegetation growth in the catchment, which further affects the generation and transport of non-point source pollution [32], therefore, this paper selects elevation, slope and aspect factors to explore the influence of topography on water quality distribution patterns. Elevation data is 30 m × 30 m spatial resolution DEM data, downloaded form geospatial data cloud (http://www.gscloud.con/ accessed on 15 March 2022);
- (3)
- The immediate reasons for the decline in water quality on the surface include excessive industrial and agricultural effluent discharge and unsustainable industrial structures [42]. Therefore, this paper selects population density, total sewage discharge, chemical oxygen demand (COD) emissions, pork production, poultry production, aquatic product production, the proportion of primary, secondary and tertiary industries, fertilizer and pesticide use, and other factors to explore the socio-economic impact on the distribution pattern of surface water quality. Socio-economic data from Taizhou Statistical Yearbook and National Economic and Social Development Bulletin;
- (4)
- According to studies, the percentage of different land use types in the watershed has a substantial impact on the water quality of rivers, as do landscape patterns, size, density, aggregation, and variety of land use types [28]. As a result, the statistical unit for the percentage of land cover types was chosen as the 12 km buffer zone [33] with a high correlation to the concentration of water quality parameters, and eight land use types—cropland, forest, grassland, shrub land, wetland, water body, bare land, and urban land—were chosen to investigate their effects on the distribution pattern of water quality. The European Space Agency (ESA) released the 2020 Global Land Cover product (https://biewer.esa-worldcover.org/worldcover accessed on 27 April 2022), which is where the data on land use is taken from. The spatial resolution is 10 m × 10 m, and the total classification accuracy is 74.4%.
2.3. Water Quality Assessment Methods
2.3.1. Single Factor Pollution Index
2.3.2. Water Quality Index
- (1)
- Selection of key parameters;
- (2)
- Converting important parameters to a common scale was accomplished by applying sub-index curves to convert each parameter to a scale from 0 to 100 [45]. The sub-index curves might be segmented-lined, segmented-nonlinear, linear, nonlinear, etc;
- (3)
- Assigning weights to parameters;
- (4)
- Aggregation of indices to produce a WQI.
2.4. Spearman’s Correlation Coefficient
3. Results
3.1. Assessment of Water Quality in Taizhou
3.1.1. Assessment of SFI
3.1.2. Assessment of WQI
3.2. Spearman Correlation Analysis
4. Discussion
4.1. Main Factors Influencing Water Quality
4.1.1. Impact of Anthropogenic Activities
4.1.2. Impact of Natural Factors
4.2. Limitations
4.3. Water Quality Management
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alvarez, P.J.J.; Chan, C.K.; Elimelech, M.; Halas, N.J.; Villagran, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Bakker, K. Water Security Research: Challenges and Opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
- Yu, C.; Yin, X.; Li, H.; Yang, Z. A hybrid water-quality-index and grey water footprint assessment approach for comprehensively evaluating water resources utilization considering multiple pollutants. J. Clean. Prod. 2020, 248, 119225. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J. Spatial scale effects of landscape metrics on stream water quality and their seasonal changes. Water Res. 2021, 191, 116811. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.; Liu, A.; Dawes, L.; Hargreaves, M.; Goonetilleke, A. Role of Land Use and Seasonal Factors in Water Quality Degradations. Water Resour. Manag. 2013, 27, 3433–3440. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Liu, K.; Hao, Q.; Li, Y.; Xiao, D.; Zhang, Y. Occurrence, Controlling Factors and Health Hazards of Fluoride-Enriched Groundwater in the Lower Flood Plain of Yellow River, Northern China. Expo. Health 2022, 14, 345–358. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, K.; Hao, Q.; Xiao, D.; Zhu, Y.; Yin, S.; Zhang, Y. Hydrogeochemical insights into the signatures, genesis and sustainable perspective of nitrate enriched groundwater in the piedmont of Hutuo watershed, China. Catena 2022, 212, 106020. [Google Scholar] [CrossRef]
- Xiao, Y.; Hao, Q.; Zhang, Y.; Zhu, Y.; Yin, S.; Qin, L.; Li, X. Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Sci. Total Environ. 2022, 802, 149909. [Google Scholar] [CrossRef]
- Uhl, A.; Hahn, H.J.; Jager, A.; Luftensteiner, T.; Siemensmeyer, T.; Doll, P.; Noack, M.; Schwenk, K.; Berkhoff, S.; Weiler, M.; et al. Making waves: Pulling the plug-Climate change effects will turn gaining into losing streams with detrimental effects on groundwater quality. Water Res. 2022, 220, 118649. [Google Scholar] [CrossRef]
- Zheng, L.; Jiang, C.; Chen, X.; Li, Y.; Li, C.; Zheng, L. Combining hydrochemistry and hydrogen and oxygen stable isotopes to reveal the influence of human activities on surface water quality in Chaohu Lake Basin. J. Environ. Manag. 2022, 312, 114933. [Google Scholar] [CrossRef] [PubMed]
- Mararakanye, N.; Le Roux, J.J.; Franke, A.C. Long-term water quality assessments under changing land use in a large semi-arid catchment in South Africa. Sci. Total Environ. 2022, 818, 151670. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.R.; Kim, S.J. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology. Hydrol. Earth Syst. Sci. 2017, 21, 5583–5602. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.A.; Sarver, E.A.; Krometis, L.H.; Huang, J. Habitat and water quality as drivers of ecological system health in Central Appalachia. Ecol. Eng. 2015, 84, 180–189. [Google Scholar] [CrossRef]
- Aboelnga, H.T.; El-Naser, H.; Ribbe, L.; Frechen, F.B. Assessing Water Security in Water-Scarce Cities: Applying the Integrated Urban Water Security Index (IUWSI) in Madaba, Jordan. Water 2020, 12, 1299. [Google Scholar] [CrossRef]
- Tango, P.J.; Batiuk, R.A. Chesapeake Bay recovery and factors affecting trends: Long-term monitoring, indicators, and insights. Reg. Stud. Mar. Sci. 2016, 4, 12–20. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, L.; Cheng, H.; Qi, D. Application of Pollution Index Method Based on Dynamic Combination Weight to Water Quality Evaluation. Earth Environ. Sci. 2018, 153, 062008. [Google Scholar] [CrossRef] [Green Version]
- Xia, R.; Chen, Z. Integrated Water-Quality Assessment of the Huai River Basin in China. J. Hydrol. Eng. 2015, 20, 05014018. [Google Scholar] [CrossRef]
- Yan, F.; Liu, L.; Li, Y.; Zhang, Y.; Chen, M.; Xing, X. A dynamic water quality index model based on functional data analysis. Ecol. Indic. 2015, 57, 249–258. [Google Scholar] [CrossRef]
- Stambuk-Giljanovic, N. Water Quality Evaluation by Index in Dalmatia; ELsevier Science: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Gazzaz, N.M.; Yusoff, M.K.; Aris, A.Z.; Juahir, H.; Ramli, M.F. Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Mar. Pollut. Bull. 2012, 64, 2409–2420. [Google Scholar] [CrossRef]
- Yunyun, L.; Jianjia, C.; Yimin, W.; Wenting, J.; Aijun, G. Spatiotemporal Impacts of Climate, Land Cover Change and Direct Human Activities on Runoff Variations in the Wei River Basin. Water 2016, 8, 220. [Google Scholar] [CrossRef] [Green Version]
- de Paul Obade, V.; Moore, R. Synthesizing water quality indicators from standardized geospatial information to remedy water security challenges: A review. Environ. Int. 2018, 119, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Mian, H.R.; Saleem, S.; Hu, G.; Sadiq, R. Water Distribution Systems: Hydraulics and Quality Modeling. In Encyclopedia of Water; CRC press: Boca Raton, FL, USA, 2019; pp. 1–11. [Google Scholar]
- Zhang, J.; Guo, Q.; Du, C.; Wei, R. Quantifying the effect of anthropogenic activities on water quality change in the Yangtze River from 1981 to 2019. J. Clean. Prod. 2022, 363, 132415. [Google Scholar] [CrossRef]
- Taniwaki, R.H.; Cassiano, C.C.; Fransozi, A.A.; Vásquez, K.V.; Posada, R.G.; Velásquez, G.V.; Ferraz, S.F.B. Effects of land-use changes on structural characteristics of tropical high-altitude Andean headwater streams. Limnologica 2019, 74, 1–7. [Google Scholar] [CrossRef]
- de Mello, K.; Valente, R.A.; Ribeiro, M.P.; Randhir, T. Effects of forest cover pattern on water quality of low-order streams in an agricultural landscape in the Pirapora river basin, Brazil. Environ. Monit. Assess. 2022, 194, 189. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Mello, K.d.; Valente, R.A.; Randhir, T.O.; dos Santos, A.C.A.; Vettorazzi, C.A. Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. Catena 2018, 167, 130–138. [Google Scholar] [CrossRef]
- Qiangqiang, Y.; Guanglai, X.; Xiancheng, Y.; Aijuan, L.; Chen, C. Responses of water quality to land use and landscape pattern in the Qingyijiang River watershed. Acta Ecol. Sin. 2020, 40, 9048–9058. [Google Scholar] [CrossRef]
- Swain, S.; Taloor, A.K.; Dhal, L.; Sahoo, S.; Al-Ansari, N. Impact of climate change on groundwater hydrology: A comprehensive review and current status of the Indian hydrogeology. Appl. Water Sci. 2022, 12, 1–25. [Google Scholar] [CrossRef]
- Panuska, J.C.; Moore, I.D.; Kramer, L.A. Terrain analysis-integration into the agricultural non-point source (AGNPS) pollution model. J. Soil Water Conserv. 1991, 46, 59–64. [Google Scholar]
- Chen, J.; Chen, S.; Fu, R.; Yin, X.; Wang, C.; Li, D.; Peng, Y. Analysis of water quality status and driving factors in Guangdong Province. Acta Ecol. Sin. 2022, 42. [Google Scholar]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of land-use and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrol. Sci. J. 2015, 60, 873–889. [Google Scholar] [CrossRef]
- Lorup, J.K.; Refsgaard, J.C.; Mazvimavi, D. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling Case studies from Zimbabwe. J. Hydrol. 1998, 205, 147–163. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.-z.; Zhang, X.-c.; Zheng, F.-l. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Wei, X.; Liu, W.; Zhou, P. Quantifying the Relative Contributions of Forest Change and Climatic Variability to Hydrology in Large Watersheds: A Critical Review of Research Methods. Water 2013, 5, 728–746. [Google Scholar] [CrossRef]
- Yuan, L.; Forshay, K.J. Evaluating Monthly Flow Prediction Based on SWAT and Support Vector Regression Coupled with Discrete Wavelet Transform. Water 2022, 14, 2649. [Google Scholar] [CrossRef]
- Karakuş, C.B. Evaluation of water quality of Kızılırmak River (Sivas/Turkey) using geo-statistical and multivariable statistical approaches. Environ. Dev. Sustain. 2019, 22, 4735–4769. [Google Scholar] [CrossRef]
- Zhang, Z.; Tao, F.; Du, J.; Shi, P.; Yu, D.; Meng, Y.; Sun, Y. Surface water quality and its control in a river with intensive human impacts--a case study of the Xiangjiang River, China. J. Environ. Manag. 2010, 91, 2483–2490. [Google Scholar] [CrossRef]
- Lehmann, A.; Rode, M. Long-term behaviour and cross-correlation water quality analysis of the river Elbe, Germany. Wat. Res. 2001, 35, 2153–2160. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Wang, L.; Yang, J.; Wan, X.; Liang, T. A holistic assessment of spatiotemporal variation, driving factors, and risks influencing river water quality in the northeastern Qinghai-Tibet Plateau. Sci. Total Environ. 2022, 851, 157942. [Google Scholar] [CrossRef]
- Jonnalagadda, S.B.; Mhere, G. Water quality of the Odzi River in the Eastern Highlands of Zimbabwe. Water Res. 2001, 35, 2371–2376. [Google Scholar] [CrossRef]
- Pak, H.Y.; Chuah, C.J.; Tan, M.L.; Yong, E.L.; Snyder, S.A. A framework for assessing the adequacy of Water Quality Index-Quantifying parameter sensitivity and uncertainties in missing values distribution. Sci. Total Environ. 2021, 751, 141982. [Google Scholar] [CrossRef]
- Pesce, F.S.; Wunderlin, A.D. Use of Water Quality Indices to Verify the Impact of Cordoba City (Argentina) on Suquýa River; ELsevier Science: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Sánchez, E.; Colmenarejo, M.F.; Vicente, J.; Rubio, A.; García, M.G.; Travieso, L.; Borja, R. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol. Indic. 2007, 7, 315–328. [Google Scholar] [CrossRef]
- Gejingting, X.; Ruiqiong, J.; Wei, W.; Libao, J.; Zhenjun, Y. Correlation analysis and causal analysis in the era of big data. Mater. Sci. Eng. 2019, 563, 042032. [Google Scholar] [CrossRef]
- Zhang, W.-Y.; Wei, Z.-W.; Wang, B.-H.; Han, X.-P. Measuring mixing patterns in complex networks by Spearman rank correlation coefficient. Phys. A Stat. Mech. Appl. 2016, 451, 440–450. [Google Scholar] [CrossRef]
- Xiao, C.; Ye, J.; Esteves, R.M.; Rong, C. Using Spearman’s correlation coefficients for exploratory data analysis on big dataset. Concurr. Comput. Pract. Exp. 2016, 28, 3866–3878. [Google Scholar] [CrossRef]
- Krishnaraj, A.; Deka, P.C. Spatial and temporal variations in river water quality of the Middle Ganga Basin using unsupervised machine learning techniques. Environ. Monit. Assess. 2020, 192, 744. [Google Scholar] [CrossRef]
- Tao, J.; Sun, X.H.; Cao, Y.; Ling, M.H. Evaluation of water quality and its driving forces in the Shaying River Basin with the grey relational analysis based on combination weighting. Environ. Sci. Pollut. Res. 2022, 29, 18103–18115. [Google Scholar] [CrossRef]
- Peng, J.; Zheng, B.; Wang, X.; Wang, M. The driving force of basin water resource utilization to lake nutrients. Hydrol. Sci. J. 2020, 65, 855–866. [Google Scholar] [CrossRef]
- Yan, K.; Xu, J.-C.; Gao, W.; Li, M.-J.; Yuan, Z.-W.; Zhang, F.-S.; Elser, J. Human perturbation on phosphorus cycles in one of China’s most eutrophicated lakes. Resour. Environ. Sustain. 2021, 4, 100026. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Q.; Zhang, A.; Hussain, H.A.; Liu, X.; Yang, Z. Spatiotemporal characteristics of the bearing capacity of cropland based on manure nitrogen and phosphorus load in mainland China. J. Clean. Prod. 2019, 233, 601–610. [Google Scholar] [CrossRef]
- Measho, S.; Chen, B.; Pellikka, P.; Trisurat, Y.; Guo, L.; Sun, S.; Zhang, H. Land Use/Land Cover Changes and Associated Impacts on Water Yield Availability and Variations in the Mereb-Gash River Basin in the Horn of Africa. J. Geophys. Res. Biogeosciences 2020, 125, e2020JG005632. [Google Scholar] [CrossRef]
- Schuetz, T.; Gascuel-Odoux, C.; Durand, P.; Weiler, M. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment. Hydrol. Earth Syst. Sci. 2016, 20, 843–857. [Google Scholar] [CrossRef] [Green Version]
- White, J.Y.; Walsh, C.J. Catchment-scale urbanization diminishes effects of habitat complexity on instream macroinvertebrate assemblages. Ecol. Appl. 2020, 30, e02199. [Google Scholar] [CrossRef]
- Kreiling, R.M.; Bartsch, L.A.; Perner, P.M.; Hlavacek, E.J.; Christensen, V.G. Riparian Forest Cover Modulates Phosphorus Storage and Nitrogen Cycling in Agricultural Stream Sediments. Environ. Manag. 2021, 68, 279–293. [Google Scholar] [CrossRef]
- Mackie, C.; Levison, J.; Binns, A.; O’Halloran, I. Groundwater-surface water interactions and agricultural nutrient transport in a Great Lakes clay plain system. J. Great Lakes Res. 2021, 47, 145–159. [Google Scholar] [CrossRef]
- Carter, L.D.; Dzialowski, A.R. Predicting sediment phosphorus release rates using landuse and water-quality data. Freshw. Sci. 2012, 31, 1214–1222. [Google Scholar] [CrossRef]
- Turunen, J.; Markkula, J.; Rajakallio, M.; Aroviita, J. Riparian forests mitigate harmful ecological effects of agricultural diffuse pollution in medium-sized streams. Sci. Total Environ. 2019, 649, 495–503. [Google Scholar] [CrossRef]
- Yu, S.; Xu, Z.; Wu, W.; Zuo, D. Effect of land use types on stream water quality under seasonal variation and topographic characteristics in the Wei River basin, China. Ecol. Indic. 2016, 60, 202–212. [Google Scholar] [CrossRef]
- WANG, L.; LYONS, J.; KANEHL, P. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environ. Manag. 2001, 28, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Hamid, A.; Bhat, S.U.; Jehangir, A. Local determinants influencing stream water quality. Appl. Water Sci. 2019, 10, 1–16. [Google Scholar] [CrossRef]
- Ryberg, K.R.; Chanat, J.G. Climate extremes as drivers of surface-water-quality trends in the United States. Sci. Total Environ. 2022, 809, 152165. [Google Scholar] [CrossRef]
- Murdoch, P.S.; Baron, J.S.; Miller, T.L. Potential effects of climate change on surface-water quality in North America. J. Am. Water Resour. Assoc. 2000, 36, 347–366. [Google Scholar] [CrossRef]
- Wolf, K.A.; Gupta, S.C.; Rosen, C.J. Precipitation Drives Nitrogen Load Variability in Three Iowa Rivers. J. Hydrol. Reg. Stud. 2020, 30, 100705. [Google Scholar] [CrossRef]
- Baeumler, N.W.; Gupta, S.C. Precipitation as the Primary Driver of Variability in River Nitrogen Loads in the Midwest United States. JAWRA J. Am. Water Resour. Assoc. 2019, 56, 113–133. [Google Scholar] [CrossRef]
- Rahman, M.A.T.M.T.; Paul, M.; Bhoumik, N.; Hassan, M.; Alam, M.K.; Aktar, Z. Heavy metal pollution assessment in the groundwater of the Meghna Ghat industrial area, Bangladesh, by using water pollution indices approach. Appl. Water Sci. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Hilary, B.; Chris, B.; North, B.E.; Angelica Maria, A.Z.; Sandra Lucia, A.Z.; Carlos Alberto, Q.G.; Beatriz, L.G.; Rachael, E.; Andrew, W. Riparian buffer length is more influential than width on river water quality: A case study in southern Costa Rica. J. Environ. Manag. 2021, 286, 112132. [Google Scholar] [CrossRef]
- Hanna, D.E.L.; Lehner, B.; Taranu, Z.E.; Solomon, C.T.; Bennett, E.M. The relationship between watershed protection and water quality: The case of Québec, Canada. Freshw. Sci. 2021, 40, 382–396. [Google Scholar] [CrossRef]
- Woo, S.Y.; Kim, S.J.; Lee, J.W.; Kim, S.H.; Kim, Y.W. Evaluating the impact of interbasin water transfer on water quality in the recipient river basin with SWAT. Sci. Total Environ. 2021, 776, 145984. [Google Scholar] [CrossRef]
- Guan, X.; Ren, X.; Tao, Y.; Chang, X.; Li, B. Study of the Water Environment Risk Assessment of the Upper Reaches of the Baiyangdian Lake, China. Water 2022, 14, 2557. [Google Scholar] [CrossRef]
- Li, J.L.; Zuo, Q.T. Forms of Nitrogen and Phosphorus in Suspended Solids: A Case Study of Lihu Lake, China. Sustainability 2020, 12, 5026. [Google Scholar] [CrossRef]
Elements | Indicators | Contracted Form | Reference |
---|---|---|---|
Terrain factors | Elevation | Elevation | Panuska.J.C. et al. [32] |
Aspect | Aspect | ||
Slope | Slope | ||
Social economic factors | The population density | Pop_Den | Chen Ijnyue. et al. [33] |
Gross domestic product | GDP | ||
Per capita gross domestic product | GDP_Per_Cap | ||
Total sewage discharge | Tot_Sew_Dis | ||
Industrial sewage discharge | Ind_Sew_Dis | ||
Chemical oxygen demand sewage discharge | COD_Sew_Dis | ||
Urban sewage treatment rate | Urb_Sew_Dis | ||
Pork production | Pork_Pro | ||
Poultry production | Pou_Pro | ||
Aquatic production | Aqua_Pro | ||
Proportion of primary industry | Pri_Ind_Pro | ||
Proportion of second industry | Sec_Ind_Pro | ||
Proportion of tertiary industry | Ter_Ind_Pro | ||
Fertilizer usage | Fert_Use | ||
Pesticide uasge | Pest_Use | ||
Land-use factors | Proportion of cropland area | Crop_Pro | Wang X. et al. [42] De Mello, K. et al. [27] |
Proportion of forest area | Forest_Pro | ||
Proportion of grassland area | Grass_Pro | ||
Proportion of shrub area | Shrub_Pro | ||
Proportion of wetland area | Wet_Pro | ||
Proportion of water area | Water_Pro | ||
Proportion of bare land area | Bare_Pro | ||
Proportion of urban land area | Urban_Pro |
Number | River | River Basin | The Name of Section | Area of Operation |
---|---|---|---|---|
1 | Shiwei harbor | Yangtze river basin | Xinshiwei harbor bridge | Jingjiang city |
2 | Xintongyang river | Huaihe river basin | Taixi | Hailing district |
3 | Yinjiang river | Huaihe river basin | Hailing bridge | Hailing district |
4 | Nanguan river | Yangtze river basin | Xianghe bridge | Hailing district |
5 | Xiashi harbor | Yangtze river basin | Xiashigang bridge | Jingjiang city |
6 | Xiaqinglong harbor | Yangtze river basin | Xiaqinglong harbor (left shore) | Jingjiang city |
7 | Luting river | Huaihe river basin | Refrigeration plant south | Xinhua city |
8 | Zhula river | Huaihe river basin | Jigeng | Xinhua city |
9 | Fengting river | Huaihe river basin | Laogedong | Jiangyan district |
10 | Gumagan river | Yangtze river basin | Maxundian west | Gaogang district |
11 | Pengqi harbor | Yangtze river basin | Pengqi harbor (left shore) | Jingjiang city |
12 | Gao harbor | Yangtze river basin | Gao barbor (left shore) | Xinhua city |
Risk Levels | Class Ⅰ (Very Clean) | Class Ⅱ (Not Risky) | Class Ⅲ (Moderate) | Class Ⅳ (Slightly Risky) | Class Ⅴ (Risky) | |
---|---|---|---|---|---|---|
Pollution factors | Concentration (mg/L) | |||||
pH | 6~9 | |||||
DO | ≥ | 7.5 | 6 | 5 | 3 | 2 |
CODMn | ≤ | 2 | 4 | 6 | 10 | 15 |
BOD5 | ≤ | 3 | 3 | 4 | 6 | 10 |
NN3-N | ≤ | 0.15 | 0.5 | 1.0 | 1.5 | 2.0 |
TN | ≤ | 0.2 | 0.5 | 1.0 | 1.5 | 2.0 |
TP | ≤ | 0.02 | 0.1 | 0.2 | 0.3 | 0.4 |
Range | Class |
---|---|
10 ≤ WQI < 25 | Very bad |
25 ≤ WQI < 50 | Bad |
50 ≤ WQI < 70 | Medium |
70 ≤ WQI < 90 | Good |
90 ≤ WQI ≤ 100 | Excellent |
Factors | Weight | Standardization Values | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ||
DO | 4 | ≥7.5 | >7 | >6.5 | >6 | >5 | >4 | >3.5 | >3 | >2 | ≥1 | <1 |
EC | 2 | <750 | <1000 | <1250 | <1500 | <2000 | <2500 | <3000 | <5000 | <8000 | ≤12,000 | >12,000 |
CODMn | 3 | <1 | <2 | <3 | <4 | <6 | <8 | <10 | <12 | <14 | ≤15 | >15 |
BOD5 | 3 | <0.5 | <2 | <3 | <4 | <5 | <6 | <8 | <10 | <12 | ≤15 | >15 |
NH3-N | 3 | <0.01 | <0.05 | <0.1 | <0.2 | <0.3 | <0.4 | <0.5 | <0.75 | <1 | ≤1.25 | >1.25 |
TN | 3 | <0.1 | <1 | <1.5 | <2 | <3 | <4 | <5 | <6 | <8 | ≤10 | >10 |
TP | 1 | <0.01 | <0.02 | <0.05 | <0.1 | <0.15 | <0.2 | <0.25 | <0.3 | <0.35 | ≤0.4 | >0.4 |
Indicators | Flood Season | Non-Flood Season | T Value | ||||
---|---|---|---|---|---|---|---|
Mean (Std.) | Range | CV | Mean (Std.) | Range | CV | ||
pH | 7.63 (0.56) | 6.12–8.79 | 0.07 | 7.47 (0.90) | 5.19–8.85 | 0.12 | 0.710 ** |
DO/(mg/L) | 6.14 (1.17) | 3.30–8.00 | 0.19 | 9.15 (1.69) | 5.10–12.00 | 0.18 | −12.828 ** |
EC | 32.54 (5.69) | 23.2–54.4 | 0.17 | 110.12 (155.60) | 28.2–509.2 | 1.41 | −2.782 *** |
CODMn /(mg/L) | 2.80 (1.37) | 1.30–7.00 | 0.49 | 2.72 (0.82) | 1.50–5.40 | 0.30 | 0.352 ** |
BOD5/ (mg/L) | 4.28 (1.95) | 0.20–7.25 | 0.46 | 1.63 (0.53) | 0.20–2.50 | 0.33 | 9.016 ** |
NH3-N/(mg/L) | 1.22 (1.19) | 0.04–5.69 | 0.98 | 0.63 (1.08) | 0.02–6.09 | 1.70 | 1.979 ** |
TN/(mg/L) | 1.18 (0.50) | 0.19–2.53 | 0.42 | 0.65 (0.37) | 0.02–1.85 | 0.57 | 7.862 ** |
TP/(mg/L) | 0.10 (0.04) | 0.05–0.24 | 0.40 | 0.15 (0.19) | 0.06–1.006 | 1.22 | −3.084 *** |
Driving Factors | TN | DO | TP | WQI | ||||
---|---|---|---|---|---|---|---|---|
HFS | LFS | HFS | LFS | HFS | LFS | HFS | LFS | |
Elevation | 0.20 | −0.03 | −0.03 | 0.40 *** | 0.02 | 0.20 | 0.13 | 0.14 |
Aspect | 0.39 ** | 0.06 | −0.35 ** | 0.20 | 0.04 | 0 | −0.17 | 0.18 |
Slope | −0.21 | −0.15 | 0.22 | 0.24 | 0.15 | −0.11 | 0.06 | 0.26 |
Tem_HFS | −0.08 | −0.06 | −0.72 *** | −0.16 | 0.26 | 0.27 * | −0.45 *** | −0.15 |
Tem_LFS | 0.23 * | 0.08 | 0.57 *** | −0.02 | −0.25 | −0.59 *** | −0.34 ** | 0.37 ** |
Ave_Ann_Tem | 0.34 ** | 0.22 | 0.44 *** | −0.14 | −0.10 | −0.48 *** | −0.27 * | 0.21 |
Pop_Den | 0.20 * | 0.20 | 0.10 | 0.10 | 0.09 | −0.02 | 0.16 | 0.03 |
GDP | −0.40 *** | −0.23 | −0.41 *** | 0.18 | −0.54 *** | −0.27 * | −0.46 *** | −0.01 |
GDP_Per_Cap | −0.25 | −0.07 | −0.40 ** | −0.11 | −0.36 ** | 0.03 | −0.50 *** | −0.13 |
Tot_Sew_Dis | 0.19 | −0.07 | −0.15 | 0.04 | −0.17 | 0.26 | 0.02 | −0.02 |
Ind_Sew_Dis | 0.48 ** | −0.27 | −0.45 *** | 0.08 | −0.59 *** | −0.22 | −0.49 *** | −0.06 |
Urb_Sew_Tre | 0.18 | −0.01 | −0.25 * | 0.10 | 0.15 | −0.28 * | −0.04 | 0.09 |
COD_Sew_Dis | 0.34 ** | 0.24 | −0.30 ** | 0.02 | 0.46 *** | −0.10 | −0.50 *** | 0.07 |
Pork_Pro | −0.25 | −0.24 | −0.04 | 0.05 | −0.18 | −0.08 | −0.08 | 0.03 |
Pou_Pro | −0.25 | −0.24 | −0.04 | 0.05 | −0.18 | −0.08 | −0.08 | 0.03 |
Aqua_Pro | 0.25 | 0.07 | −0.40 ** | 0.11 | 0.36 ** | −0.03 | −0.50 *** | 0.13 |
Pri_Ind_Pro | −025 | −0.24 | −0.04 | 0.05 | −0.18 | −0.08 | −0.08 | 0.03 |
Sec_Ind_Pro | 0.34 ** | −0.24 | 0.30 ** | −0.02 | −0.46 *** | 0.10 | −0.50 *** | −0.07 |
Ter_Ind_Pro | 0.49 *** | 0.33 * | −0.35 ** | 0.09 | 0.56 *** | −0.04 | −0.47 *** | 0.11 |
Fert_Use | 0.17 | 0.20 | −0.08 | 0.15 | −0.13 | −0.13 | −0.11 | 0.08 |
Pest_Use | −0.25 | −0.24 | −0.04 | 0.05 | −0.18 | −0.08 | −0.08 | 0.03 |
Crop_Pro | −0.09 | 0.22 | −0.34 *** | −0.02 | 0.18 | 0.11 | −0.38 ** | 0.17 |
Forest_Pro | −0.34 ** | −0.18 * | 0.33 ** | 0.43 *** | −0.37 ** | 0.17 | 0.45 *** | 0.01 |
Grass_Pro | 0.27 * | 0.20 | 0.42 *** | −0.05 | −0.40 *** | −0.31 * | −0.32 * | −0.04 |
Shrub_Pro | −0.06 | −0.15 | 0.39 ** | −0.06 | −0.63 *** | −0.16 | 0.49 *** | 0.08 |
Wet_Pro | −0.06 | −0.28 * | 0.29 * | 0.11 | 0.27 * | 0.01 | −0.43 *** | 0.33 ** |
Water_Pro | −0.44 ** | −0.12 | −0.23 | −0.09 | −0.18 | −0.03 | 0.16 | −0.17 |
Bare_Pro | −0.08 | 0.17 | 0.18 | 0.12 | 0.26 | 0.01 | 0.16 | −0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Li, C.; Jiang, X.; Zhao, T.; Huang, H. Research on Surface Water Quality Assessment and Its Driving Factors: A Case Study in Taizhou City, China. Water 2023, 15, 26. https://doi.org/10.3390/w15010026
Deng S, Li C, Jiang X, Zhao T, Huang H. Research on Surface Water Quality Assessment and Its Driving Factors: A Case Study in Taizhou City, China. Water. 2023; 15(1):26. https://doi.org/10.3390/w15010026
Chicago/Turabian StyleDeng, Sihe, Cheng Li, Xiaosan Jiang, Tingting Zhao, and Hui Huang. 2023. "Research on Surface Water Quality Assessment and Its Driving Factors: A Case Study in Taizhou City, China" Water 15, no. 1: 26. https://doi.org/10.3390/w15010026
APA StyleDeng, S., Li, C., Jiang, X., Zhao, T., & Huang, H. (2023). Research on Surface Water Quality Assessment and Its Driving Factors: A Case Study in Taizhou City, China. Water, 15(1), 26. https://doi.org/10.3390/w15010026