A Holistic Review of Lake Rawapening Management Practices, Indonesia: Pillar-Based and Object-Based Management
Abstract
:1. Introduction
2. Methods
3. Overview of Lake Rawapening Environment: Abiotic, Biotic, and Cultural Components
3.1. Abiotic Component
3.2. Biotic Component
3.3. Cultural Component
4. Overview of Lake Rawapening Management
4.1. Pillar-Based Lake Management
4.2. Object-Based Lake Management
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Conceptual Pillars | Born and Rumery, 1989 [74] | Birch and McCaskie, 1999 [75] | ILEC, 2005 [69] | World Bank, 2005 [76] | Hecky et al., 2006 [77] | World Lake Vision, 2007 [78] | Kauneckis and Imperial, 2007 [43] | Nakamura and Rast, 2014 [1] |
---|---|---|---|---|---|---|---|---|
Finance | financial constraints | funding | finance | finance | adequate funding | finance: seeking sustainable sources at appropriate levels | ||
Planning, designs, management scenarios, and actions | planning, design, and management scenario | planning and management action based on lake catchment | developing a shared definition of the problem | |||||
Institutions | functional program responsibilities, coordination | institutions | institutions | institutions: developing effective organizations | ||||
Power, authorities | limited authority, areal jurisdiction | establishing a balance of power | ||||||
Policies, rules | public awareness and consensus | policy | policy tools | policy, rules | increasing policy instrument diversity | policies: broad directions and specific rules | ||
Participations | private-sector roles | people | public participation | participation in identifying and resolving critical lake problems | defining mutual interests | participation: expanding the circle of involvement | ||
Good governance | good governance: fairness, transparency, empowerment of all stakeholders | establishing trust across organizations | ||||||
Information, sciences | information | information | science- and information-based policy development | information: pursuing the sources of knowledge and wisdom | ||||
Technology | technological responses | technology: possibilities and limitations |
Conceptual Pillars | Chidammodzi and Muhandiki, 2015 [68] | Cookey et al., 2016 [70] | KC et al., 2020 [79] | Nunan, 2020 [80] | Shadkam et al., 2020 [81] | Akbar et al., 2022 [82] | McEwen and Hosey, 2022 [83] |
---|---|---|---|---|---|---|---|
Finance | finance | resource management systems | financial management | allocation of funds for required technologies, appropriation of the required funds | |||
Planning, designs, management scenarios, and actions | |||||||
Institutions | institutions | actors, institutions | institutional objectives | ||||
Power, authorities | adaptability, resilience | power | |||||
Policies, rules | policies | ||||||
Participations | participation | collaboration, integration, participation | facilitating community participation | board participation, membership | |||
Good governance | decentralization | good governance: co-management, transparency | |||||
Information, sciences | information and science | ||||||
Technology | technology | resource management systems | allocation of supply of the required technologies to increase the efficiency of usage of the remaining water |
Appendix B
Identified Management Strategies | Heiskary et al., 1987 [85] | Gough and Ward, 1996 [86] | Maitland and Morgan, 1997 [87] | Birch and McCaskie, 1999 [75] | Melzer, 1999 [88] | Drenner and Hambright, 2002 [89] | Premazzi et al., 2003 [90] | Hecky et al., 2006 [77] | World Lake Vision, 2007 [78] | Qin et al., 2010 [91] | Carvalho et al., 2011 [92] |
---|---|---|---|---|---|---|---|---|---|---|---|
| lake restoration | access to waters: trampling, digging turf, disturbance, deposition of litter, lighting of fires, use of boats | lake maintenance, wildfowl/waterfowl management: physical exclusion, management scenario | investigative monitoring (sudden phenomenon), surveillance monitoring (monitoring obligation) | proper basin management | preventing lake degradation | |||||
| supplementation from Rakaia River | raising of the water level | inputs from water supply (quantity) | ||||||||
| managing water quality | providing freshwater, increasing water transparency, reducing fecal coliforms | improving water quality: nutrient sources, chemical status, oxygen levels, microbiology; improving water quality from biological influence, zooplankton and other invertebrates, algae, nutrient and organic enrichment | limiting pollution, establishing water quality objectives | lengthening total P retention time | ||||||
| land reclamation around the lake margin, conservation management of lakeshore margins, controlling non-point sources of nutrients by clearing riparian zone | ground maintenance | |||||||||
| upstream management | habitat management: groins, fishing jetties, artificial spawning areas; blocking access to inflow: removal of barriers, liming, cutting weeds, cutting bankside vegetation, construction of fishing pools | wildfowl/waterfowl management: habitat modification, modification management | ||||||||
| reducing sediment, reducing nutrients in the lake, nutrient removal | blocking outflows, addition of fertilizers, use of herbicides, use of grass carp, introduction of food crop species | sediment treatment | reducing sediment from nutrients, P N | controlling excessive nutrient loading, prevent accelerated eutrophication | reducing nutrient loads from the catchment | |||||
| reducing suspended sediment by revegetation (submerged macrophytes) of margin, controlling non-point sources of nutrients by afforestation, controlling poultries number | fish introductions; removal of fish: angling, trapping, poisoning, electro-fishing, netting, drainage; fish stocking: egg, fry, juveniles or adults; ground baiting; accidental introduction of disease and parasites; predator control | vegetation replanting | reducing diatom sediment | increasing piscivore, declining phytoplankton biomass | controlling cyanobacteria bloom, flushing the lake of the bloom | reducing cyanobacteria abundance | ||||
| conflict resolution sustainability based on human–nature interactions | ||||||||||
| monitoring of operational performance (programs, activities) | ||||||||||
| weather condition | minimizing impacts of physical factors such as air temperature, wind speed and direction, radiation | |||||||||
| fish management | maintaining viable fisheries |
Identified Management Strategies | Sayer et al., 2012 [93] | Zalewski, 2012 [94] | Cookey et al., 2016 [70] | Bocaniov and Scavia, 2016 [95] | De Keyzer et al., 2020 [96] | KC et al., 2020 [79] | Larson et al., 2020 [97] | Nunan, 2020 [80] | Susilo, 2020 [98] | Wosnie et al., 2020 [99] |
---|---|---|---|---|---|---|---|---|---|---|
| sediment dredging to optimize restoration | resource systems | dam removal | sustainability in the waters’ conditions | ||||||
| enhancement of water resources | |||||||||
| controlling oxygen deficiency (hypoxia) | |||||||||
| protecting spawning areas, stopping constructing buildings close to the lake, allowing littoral zones to remain open | |||||||||
| stressors | making the neighboring countries stop polluting the lake | enhancement of environmental protection | habitat improvements | ||||||
| sediment removal, combatting nutrients, combatting eutrophication | controlled sedimentation | reducing sediment loading by preventing resuspension, reducing sediment loading by reducing deposition | |||||||
| maintenance and restoration of biodiversity | Reforestation, combat deforestation | preservation and maintenance of beavers, monitoring and maintenance of biodiversity | sustainability in fish diversity, the existence of protected species, zooplankton community structure, forest areas | ||||||
| forbidding extraction of sand and stones, providing alternative livelihood | local stakeholder empowerment | ||||||||
| ||||||||||
| building resilience to climate change and anthropogenic impact | |||||||||
| fishing license: management requirements for fishing | provision of ecosystem services for society | economic sector | limiting fishing, providing law-comfort fishing materials, avoiding imported fishing materials, providing credit to buy new materials, improving fisheries with different techniques, raising awareness of regulations, licensing, cold chambers and cooler boxes, industrialization | enhancement of economic productivity | income to alleviate and prevent poverty, fish-based management, conservation, and protection |
Identified Management Strategies | Nakatsuka et al., 2020 [100] | Zhu et al., 2020 [101] | Shadkam et al., 2020 [81] | Abdurrahim et al., 2021 [102] | Djihouessi et al., 2021 [103] | Akbar et al., 2022 [82] | McEwen and Hosey, 2022 [83] | Moreno et al., 2022 [104] | B. Zhang et al., 2022 [105] | X. Zhang et al., 2022 [106] |
---|---|---|---|---|---|---|---|---|---|---|
| promote integrated flood management; conserve groundwater; restore and improve the balance of ecosystem services | lake regime shift and stratification processes, ecological status | Water saving | hydrological management | ||||||
| multiplex of the water supply system, strengthen water environment crisis management | reducing water allocated to the farmers through purchasing system, enhancing the productivity of the remaining water, acceleration transfer of water from the rivers to the lake basin | providing water level logger, maintaining water levels | recycling treated sewage for irrigation, recycling treated industrial wastewater for irrigation recycling intercepted sewage inside watershed for irrigation | ||||||
| transferring treated wastewater from the lake basin into lake | Fecal-coliform test, checking time-series oxygen, identifying heavy filaments and phosphorus, monitoring chloride | upgrading the wastewater treatment facilities, enhancing rate of sewage | water quality restoration | ||||||
| meandering survey, shoreline survey: 40–60% littoral zone should be vegetated | planned farmland lying fallow | ||||||||
| restoring the regional water culture and mutual beneficial relations between upstream and downstream users | |||||||||
| promoting comprehensive sediment management | reduce nutrient input, control water hyacinth | reduce herbicides | remove rate of nutrient | ||||||
| removing macrophytes, stocking herbivorous and omnivorous fish | living around (lake, upstream, downstream) | plants survey: assess distribution and coverage aquatic plant community (curly), controlling aquatic invasive species | biological manipulation | ||||||
| living around (lake, upstream, downstream) | stimulating farmers to join programs, facilitating fabric management permission | restricting secondary industry, sustainable cultivation | |||||||
| measures against ageing of water infrastructure | |||||||||
| early detection and fast response plan | |||||||||
| rational fishing | livelihood; business opportunities | enhance fisheries |
References
- Nakamura, M.; Rast, W. Development of ILBM Platform Process: Evolving Guidelines through Participatory Improvement, 2nd ed.; Research Center for Sustainability and Environment, Shiga University and International Lake Environment Committee Foundation (ILEC): Shiga, Japan, 2014; pp. 9–40. [Google Scholar]
- Ho, L.T.; Goethals, P.L.M. Opportunities and challenges for the sustainability of lakes and reservoirs in relation to the sustainable development goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Heino, J.; Alahuhta, J.; Bini, L.M.; Cai, Y.; Heiskanen, A.; Hellsten, S.; Kortelainen, P.; Kotamäki, N.; Tolonen, K.T.; Vihervaara, P.; et al. Lakes in the era of global change: Moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol. Rev. 2020, 96, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Cao, E.; Xie, Y.; Xu, C.; Li, H.; Yan, L. Integrating ecosystem services and landscape ecological risk into adaptive management: Insights from a western mountain-basin area, China. J. Environ. Manag. 2021, 281, 111817. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.E.; Andriamahefazafy, M.Z.; Guilder, J.; Kull, C.A.; Shackleton, R.T. Lake users’ perceptions of environmental change: Ecosystem services and disservices associated with aquatic plants. Water 2021, 13, 1459. [Google Scholar] [CrossRef]
- Mardiatno, D.; Faridah, F.; Sunarno, S.; Najib, D.W.A.; Widyaningsih, Y.; Setiawan, M.A. Landscape governance of Rawapening based on the level of environmental disaster risk in the Rawapening Sub Watershed. J. Watershed Manag. Res. 2021, 5, 21–40. [Google Scholar] [CrossRef]
- Presidential Regulation of the Republic of Indonesia Number 60 of 2021 on National Priority Lakes Recovery. Available online: https://jdih.maritim.go.id/id/peraturan-presiden-republik-indonesia-no-60-tahun-2021 (accessed on 12 July 2021).
- Irawan, E.; Haryanti, N. The changes of property-rights regimes and lake degradation: An institutional analysis of Lake Rawapening. IOP Conf. Ser. Earth Environ. Sci. 2020, 535, 012063. [Google Scholar] [CrossRef]
- Dersseh, M.G.; Melesse, A.M.; Tilahun, S.A.; Abate, M.; Dagnew, D.C. Water hyacinth: Review of its impacts on hydrology and ecosystem services-Lessons for management of Lake Tana. In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 237–251. [Google Scholar]
- Rawapening Lake Management Team. Lake Rawapening Management Plan; Ministry of Environment and Forestry: Semarang, Indonesia, 2019.
- Sittadewi, E.H. Tidal land condition in the Rawapening area and its potential use. J. Teknologi Lingkungan 2008, 9, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Prihastuti, P. The characteristics of Rawa Pening peat soils and their potency as a microbial carrier. Berita Biologi 2013, 12, 315–323. [Google Scholar]
- Darsono, S.; Suripin, S.; Budieny, H.; Afifah, R.C.; Pujiastuti, R.; Soripada, F.; Hutagalung, M.I.T.P.; Pamungkas, L.A.; Saputra, G.W. Benefits of embungs in the Rawa Pening catchment area for reducing Tuntang river flood discharge. ICENIS E3S Web Conf. 2018, 73, 08029. [Google Scholar] [CrossRef] [Green Version]
- Piranti, A.S.; Rahayu, D.R.U.S.; Waluyo, G. The assessment of Rawapening Lake water quality status. J. Nat. Environ. Resour. Manag. 2018, 8, 151–160. [Google Scholar] [CrossRef]
- Murtiono, U.H.; Wuryanta, A. Ground water quality in natural forest and private forest (a case study in catchment area of lake Rawapening, Semarang District Central Java). In Proceedings of the International Conference on the Improvement of Environmental Quality (ICIEQ), Bogor, Indonesia, 29 August 2019; Volume 407, p. 012014. [Google Scholar] [CrossRef]
- Weri, M.N.; Sucahyo, S. The relationship between fishing gear and captured fish species in Rawa Pening. Bioedukasi 2017, 10, 35–43. [Google Scholar]
- Yunindanova, M.B.; Supriyono, S.; Hertanto, B.S. Processing of invasive water hyacinth into market-worthy organic fertilizer as a solution to the problem in Rawa Pening. Prima J. Community Empower. Serv. 2020, 4, 78–87. [Google Scholar] [CrossRef]
- Aprilliyana, D. Effects of land use change in the Rawapening sub-watershed on the erosion and sedimentation in Lake Rawapening. J. Pembangunan Wilayah Kota 2015, 11, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Indrayati, A.; Hikmah, N.I. Prediction of Lake Rawa Pening sediment in 2020 as the basis for preserving Tuntang River based on geographic information systems. In Proceedings of the Seminar Nasional Geografi UMS IX (River Restoration: Challenges and Solution for Sustainable Development), Surakarta, Indonesia, 30 June 2018; pp. 543–552. [Google Scholar]
- Wulandari, D.A.; Kurniani, D.; Edhisono, S.; Ardianto, F.; Dahlan, D. The effect of small dams in Rawa Pening catchment area on sedimentation rate of Rawa Pening Lake. ConCERN-2 MATEC Web Conf. 2019, 270, 04018. [Google Scholar] [CrossRef] [Green Version]
- Sanjoto, T.B.; Sidiq, W.A.B.N.; Nugraha, S.B. Land cover change analysis to sedimentation rate of Rawapening lake. Int. J. GEOMATE 2020, 18, 294–301. [Google Scholar] [CrossRef]
- Murtiono, U.H.; Wuryanta, A. Study of eutrophication in the natural reservoir Rawapening. In Proceedings of the Seminar Nasional Geografi UMS, Surakartam, Indonesia, 4 June 2016; pp. 170–181. [Google Scholar]
- Piranti, A.S.; Rahayu, D.R.U.S.; Waluyo, G. Input of nutrient (nitrogen and phosphorus) from the catchment area into Rawapening Lake of Central Java. In Proceedings of the 1st IBSC: Towards the Extended Use of Basic Science for Enhancing Health, Environment and Biotechnology, Jember, Indonesia, 26–27 September 2016; pp. 50–51. [Google Scholar]
- Budihardjo, M.A.; Huboyo, H.S. Nitrate and phosphate distribution patterns using the Aquatox2.2 model and the relationship to water hyacinth on the lake surface (a case study of Lake Rawa Pening, Semarang Regency). J. Presipitasi 2007, 3, 58–66. [Google Scholar]
- Prasetyo, S.; Anggoro, S.; Soeprobowati, T.R. The growth rate of water hyacinth (Eichhornia crassipes (Mart.) Solms) in Rawapening Lake, Central Java. J. Ecol. Eng. 2021, 22, 222–231. [Google Scholar] [CrossRef]
- Soewandita, H. Study of land ecology of river corridor and land use quality status in the Rawapening catchment area. J. Alami 2017, 1, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Ridwan, B. Environmental preservation awareness and responsibility of the Muslim community of Rawa Pening, Semarang Regency. INFERENSI J. Penelitian Sosial Keagamaan 2013, 7, 321–342. [Google Scholar] [CrossRef]
- Hakim, A.R. Measuring the economic value of natural attractions in Rawapening, Semarang District, Indonesia. J. Am. Sci. 2010, 6, 791–794. [Google Scholar]
- Subanti, S. Measurement of contributions to the economic value of tourism objects in the Rawapening area, Semarang Regency, using a multiplier effect approach. In Proceedings of the Seminar Nasional Matematika dan Pendidikan Matematika UMS 2015, Yogyakarta, Indonesia, 14 November 2015; pp. 519–530. [Google Scholar]
- Utomo, A.W. Weaving a live from water hyacinth: Patterns of use of water hyacinth around Lake Rawa Pening from a sustainable development’s perspective. Cakrawala 2016, 5, 191–216. [Google Scholar]
- Abimanyu, K.; Banowati, E.; Aji, A. Analysis of natural resources utilization in Lake Rawa Pening, Semarang Regency. Geo. Image 2016, 5, 1–7. [Google Scholar]
- Subanti, S.; Irawan, B.R.M.B.; Sasongko, G.; Hakim, A.R. Economic valuation on change of tourism quality in Rawapening, Indonesia: An application of random utility method. J. Phys. Conf. Ser. 2017, 824, 012037. [Google Scholar] [CrossRef] [Green Version]
- Husni, I.A.; Wijayanto, D.; Sardiyatmo, S.; Hapsari, T.D.; Kurohman, F. Analysis of boat production business in Rawapening (case study of boat manufacturers in Asinan Village, Bawen District, Semarang Regency. J. Capture Fish 2017, 1, 1–6. [Google Scholar]
- Cahyono, S.A.; Falah, F.; Raharjo, S.A.S. Identification of leading economic sectors in Lake Rawapening catchment. J. Wilayah dan Lingkungan 2020, 8, 36–50. [Google Scholar] [CrossRef]
- Hidayati, N.; Soeprobowati, T.R. Sustainable agriculture in water catchment area of Rawapening Lake. Proceeding Biol. Educ. Conf. 2017, 14, 126–130. [Google Scholar]
- Utpalasari, R.L. Cost and production of cage culture in Rawapening Semarang Regency. Societa 2013, 2, 100–105. [Google Scholar]
- Partomo, P.; Mangkuprawira, S.; Hubeis, A.V.S.; Adrianto, L. Lake management based on co-management: Case of Rawa Pening. J. Pengelolaan Sumberaya Alam dan Lingkungan 2011, 1, 106–113. [Google Scholar]
- Setianto, S.; Hartati, D.R. Mapping of conflict vulnerability in supporting revitalization program of Rawa Pening Lake. Center for Research and Development for the Application of Water Resources Technology and Center for Research and Development of Technology Policy and Application Ministry of Public Works and Housing. 2015, pp. 1–12. Available online: https://jurnal.uns.ac.id/prosbi/article/view/18774/14892.
- Soeprobowati, T.R. Integrated lake basin management for save Indonesian lake movement. Procedia Environ. Sci 2015, 23, 368–374. [Google Scholar] [CrossRef]
- Nadjib, M. The problems of collaborative management in Rawapening Lake. Masyarakat Budaya 2016, 18, 487–502. [Google Scholar]
- Haryanti, N. Building government-community partnerships: Remediation of Lake Rawapening to ensure its sustainability. In Proceedings of the Seminar Nasional Geografi UMS VIII, Surakarta, Indonesia, 22 May 2017; pp. 705–715. [Google Scholar]
- Hidayati, N.; Soeprobowati, T.R.; Helmi, M. The evaluation of water hyacinth (Eichhornia crassiper) control program in Rawapening Lake, Central Java Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 142, 012016. [Google Scholar] [CrossRef]
- Kauneckis, D.; Imperial, M.T. Collaborative watershed governance in Lake Tahoe: An institutional analysis. Int. J. Organ. Theory Behav. 2007, 10, 503–546. [Google Scholar] [CrossRef] [Green Version]
- Watershed and Protected Forest Management Center (BPDASHL) Pemali Jratun. Monitoring Report on the Implementation of the Lake Rawapening Management Plan 2019–2021; BPDASHL Pemali Jratun: Semarang, Indonesia, 2022. [Google Scholar]
- Gundogan, B.; Dowlut, N.; Rajmohan, S.; Borrelli, M.R.; Millip, M.; Iosifidis, C.; Udeaja, Y.Z.; Mathew, G.; Fowler, A.; Agha, R. Assessing the compliance of systematic review articles published in leading dermatology journals with the PRISMA statement guidelines: A systematic review. J. Am. Acad. Dermatol. Int. 2020, 1, 157–174. [Google Scholar] [CrossRef]
- Fahlstedt, O.; Temeljotov-Salaj, A.; Lohne, J.; Bohne, R.A. Holistic assessment of carbon abatement strategies in building refurbishment literature—A scoping review. Renew. Sust. Energ. Rev. 2022, 167, 112636. [Google Scholar] [CrossRef]
- Romero-Luis, J.; Carbonell-Alcocer, A.; Gertrudix, M.; Casado, M.d.C.G. What is the maturity level of circular economy and bioenergy research addressed from education and communication? A systematic literature review and epistemological perspectives. J. Clean. Prod. 2021, 322, 129007. [Google Scholar] [CrossRef]
- Publish or Perish. Available online: https://harzing.com/resources/publish-or-perish (accessed on 18 October 2022).
- Anugerah, A.R.; Muttaqin, P.S.; Trinarningsih, W. Social network analysis in business and management research: A bibliometric analysis of the research trend and performance from 2001 to 2020. Heliyon 2022, 8, e09270. [Google Scholar] [CrossRef]
- Avicenna, F.; Yudianto, A.; I’tishom, R.; Wungu, C.D.K. Effect of machine-washing semen-stained fabrics on the persistence of human spermatozoa DNA: A systematic review of five articles. Leg. Med. 2023, 60, 102179. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Inácio, M.; Barceló, D.; Zhao, W.; Pereira, P. Mapping lake ecosystem services: A systematic review. Sci. Total Environ. 2022, 847, 157561. [Google Scholar] [CrossRef]
- Regional Regulation Number 6 Year 2011 on the Spatial Planning of Semarang Regency for 2011–2031. Available online: https://jdih.semarangkab.go.id/site/produk_hukum/1127/rencana_tata_ruang_wilayah_kabupaten_semarang_tahun_2011_2031 (accessed on 14 September 2022).
- Provincial Regulation Number 6 of 2010 on the Regional Spatial Plan of Central Java Province for 2009–2029. Available online: https://jdih.jatengprov.go.id/inventarisasi-hukum/detail/perda-nomor-6-tahun-2010-1 (accessed on 14 September 2022).
- Regulation of the Minister of Public Works and Housing Number 04/PRT/M/2015 on Criteria and Determination of River Areas. Available online: https://peraturan.bpk.go.id/Home/Details/159834/permen-pupr-no-04prtm2015-tahun-2015 (accessed on 18 June 2021).
- Soeprobowati, T.R. Bathymetry map of Lake Rawapening. BIOMA 2012, 14, 75–78. [Google Scholar]
- Mardiatno, D.; Faridah, F. Higher Education Excellence Research: Environmental Disaster Risk Reduction Models for Sustainable Lake Areas Management (Moriblat); Yogyakarta, Indonesia, 2020. [Google Scholar]
- Hydrological Data: Publication of Rainfall Data Center for Public Works, Water Resources, and Spatial Planning (Balai Pusdataru) Jragung Tuntang. Available online: https://pusdataru.jatengprov.go.id/portal_data/curah_hujan (accessed on 1 May 2021).
- Soeprobowati, T.R.; Suedy, S. Trophic Status of Lake Rawapening and Management Solutions. J. Sains Mat. 2010, 18, 158–169. [Google Scholar]
- Sittadewi, E.H. Effect of land ecosystem conditions in river corridors on Lake Rawapening. J. Rekayasa Lingkungan 2008, 4, 81–86. [Google Scholar] [CrossRef]
- Topographical Map of Indonesia by Region. Available online: https://tanahair.indonesia.go.id/portal-web/download/perwilayah (accessed on 18 October 2022).
- Statistics of Semarang Regency (BPS Kabupaten Semarang). Semarang Regency in Figures 2019; BPS Kabupaten Semarang: Semarang, Indonesia, 2019. [Google Scholar]
- Wasti, R.M. Impeachment mechanisms in countries with presidential systems: A comparative study of impeachment mechanisms in Indonesia and South Korea. Mimbar Hukum 2019, 31, 237. [Google Scholar] [CrossRef] [Green Version]
- Nurhikmah, A.R.; Nugrahaningtyas, N.; Pamungkas, A. The dynamics of Pancasila as the foundational philosophy of the state and the nation’s way of life. J. Pancasila 2021, 2, 59–69. [Google Scholar]
- Braimah, C.A.; Kheni, N.A. Institutional framework and challenges in small towns’ water supply in Ghana. Int. J. Dev. Sustain. 2013, 2, 2311–2323. [Google Scholar]
- Arifin, S.; Wicaksono, S.S.; Sumarto, S.; Martitah, M.; Sulistianingsih, D. Disaster resilient village-based approach to disaster risk reduction policy in Indonesia: A regulatory analysis. Jamba J. Disaster Risk Stud. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Watershed and Protected Forest Management Center (BPDASHL) Pemali Jratun. Introduction. In Workshop on Lake Rawapening Management: Simulation of A Web Application-based System for Program Monitoring and Evaluation; Semarang, Indonesia, 2022. [Google Scholar]
- Chidammodzi, C.L.; Muhandiki, V.S. Development of indicators for assessment of Lake Malawi Basin in an Inte-grated Lake Basin Management (ILBM) framework. Int. J. Commons 2015, 9, 209–236. [Google Scholar] [CrossRef]
- International Lake Environment Committee (ILEC). Managing Lakes and their Basins for Sustainable Use (A Report for Lake Basin Managers and Stakeholders). ILEC: Kusatsu, Japan, 2005; pp. 28–84. [Google Scholar]
- Cookey, P.E.; Darnsawasdi, R.; Ratanachai, C. A conceptual framework for assessment of governance Performance of lake basins: Towards transformation to adaptive and integrative governance. Hydrology 2016, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Brillo, B.B.C.; Anastacio, N.J.C.; Dicolen, E.D.; Baconguis, R.D. Governance and development of Tikub Lake, Tiaong, Quezon, Philippines. Taiwan Water Conserv. 2017, 65, 1–13. [Google Scholar]
- Sokile, C.S.; Kashaigili, J.J.; Kadigi, R.M.J. Towards an integrated water resource management in Tanzania: The role of appropriate institutional framework in Rufiji Basin. Phys. Chem. Earth 2003, 28, 1015–1023. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Dreyfus, M.; Ahmad, S.; Balaban, O. Institutional framework for urban development with co-benefits: The Indian experience. J. Clean. Prod. 2013, 58, 121–129. [Google Scholar] [CrossRef]
- Born, S.M.; Rumery, C. Institutional Aspects of Lake Management. Environ. Manag. 1989, 13, 1–13. [Google Scholar] [CrossRef]
- Birch, S.; McCaskie, J. Shallow urban lakes: A challenge for lake management. Hydrobiologia 1999, 365–377. [Google Scholar] [CrossRef]
- World Bank. Lessons for Managing Lake Basins for Sustainable Use; Environment Department World Bank: Washington, DC, USA, 2005; pp. 97–102. [Google Scholar]
- Hecky, R.E.; Bootsma, H.A.; Odada, E.O. African lake management initiatives: The global connection. Lakes Reserv. Res. Manag. 2006, 11, 203–213. [Google Scholar] [CrossRef]
- World Lake Vision. World Lake Vision Action Report: Implementing the World Lake Vision for the Sustainable Use of Lakes and Reservoirs. International Lake Environment Committee: Kusatsu, Japan, 2007; pp. 1–4. [Google Scholar]
- KC, K.B.; Elliott, V.; Seng, R.; Pomeroy, R.S.; Schenkels, J.; Fraser, E.D.G. Evaluating community fishery manage-ment using fishers’ perceptions in the Tonle Sap Lake of Cambodia. Environ. Dev. 2020, 33, 100503. [Google Scholar] [CrossRef]
- Nunan, F. The political economy of fisheries co-management: Challenging the potential for success on Lake Victoria. Glob. Environ. Change 2020, 63, 102101. [Google Scholar] [CrossRef]
- Shadkam, S.; van Oel, P.; Kabat, P.; Roozbahani, A.; Ludwig, F. The water-saving strategies assessment (WSSA) framework: An application for the Urmia Lake restoration program. Water 2020, 12, 2789. [Google Scholar] [CrossRef]
- Akbar, M.F.; Alkatiri, R.; Tuli, Z. Socio-economic aspects of community in Limboto Lake management in Telaga Biru District, Gorontalo Regency. J. Bisecoman 2022, 3, 59–64. [Google Scholar] [CrossRef]
- McEwen, D.C.; Hosey, E. Lake Management Plan Le Homme Dieu Douglas County, Minnesota. Limnopro Aquatic Science. 2022. Available online: https://www.lakelhommedieu.org/wp-content/uploads/2022/05/LLHD-Lake-Management-Plan-By-Limnopro-Aquatic-Science-Inc-2022.pdf (accessed on 14 July 2022).
- Memorandum of Understanding between the Ministry of Public Works and Housing, Ministry of Environment and Forestry, Ministry of Agrarian and Spatial Planning/National Land Agency, National Disaster Management Agency, Government of Central Java Province, and Government of Semarang Regency in 2019 on the Recovery of Lake Rawapening and Tuntang River Watershed in Central Java Province. Available online: https://bpbd.jatengprov.go.id/PPID/wp-content/uploads/2020/08/MoU-BNPB-Rawa-Pening.pdf (accessed on 18 June 2021).
- Heiskary, S.A.; Wilson, C.B.; Larsen, D.P. Analysis of regional patterns in lake water quality: Using ecoregions for lake management in minnesota. Lake Reserv. Manag. 1987, 3, 337–344. [Google Scholar] [CrossRef]
- Gough, J.D.; Ward, J.C. Environmental decision-making and lake management. J. Environ. Manag. 1996, 48, 1–15. [Google Scholar] [CrossRef]
- Maitland, P.S.; Morgan, N.C. Conservation Management of Freshwater Habitats: Lakes, Rivers and Wetlands; Springer: Berlin/Heidelberg, Germany, 1997; pp. 123–149. [Google Scholar]
- Melzer, A. Aquatic macrophytes as tools for lake management. Hydrobiologia 1999, 395–396, 181–190. [Google Scholar] [CrossRef]
- Drenner, R.W.; Hambright, K.D. Piscivores, trophic cascades, and lake management. Sci. World J. 2002, 2, 284–307. [Google Scholar] [CrossRef] [Green Version]
- Premazzi, G.; Dalmiglio, A.; Cardoso, A.C. Chiaudani, Lake management in Italy: The implications of the water framework directive. Lakes Reserv. Res. Manag. 2003, 8, 41–59. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, G.; Gao, G.; Zhang, Y.; Li, W.; Paerl, H.W.; Carmichael, W.W. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ. Manag. 2010, 45, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.; Miller, C.A.; Scott, E.M.; Codd, G.A.; Davies, P.S.; Tyler, A.N. Cyanobacterial blooms: Statistical mod-els describing risk factors for national-scale lake assessment and lake management. Sci. Total Environ. 2011, 409, 5353–5358. [Google Scholar] [CrossRef] [PubMed]
- Sayer, C.D.; Bennion, H.; Davidson, T.A.; Burgess, A.; Clarke, G.; Hoare, D.; Frings, P.; Hatton-Ellis, T. The application of palaeolimnology to evidence-based lake management and conservation: Examples from UK lakes. Aquat. Conserv. Mar. Freshw. Ecosyst. 2012, 22, 165–180. [Google Scholar] [CrossRef]
- Zalewski, M. Ecohydrology—Process oriented thinking for sustainability of river basins. Ecohydrol. Hydrobiol. 2012, 12, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Bocaniov, S.; Scavia, D. Temporal and spatial dynamics of large lake hypoxia: Integrating statistical and three-dimensional dynamic models to enhance lake management criteria. Water Resour. Res. 2016, 52, 4247–4263. [Google Scholar] [CrossRef] [Green Version]
- De Keyzer, E.L.R.; Mulungula, P.M.; Lufungula, G.A.; Manala, C.A.; Muniali, A.A.; Cibuhira, P.B.; Bishobibiri, A.B.; Rafiki, A.B.; Lwikitcha, B.H.; Hugé, J.; et al. Local perceptions on the state of the pelagic fisheries and fisheries management in Uvira, Lake Tanganyika, DR Congo. J. Great Lakes Res 2020, 46, 1740–1753. [Google Scholar] [CrossRef]
- Larson, D.M.; Cordts, S.D.; Hansel-Welch, N. Shallow lake management enhanced habitat and attracted waterbirds during fall migration. Hydrobiologia 2020, 847, 3365–3379. [Google Scholar] [CrossRef]
- Susilo, A. The sustainable management design of oxbow lake to determine the factors in lake management in Buluh Cina village, Indonesia. J. Sci. Technol. Policy Manag. 2020, 11, 395–430. [Google Scholar] [CrossRef]
- Wosnie, A.; Mengistou, S.; Alvarez, M. Aquatic macrophytes in Ethiopian rift valley Lake Koka: Biological management option to reduce sediment loading. Aquat. Bot. 2020, 165, 103242. [Google Scholar] [CrossRef]
- Nakatsuka, N.; Kosaka, S.; Taki, M.; Nakamura, M.; Nakagawa, H. Better governance for integrated management of the Lake Biwa—Yodo River Basin. Lakes Reserv. Res. Manag. 2020, 25, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Wu, Y.; Li, C.; Xu, J.; Zhang, M. Ecosystem-based restoration to mitigate eutrophication: A case study in a shallow lake. Water 2020, 12, 2141. [Google Scholar] [CrossRef]
- Abdurrahim, A.Y.; Farida, F.; Sari, R.R.; van Noordwijk, M.; Yogaswarai, H.; Adiwibowo, S.; Dharmawan, A.H. Collective action in lake management (CALM): An Indonesian stocktake. IOP Conf. Ser. Earth Environ. Sci. 2021, 789, 012039. [Google Scholar] [CrossRef]
- Djihouessi, M.B.; Tigo, B.A.; Aina, M.P. The use of nutrient budget approach for informing eutrophication management in urbanised shallow coastal lakes: A case study from Lake Nokoué in Benin. Ecohydrol. Hydrobiol. 2021, 21, 341–353. [Google Scholar] [CrossRef]
- Moreno, J.L.; Ortega, J.F.; Moreno, M.A.; Ballesteros, R. Using an unmanned aerial vehicle (UAV) for lake manage-ment: Ecological status, lake regime shift and stratification processes in a small Mediterranean karstic lake. Limnetica 2022, 41, 355–375. [Google Scholar]
- Zhang, B.; Guo, H.; Zhang, Y.; Li, Z.; Liu, Y.; Wang, S.; Fu, Z. A coupling simulation and optimization method developed for environmental-economic management of Lake watershed. J. Environ. Manag. 2022, 318, 115546. [Google Scholar] [CrossRef]
- Zhang, X.; Yi, Y.; Yang, Z. The long-term changes in food web structure and ecosystem functioning of a shallow lake: Implications for the lake management. J. Environ. Manag. 2022, 301, 113804. [Google Scholar] [CrossRef]
- Hearne, R.R. Evolving water management institutions in the Red river basin. Environ. Manag. 2007, 40, 842–852. [Google Scholar] [CrossRef]
- Indrayani, E.; Wasistiono, S. The role of community protection institution in disaster management at West Java, Indonesia. Jàmbá J. Disaster Risk Stud. 2019, 13, a943. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Alam, M.A. Regulatory and institutional framework for the conservation of coral reefs in Bangladesh: A critical review. In Knowledge Management, Governance and Sustainable Development: Lessons and Insights from Developing Countries; Alam, M.A., Alam, F., Begum, D., Eds.; Routledge: Abingdon-on-Thames, UK, 2020; Volume 16, pp. 231–244. [Google Scholar] [CrossRef]
- Irawan, E. Lake and the laws: An exploratory network analysis of legal provisions for lake management. IOP Conf. Ser. Earth Environ. Sci. 2021, 789, 1. [Google Scholar] [CrossRef]
- Muhandiki, V.S.; Ballatore, T.J. Effective lake basin management institutions: Lessons from African lakes. Water Sci. Technol. 2007, 55, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Spears, B.M.; Hamilton, D.P.; Pan, Y.; Zhaosheng, C.; May, L. Lake management: Is prevention better than cure? Inl. Waters 2022, 12, 173–186. [Google Scholar] [CrossRef]
- Tromp, E.; te Nijenhuis, A.; Knoeff, H. The Dutch flood protection programme: Taking innovations to the next level. Water 2022, 14, 1460. [Google Scholar] [CrossRef]
Land Use Type | Area (ha) | Percentage (%) |
---|---|---|
Lake | 6.39 | 0.02 |
Building | 3.22 | 0.01 |
Grassland | 203.98 | 0.78 |
Plantation | 10,535.08 | 40.47 |
Settlement | 5016.24 | 19.27 |
Irrigated rice field | 3459.75 | 13.29 |
Non irrigated rice field | 3128.39 | 12.02 |
Shrub | 682.56 | 2.62 |
Non irrigated cropland | 2994.43 | 11.50 |
Total | 26,030 | 100 |
Conceptual Pillars | [74] | [75] | [69] | [76] | [77] | [78] | [43] | [1] | [68] | [70] | [79] | [80] | [81] | [82] | [83] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Finance | √ | √ | √ | √ | √ | - | - | √ | √ | √ | - | √ | √ | - | - |
Planning, designs, management scenarios, and actions | - | √ | - | - | - | √ | √ | - | - | - | - | - | - | - | - |
Institutions | √ | - | √ | √ | - | - | - | √ | √ | √ | - | - | - | √ | - |
Power, authorities | √ | - | - | - | - | - | √ | - | - | √ | - | √ | - | - | - |
Policies, rules | √ | √ | √ | √ | - | - | √ | √ | √ | - | - | - | - | - | |
Participations | √ | - | √ | √ | - | √ | √ | √ | √ | √ | √ | - | - | - | √ |
Good governance | - | - | - | - | - | √ | √ | - | - | √ | - | √ | - | - | - |
Information, sciences | - | - | √ | √ | - | √ | - | √ | √ | - | - | - | - | - | - |
Technology | - | - | √ | - | - | - | - | √ | √ | √ | - | - | √ | - | - |
Chapter and Verse | Finance | Planning, Designs, Management Scenarios, and Actions | Institutions | Power, Authorities | Policies, Rules | Participations | Good Governance | Information, Sciences | Technology |
---|---|---|---|---|---|---|---|---|---|
1 (1) | - | √ | √ | - | √ | √ | √ | - | - |
1 (2) | - | - | √ | - | - | √ | √ | - | - |
2 (1) | - | - | - | - | - | - | - | √ | - |
2 (2) | √ | √ | √ | - | √ | √ | √ | √ | - |
3 (1) | - | - | - | - | √ | - | - | - | - |
3 (2) | - | - | √ | √ | - | - | - | - | - |
3 (3) | √ | - | √ | - | √ | - | - | - | - |
4 (1) | - | - | - | - | √ | √ | - | - | - |
4 (2) | - | - | - | - | - | √ | √ | - | - |
4 (3) | - | - | √ | √ | √ | - | - | - | - |
5 | √ | - | √ | - | √ | - | - | - | - |
6 | - | - | - | √ | √ | √ | - | - | - |
7 | - | - | √ | - | √ | - | √ | √ | √ |
8 | - | - | - | √ | - | - | - | - | - |
Chapter and Verse | Finance | Planning, Designs, Management Scenarios, and Actions | Institutions | Power, Authorities | Policies, Rules | Participations | Good Governance | Information, Sciences | Technology |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | √ | - |
2 | - | - | √ | - | √ | √ | √ | - | - |
3 (1) | - | - | - | - | - | - | - | √ | - |
3 (2) | - | √ | - | - | - | - | - | √ | - |
4 | - | - | - | - | √ | - | - | - | - |
5 | √ | √ | √ | - | - | √ | √ | √ | √ |
6 (1) | - | - | √ | - | - | - | - | - | - |
6 (2) | - | - | - | - | √ | - | - | - | - |
7 (1) | - | - | √ | - | - | √ | √ | - | - |
7 (2) | √ | √ | √ | - | - | - | √ | - | - |
7 (3) | - | - | - | - | - | √ | √ | - | - |
8 | - | - | - | √ | - | - | - | - | - |
9 (1) | - | - | √ | √ | √ | - | - | - | - |
9 (2) | - | - | √ | √ | - | √ | √ | - | - |
10 (1) | √ | √ | √ | √ | √ | - | √ | - | - |
10 (2) | - | - | - | - | - | √ | √ | - | - |
11 | - | √ | √ | √ | - | - | - | - | - |
12 (1) | √ | √ | √ | - | √ | - | √ | - | - |
12 (2) | - | - | - | √ | - | - | - | - | - |
12 (3) | - | - | - | - | - | √ | √ | - | - |
13 (1) | - | - | √ | √ | √ | - | - | - | - |
13 (2) | - | - | √ | - | - | √ | √ | - | - |
14 (1) | - | - | - | √ | - | - | - | - | - |
14 (2) | - | - | - | - | √ | - | - | - | - |
15 | - | - | - | √ | - | - | - | - | - |
16 (1) | - | - | - | √ | √ | - | - | - | - |
16 (2) | - | - | - | - | √ | √ | - | √ | - |
17 (1) | - | - | √ | √ | - | √ | √ | - | - |
17 (2) | - | - | - | - | - | √ | √ | √ | - |
18 (1) | - | - | √ | - | - | - | √ | - | - |
18 (2) | - | - | √ | - | - | - | √ | - | - |
18 (3) | - | - | √ | - | - | - | √ | - | - |
18 (4) | - | - | √ | - | - | - | √ | - | - |
18 (5) | - | - | √ | - | - | - | √ | - | - |
19 | √ | - | - | - | - | - | - | - | - |
20 | - | - | - | - | √ | - | - | - | - |
21 | - | - | - | √ | - | - | √ | √ | - |
Identified Management Strategies | [85] | [86] | [87] | [75] | [88] | [89] | [90] | [77] | [78] | [91] | [92] | [93] | [94] | [70] | [95] | [96] | [79] | [97] | [80] | [98] | [99] | [100] | [101] | [81] | [102] | [103] | [82] | [83] | [104] | [105] | [106] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| √ | √ | √ | - | - | √ | √ | √ | - | - | √ | - | √ | - | - | - | √ | - | √ | - | √ | - | - | - | - | - | - | √ | √ | √ | |
| - | √ | √ | √ | - | - | - | - | - | - | - | - | √ | - | - | - | - | - | - | - | - | √ | - | √ | - | - | - | √ | - | √ | - |
| √ | √ | - | √ | - | - | √ | - | - | - | √ | - | - | - | √ | - | - | - | - | - | - | - | - | √ | - | - | - | √ | - | √ | √ |
| - | √ | - | √ | - | - | - | - | - | - | - | - | - | - | - | √ | - | - | - | - | - | - | - | - | - | - | - | √ | - | √ | - |
| - | √ | √ | √ | - | - | - | - | - | - | - | - | - | √ | - | √ | √ | √ | - | - | - | √ | - | - | - | - | - | - | - | - | - |
| - | √ | √ | √ | √ | - | - | - | - | √ | √ | √ | - | - | - | - | - | - | - | √ | √ | √ | - | - | - | √ | - | √ | - | √ | - |
| - | √ | √ | √ | √ | √ | - | - | - | √ | √ | - | √ | - | - | √ | - | √ | - | √ | - | - | √ | - | √ | - | - | √ | - | - | √ |
| - | - | - | - | - | - | - | - | √ | - | - | - | - | - | - | √ | √ | - | - | - | - | - | - | - | √ | - | - | √ | - | √ | - |
| - | - | - | - | - | - | √ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | √ | - | - | - | - | - | - | - | - | - |
| - | - | - | √ | - | - | - | - | - | √ | - | - | √ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | √ | - | - | - |
| - | - | - | √ | - | - | - | - | - | √ | - | √ | √ | √ | - | √ | √ | - | √ | - | - | - | √ | - | - | - | √ | √ | - | - | - |
Program * and Number of Activities | Management, Restoration, or Monitoring of Lake Basins, Hydrology, and Water Bodies in General | Management and Monitoring of Water Quantity | Management and Monitoring of Water Quality | Management of Riparian or Littoral Zones | Management of Catchments, Watersheds, or Habitats | Management of Erosion–Sedimentation and Regulating the Use of Fertilizers (Sources of Nutrients, P and N) That Cause Eutrophication | Management and Preservation of Biodiversity by Controlling Invasive Biotic Components (Afforestation, Reforestation) and Biological Manipulation | Management of Cultural Components: Harmonizing Human–Nature Interaction through Legal Permits and Sustainable Cultivation | Monitoring of Operational Performance of Existing Programs | Monitoring of Weather, Climate, and Other Physical Conditions | Economic Empowerment-Based Management (Supporting Livelihoods Dependent on Fisheries and Other Ecosystem Services, Alleviating Poverty, Optimizing Business Opportunities) |
---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | |
Spatial planning of the lake area (3) | 1 | - | - | - | 1 | - | - | 1 | - | - | - |
Lake’s water preservation (13) | 10 | - | - | 1 | - | - | 1 | - | - | - | 1 |
Lake’s riparian preservation (3) | - | - | - | 3 | - | - | - | - | - | - | - |
Lake catchment preservation (31) | - | - | 7 | - | 7 + 3 * | 1 | 2 + 2 * | 8 + 2 * | - | 1 | 1 + 2 * |
Water resources utilization (3) | - | 2 | - | - | - | - | - | - | - | 1 | - |
Development of monitoring, evaluation, and information system for lake management (4) | - | - | - | - | - | - | - | 2 | 1 | 1 | - |
Increasing community roles and participation (13) | - | - | - | - | 1 + 1 * | - | - | 3 + 1 * | - | - | 8 + 1 * |
Development of institutional capacity and coordination (3) | - | - | - | - | - | - | - | - | - | - | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mardiatno, D.; Faridah, F.; Listyaningrum, N.; Hastari, N.R.F.; Rhosadi, I.; da Costa, A.D.S.; Rahmadana, A.D.W.; Lisan, A.R.K.; Sunarno, S.; Setiawan, M.A. A Holistic Review of Lake Rawapening Management Practices, Indonesia: Pillar-Based and Object-Based Management. Water 2023, 15, 39. https://doi.org/10.3390/w15010039
Mardiatno D, Faridah F, Listyaningrum N, Hastari NRF, Rhosadi I, da Costa ADS, Rahmadana ADW, Lisan ARK, Sunarno S, Setiawan MA. A Holistic Review of Lake Rawapening Management Practices, Indonesia: Pillar-Based and Object-Based Management. Water. 2023; 15(1):39. https://doi.org/10.3390/w15010039
Chicago/Turabian StyleMardiatno, Djati, Faridah Faridah, Noviyanti Listyaningrum, Nur Rizki Fitri Hastari, Iwan Rhosadi, Apolonia Diana Sherly da Costa, Aries Dwi Wahyu Rahmadana, Ahmad Rif’an Khoirul Lisan, Sunarno Sunarno, and Muhammad Anggri Setiawan. 2023. "A Holistic Review of Lake Rawapening Management Practices, Indonesia: Pillar-Based and Object-Based Management" Water 15, no. 1: 39. https://doi.org/10.3390/w15010039
APA StyleMardiatno, D., Faridah, F., Listyaningrum, N., Hastari, N. R. F., Rhosadi, I., da Costa, A. D. S., Rahmadana, A. D. W., Lisan, A. R. K., Sunarno, S., & Setiawan, M. A. (2023). A Holistic Review of Lake Rawapening Management Practices, Indonesia: Pillar-Based and Object-Based Management. Water, 15(1), 39. https://doi.org/10.3390/w15010039