A Unique Application Methodology for the Use of Phosphorus Inactivation Agents and Its Effect on Phosphorus Speciation in Lakes with Contrasting Mixing Regimes
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Water Sample Collection and Analysis
2.3. Description of Protection and Restoration Techniques
3. Results
3.1. Mineral Phosphorus
3.2. Organic Phosphorus
3.3. Total Phosphorus
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huser, B.J.; Futter, M.; Lee, J.T.; Perniel, M. In-lake measures for phosphorus control: The most feasible and cost-effective solution for long-term management of water quality in urban lakes. Water Res. 2016, 97, 142–152. [Google Scholar] [CrossRef]
- Rosińska, J.; Kozak, A.; Dondajewska, R.; Kowalczewska-Madura, K. Water quality response to sustainable restoration measures-Case study of urban Swarzędzkie Lake. Ecol. Indic. 2018, 84, 437–449. [Google Scholar] [CrossRef]
- Kowalczewska-Madura, K.; Dondajewska, R.; Gołdyn, R.; Podsiadłowski, S. The influence of restoration measures on phosphorus internal loading from the sediments of a hypereutrophic lake. Environ. Sci. Pollut. Res. 2017, 24, 14417–14429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spears, B.R.; Mackay, E.B.; Yasseri, S.; Gunn, I.D.M.; Waters, K.E.; Andrews, C.; Cole, S.; De Ville, M.; Kelly, A.; Meis, S.; et al. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phosclock®). Water Res. 2016, 97, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybicki, P.; Osuch, A.; Osuch, E.; Przygodziński, P.; Przybylak, A.; Kozłowski, R. Technology of mechanical removal of cyanobacterial blooms from the surface of water bodies. Ecol. Eng. 2018, 19, 69–76. (In Polish) [Google Scholar] [CrossRef]
- Tỏnno, I.; Katrin, O.; Nŏges, T. Nitrogen dynamics in the steeply stratified, temperate Lake Verevi, Estonia. Hydrobiologia 2005, 547, 63–71. [Google Scholar] [CrossRef]
- Müller, S.; Mitrovic, S.M.; Baldwin, D.S. Oxygen anddissolved organic carbon control release of N, P and Fe from the sediments of a shallow, polymictic lake. J. Soils Sediments 2015, 16, 1109–1120. [Google Scholar] [CrossRef]
- Cottingham, K.L.; Ewing, H.A.; Greer, M.L.; Carey, C.C.; Weathers, K.C. Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere 2015, 6, 1–19. [Google Scholar] [CrossRef]
- Zhang, E.; Liu, E.; Jones, R.; Langdon, P.; Yang, X.; Shen, J. A 150-year record of recent chang-es in human activity and eutrophication of Lake Wushan from the middle reach of the Yangze River, China. J. Limnol. 2010, 69, 235–241. [Google Scholar] [CrossRef] [Green Version]
- García-Alix, A.; Jimenez-Espejo, F.J.; Lozano, J.A.; Jimenez-Moreno, G.; Martinez-Ruiz, F.; Garcia, S.L.; Aranda, J.G.; Garcia, A.E.; Ruiz-Puertas, G.; Scott, A.R. Anthropogenic impact and lead pollution throughout the Holocene in Southern Iberia. Sci. Total Environ. 2013, 449, 451–460. [Google Scholar] [CrossRef]
- Grochowska, J.; Tandyrak, R.; Parszuto, K.; Brzozowska, R. A proposal of protection techniques in the catchment of a lake in the context of improving its recreational value. Limnol. Rev. 2016, 16, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Parszuto, K.; Tandyrak, R.; Łopata, M.; Mikulewicz, S.; Grochowska, J.; Dunalska, J. Development of Drwęckie lake in Ostróda for tourist and recreational purposes, and its impact on the burden to the natural environment in the shoreline zone. Pol. J. Nat. Sci. 2017, 32, 105–120. [Google Scholar]
- Gawrońska, H.; Lossow, K.; Grochowska, J. Restoration of Lake Długie. Edycja 2005, 52. (In Polish) [Google Scholar]
- Grochowska, J.; Augustyniak, R.; Łopata, M. How durable is the improvement of environ-mental conditions in a lake after the termination of restoration treatments. Ecol. Eng. 2017, 104, 23–29. [Google Scholar] [CrossRef]
- Cooke, G.D.; Welch, E.B.; Peterson, S.A.; Newroth, P.R. Restoration and Management of Lakes and Reservoirs; Taylor & Francis, A CRC Press: Boca Raton, FL, USA, 2005; pp. 1–591. [Google Scholar]
- Klapper, H. Technologies for lake restoration. J. Limnol. 2003, 62, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Zhan, Y.; Zhu, Z. Evolution of sediment capping with active barrier systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release. Sci. Total Environ. 2011, 409, 638–646. [Google Scholar] [CrossRef]
- Łopata, M.; Augustyniak, R.; Grochowska, J.; Parszuto, K.; Tandyrak, R. Selected aspects of lake restoration in Poland. In Polish River Basins and Lakes–Part II: Biological Status and Water Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 327–352. [Google Scholar]
- Dondajewska, R.; Gołdyn, R.; Kozak, A.; Podsiadłowski, S.; Gruza, A. Reduction of phosphorus release from bottom sediments and changes in phytoplankton composition under the influence of new chemical preparations in in-situ conditions. In Materials of Conference Protection and Restoration of Lakes; Pub. Polish Association of Sanitary Engineers and Technicians, Branch in Toruń: Toruń, Poland, 2010; pp. 31–43. (In Polish) [Google Scholar]
- Gałczyńska, M.; Buśko, M. Chemical substances and preparations used to inactivate phosphorus in lake ecosystems. Chem. Ind. 2018, 97, 140–143. [Google Scholar]
- Gołdyn, R.; Podsiadłowski, S.; Dondajewska, R.; Kozak, A. The sustainable restoration of lakes-towards the challenges of the water framework directive. Ecohydrol. Hydrobiol. 2014, 14, 68–74. [Google Scholar] [CrossRef]
- Kowalczewska-Madura, K.; Dondajewska, R.; Gołdyn, R. Influence of iron treatment on phosphorus internal loading from bottom sediments of the restored lake. Limnol. Rev. 2008, 8, 177–182. [Google Scholar]
- Zamparas, M.; Zacharias, I. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Sci. Total Environ. 2014, 496, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Immers, A.K.; van der Sande, M.T.; van der Zande, R.M.; Geurts, J.J.M.M.; van Donk, E.; Bakker, E.S. Iron addition as a shallow lake restoration measure: Impacts on charophyte growth. Hydrobiologia 2013, 710, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Gumińska, J. Effect of changes in Al. speciation on the efficiency of water treatment with pre-hydrolyzed coagulants. Environ. Prot. 2011, 33, 17–21. (In Polish) [Google Scholar]
- Alhamarna, M.Z.; Tandyrak, R. Lake restoration approach. Limnol. Rev. 2021, 21, 105–118. [Google Scholar] [CrossRef]
- Kondracki, J.A. Regional Geography of Poland; PWN: Warsaw, Poland, 2011. (In Polish) [Google Scholar]
- Januszkiewcz, T.; Jakubowska, L. Lake Klasztorne in Kartuzy—Case study. Pol. Arch. Hydrobiol. 1963, 11, 275–325. (In Polish) [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 1998, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Kaca, E. Measurements of water flow volume and mass of substance contained in it, and its uncertainty on the example of fish ponds. Water-Environ.-Rural. Areas 2003, 13, 31–57. (In Polish) [Google Scholar]
- Tibco Software Inc. STATISTICA. version 13.3; Tibco Software Inc.: Palo Alto, CA, USA, 2021.
- Kajak, Z. Hydrobiology-Limnology. In Inland Water Ecosystems; PWN: Warsaw, Poland, 2001. (In Polish) [Google Scholar]
- Wu, X.; Me, T.; Du, Y.; Jiang, Q.; Shen, S.; Liu, W. Phosphorus cycling in freshwater lake sediments: Influence of seasonal water level fluctuations. Sci. Total Environ. 2021, 792, 148383. [Google Scholar] [CrossRef]
- Randall, M.C.; Carling, G.T.; Dastrup, D.B.; Miller, T.; Nelson, S.T.; Hansen, N.C.; Bickmore, B.R.; Aanderud, Z.T. sediment potentially controls in lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah lake. PLoS ONE 2019, 14, e0212238. [Google Scholar] [CrossRef]
- Søndergaard, M.; Bjerring, R.; Jeppesen, E. Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia 2013, 710, 95–107. [Google Scholar] [CrossRef]
- Schindler, D.W.; Fee, E.J. Experimental lakes area: Whole—Lake experiments and eutrophication. J. Fish. Board Can. 1974, 31, 937–953. [Google Scholar] [CrossRef]
- Boers, P.; de Bles, F. Ion concentrations in interstitial water as indicators for phosphorus release processes and reactions. Water Res. 1991, 25, 591–598. [Google Scholar] [CrossRef]
- Nürnberg, G.K. Phosphorus from internal sources in the Laurentian Great Lakes, and the concept of threshold external load. J. Great Lakes Res. 1991, 17, 132–140. [Google Scholar] [CrossRef]
- Amuda, O.Z.; Amoo, I. A Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. Hazard. Mater. 2007, 141, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Smeltzer, E. Successful alum/aluminate treatment of Lake Morey, Vermont. Lake Reserv. Manag. 1990, 6, 9–19. [Google Scholar] [CrossRef]
- Huser, B.J.; Egemose, S.; Harper, H.; Hupfer, M.; Jensen, H.; Pilgrim, K.M.; Reitzel, K.; Rydin, E.; Futter, M. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Res. 2016, 97, 122–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grochowska, J.; Brzozowska, R.; Łopata, M. Durability of changes in phosphorus compounds in water of an urban lake after application of two reclamation methods. Water Sci. Technol. 2013, 68, 234–239. [Google Scholar] [CrossRef] [PubMed]
Depth [m] | LAKE KLASZTORNE MAŁE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |
Oxygen content [mg O2/L]—spot analyses | ||||||||||
0 | 15.9 | 14.6 | 12.8 | 14.6 | 7.9 | 7.9 | 10.5 | 9.7 | 7.2 | 9.0 |
1 | 15.9 | 14.6 | 12.7 | 14.6 | 6.7 | 6.5 | 10.4 | 9.7 | 7.0 | 9.0 |
2 | 10.9 | 14.6 | 12.0 | 5.5 | 1.2 | 5.4 | 9.3 | 8.7 | 6.9 | 8.3 |
3 | 1.6 | 14.4 | 11.2 | 0.9 | 0.3 | 0.6 | 8.4 | 8.7 | 6.8 | 8.2 |
4 | 0 | 11.6 | 10.5 | 0.2 | 0 | 0 | 7.9 | 7.3 | 6.7 | 8.2 |
5 | 0 | 9.9 | 8.6 | 0.1 | 0 | 0 | 4.0 | 3.5 | 6.7 | 7.7 |
6 | 0 | 8.7 | 1.1 | 0.1 | 0 | 0 | 1.0 | 1.1 | 6.6 | 6.5 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0 | 6.0 | 5.8 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 | 4.1 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 2.4 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Depth [m] | LAKE KLASZTORNE DUŻE | |||||||||
MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |
Oxygen content [mg O2/L]—spot analyses | ||||||||||
0 | 14.6 | 15.8 | 12.4 | 12.0 | 9.4 | 8.7 | 10.7 | 7.9 | 9.2 | 11.3 |
1 | 13.8 | 15.8 | 12.5 | 12.2 | 9.4 | 8.7 | 9.9 | 7.5 | 9.1 | 11.3 |
2 | 13.8 | 15.9 | 12.5 | 9.3 | 8.7 | 8.7 | 9.1 | 7.2 | 9.1 | 11.3 |
3 | 13.7 | 15.9 | 12.5 | 6.9 | 2.3 | 8.6 | 8.4 | 7.4 | 9.0 | 10.6 |
4 | 13.5 | 15.8 | 12.5 | 4.1 | 1.0 | 0.7 | 7.2 | 6.8 | 8.9 | 10.6 |
5 | 13.3 | 15.8 | 12.5 | 1.5 | 0.5 | 0.4 | 6.1 | 6.8 | 8.9 | 10.7 |
6 | 13.2 | 15.8 | 12.5 | 0.3 | 0 | 0.3 | 5.8 | 6.8 | 8.9 | 10.7 |
7 | 13.1 | 15.8 | 12.5 | 0.1 | 0 | 0 | 1.8 | 6.7 | 8.9 | 10.4 |
8 | 13.1 | 15.8 | 12.5 | 0.1 | 0 | 0 | 1.8 | 6.7 | 8.9 | 10.4 |
Variable | F Value | p Value | Years which Differ Significantly from 2013 (Before Restoration) |
---|---|---|---|
Pmin. surface | 9.2473 | <0.001 | 2020, 2021 |
Pmin. bottom | 112.2020 | <0.001 | 2020, 2021 |
Porg. surface | 5.6243 | <0.001 | 2020 |
Porg. bottom | 75.8051 | <0.001 | 2020, 2021 |
TP surface | 3.4114 | <0.001 | 2020, 2021 |
TB bottom | 70.0129 | <0.001 | 2020, 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, H.; Grochowska, J.K.; Łopata, M.; Augustyniak-Tunowska, R.; Tandyrak, R. A Unique Application Methodology for the Use of Phosphorus Inactivation Agents and Its Effect on Phosphorus Speciation in Lakes with Contrasting Mixing Regimes. Water 2023, 15, 67. https://doi.org/10.3390/w15010067
Kowalski H, Grochowska JK, Łopata M, Augustyniak-Tunowska R, Tandyrak R. A Unique Application Methodology for the Use of Phosphorus Inactivation Agents and Its Effect on Phosphorus Speciation in Lakes with Contrasting Mixing Regimes. Water. 2023; 15(1):67. https://doi.org/10.3390/w15010067
Chicago/Turabian StyleKowalski, Hubert, Jolanta Katarzyna Grochowska, Michał Łopata, Renata Augustyniak-Tunowska, and Renata Tandyrak. 2023. "A Unique Application Methodology for the Use of Phosphorus Inactivation Agents and Its Effect on Phosphorus Speciation in Lakes with Contrasting Mixing Regimes" Water 15, no. 1: 67. https://doi.org/10.3390/w15010067
APA StyleKowalski, H., Grochowska, J. K., Łopata, M., Augustyniak-Tunowska, R., & Tandyrak, R. (2023). A Unique Application Methodology for the Use of Phosphorus Inactivation Agents and Its Effect on Phosphorus Speciation in Lakes with Contrasting Mixing Regimes. Water, 15(1), 67. https://doi.org/10.3390/w15010067