Assessment of Coastal Morphology on the South-Eastern Baltic Sea Coast: The Case of Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Hydrometeorological Data
2.3. Cross-Shore Profile Evolution
2.4. Beach Sediment Sampling and Processing
2.5. Bathymetric Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bitinas, A.; Aleksa, P.; Damušytė, A.; Gulbinskas, S.; Jarmalavičius, D.; Kuzavinas, M.; Minkevičius, V.; Pupienis, D.; Trimonis, E.; Šečkus, R.; et al. Baltijos Jūros Lietuvos Krantų Geologinis Atlasas; DELFI: Baltimore, MY, USA, 2004. [Google Scholar]
- Bitinas, A.; Žaromskis, R.; Gulbinskas, S.; Damušyte, A.; Žilinskas, G.; Jarmalavičius, D. The results of integrated investigations of the Lithuanian coast of the Baltic Sea: Geology, geomorphology, dynamics and human impact. Geol. Q. 2005, 49, 355–362. [Google Scholar]
- Jarmalavičius, D.; Žilinskas, G.; Pupienis, D. Geologic framework as a factor controlling coastal morphometry and dynamics. Curonian Spit, Lithuania. Int. J. Sediment Res. 2017, 32, 597–603. [Google Scholar] [CrossRef]
- Jarmalavičius, D.; Satkunas, J.; Žilinskas, G.; Pupienis, D. The influence of coastal morphology on wind dynamics. Est. J. Earth Sci. 2012, 61, 120–130. [Google Scholar] [CrossRef]
- Belibassakis, K.A.; Karathanasi, F.E. Modelling nearshore hydrodynamics and circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens Gulf. Oceanologia 2017, 59, 350–364. [Google Scholar] [CrossRef]
- Brown, A.G.; Tooth, S.; Bullard, J.E.; Thomas, D.S.G.; Chiverrell, R.C.; Plater, A.J.; Murton, J.; Thorndycraft, V.R.; Tarolli, P.; Rose, J.; et al. The geomorphology of the Anthropocene: Emergence, status and implications. Earth Surf. Process. Landf. 2017, 42, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Kondrat, V.; Šakurova, I.; Baltranaitė, E.; Kelpšaitė-Rimkienė, L. Natural and Anthropogenic Factors Shaping the Shoreline of Klaipėda, Lithuania. J. Mar. Sci. Eng. 2021, 9, 1456. [Google Scholar] [CrossRef]
- Weisse, R.; Dailidiene, I.; Hünicke, B.; Kahma, K.; Madsen, K.; Omstedt, A.; Parnell, K.; Schöne, T.; Soomere, T.; Zhang, W.; et al. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Syst. Dyn. 2021, 12, 871–898. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022, Mitigation of Climate Change Summary for Policymakers (SPM); IPCC: Geneva, Switzerland, 2022; ISBN 9781107415416. [Google Scholar]
- Liang, T.Y.; Chang, C.H.; Hsiao, S.C.; Huang, W.P.; Chang, T.Y.; Guo, W.D.; Liu, C.H.; Ho, J.Y.; Chen, W.B. On-Site Investigations of Coastal Erosion and Accretion for the Northeast of Taiwan. J. Mar. Sci. Eng. 2022, 10, 282. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Dong, G.; Chen, H.; Liu, Q.; Zang, J. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng. 2021, 170, 103977. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Zang, J.; Dong, G.; Ma, X.; Zhu, Y.; Zhou, L. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coast. Eng. 2020, 158, 103670. [Google Scholar] [CrossRef]
- Masselink, G.; Kroon, A.; Davidson-Arnott, R.G.D. Morphodynamics of intertidal bars in wave-dominated coastal settings-A review. Geomorphology 2006, 73, 33–49. [Google Scholar] [CrossRef]
- Cohn, N.; Hoonhout, B.M.; Goldstein, E.B.; de Vries, S.; Moore, L.J.; Vinent, O.D.; Ruggiero, P. Exploring marine and aeolian controls on coastal foredune growth using a coupled numerical model. J. Mar. Sci. Eng. 2019, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Yutsis, V.; Krivosheya, K.; Levchenko, O.; Lowag, J.; de LeónGómez, H.; Ponce, A.T. Bottom topography, recent sedimentation and water volume of the Cerro Prieto dam, NE Mexico. Geofis. Int. 2014, 53, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Bezzi, A.; Casagrande, G.; Fracaros, S.; Martinucci, D.; Pillon, S.; Sponza, S.; Bratus, A.; Fattor, F.; Fontolan, G. Geomorphological changes of a migrating sandbank: Multidecadal analysis as a tool for managing conflicts in coastal use. Water 2021, 13, 3416. [Google Scholar] [CrossRef]
- Sakhaee, F.; Khalili, F. Sediment pattern & rate of bathymetric changes due to construction of breakwater extension at Nowshahr port. J. Ocean Eng. Sci. 2021, 6, 70–84. [Google Scholar] [CrossRef]
- Rosier, S.H.R.; Hofstede, C.; Brisbourne, A.M.; Hattermann, T.; Nicholls, K.W.; Davis, P.E.D.; Anker, P.G.D.; Hillenbrand, C.D.; Smith, A.M.; Corr, H.F.J. A New Bathymetry for the Southeastern Filchner-Ronne Ice Shelf: Implications for Modern Oceanographic Processes and Glacial History. J. Geophys. Res. Ocean. 2018, 123, 4610–4623. [Google Scholar] [CrossRef]
- Guo, X.; Fan, D.; Zheng, S.; Wang, H.; Zhao, B.; Qin, C. Revisited sediment budget with latest bathymetric data in the highly altered Yangtze (Changjiang) Estuary. Geomorphology 2021, 391, 107873. [Google Scholar] [CrossRef]
- Kaskela, A. Seabed Landscapes of the Baltic Sea: Geological Characterization of the Seabed Environment with Spatial Analysis Techniques; Geological Survey of Finland: Espoo, Finland, 2017; Volume 100, ISBN 9789522173867. [Google Scholar]
- Hoffmann, G.; Lampe, R. Sediment budget calculation to estimate Holocene coastal changes on the southwest Baltic Sea (Germany). Mar. Geol. 2007, 243, 143–156. [Google Scholar] [CrossRef]
- Coelho, C.; Lima, M.; Veloso-Gomes, F. Relationship Between Cross-Shore Active Profile and One-Line Shoreline Evolution Models Performance. J. Coast. Res. 2013, 165, 2107–2112. [Google Scholar] [CrossRef]
- Aragonés, L.; Pagán, J.I.; López, M.P.; Serra, J.C. Cross-shore sediment transport quantification on depth of closure calculation from profile surveys. Coast. Eng. 2019, 151, 64–77. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Sánchez-Arcilla, A. Medium-term coastal response at the Ebro delta, Spain. Mar. Geol. 1993, 114, 105–118. [Google Scholar] [CrossRef]
- Cantasano, N.; Boccalaro, F.; Ietto, F. Assessing of detached breakwaters and beach nourishment environmental impacts in Italy: A review. Environ. Monit. Assess. 2023, 195, 127. [Google Scholar] [CrossRef]
- Kelpšaitė-Rimkienė, L.; Parnell, K.E.; Žaromskis, R.; Kondrat, V. Cross-shore profile evolution after an extreme erosion event—Palanga, Lithuania. J. Mar. Sci. Eng. 2021, 9, 38. [Google Scholar] [CrossRef]
- Aagaard, T.; Davidson-Arnott, R.; Greenwood, B.; Nielsen, J. Sediment supply from shoreface to dunes: Linking sediment transport measurements and long-term morphological evolution. Geomorphology 2004, 60, 205–224. [Google Scholar] [CrossRef]
- Hinton, C.; Nicholls, R.J. Spatial and temporal behaviour of depth of closure along the Holland coast. Proc. Coast. Eng. Conf. 1998, 3, 2913–2925. [Google Scholar] [CrossRef]
- van Rijn, L.C.; Wasltra, D.J.R.; Grasmeijer, B.; Sutherland, J.; Pan, S.; Sierra, J.P. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coast. Eng. 2003, 47, 295–327. [Google Scholar] [CrossRef]
- Héquette, A.; Desrosiers, M.; Hill, P.R.; Forbes, D.L. The Influence of Coastal Morphology on Shoreface Sediment Transport under Storm-Combined Flows, Canadian Beaufort Sea. J. Coast. Res. 2001, 17, 507–516. [Google Scholar]
- Oo, Y.H.; Vieira Da Silva, G.; Zhang, H.; Strauss, D.; Tomlinson, R. Estimation of beach erosion using Joint Probability analysis with a morphological model. Ocean Eng. 2022, 264, 112560. [Google Scholar] [CrossRef]
- Kelpšaite, L.; Dailidiene, I. Influence of wind wave climate change on coastal processes in the eastern Baltic Sea. J. Coast. Res. 2011, 2011, 220–224. [Google Scholar]
- Kelpšaite, L.; Dailidiene, I.; Soomere, T. Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993–2008. Boreal Environ. Res. 2011, 16, 220–232. [Google Scholar]
- Meier, H.E.M.; Kniebusch, M.; Dieterich, C.; Gröger, M.; Zorita, E.; Elmgren, R.; Myrberg, K.; Ahola, M.; Bartosova, A.; Bonsdorff, E.; et al. Climate Change in the Baltic Sea Region: A Summary. Earth Syst. Dyn. Discuss. 2021, 13, 457–593. [Google Scholar] [CrossRef]
- Soomere, T.; Bishop, S.R.; Viška, M.; Räämet, A. An abrupt change in winds that may radically affect the coasts and deep sections of the Baltic Sea. Clim. Res. 2015, 62, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Soomere, T.; Viška, M. Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea. J. Mar. Syst. 2014, 129, 96–105. [Google Scholar] [CrossRef]
- Viška, M.; Soomere, T. Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern baltic sea coast. Baltica 2013, 26, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Bagdanavičiute, I.; Kelpšaite, L.; Daunys, D. Assessment of shoreline changes along the Lithuanian Baltic Sea coast during the period 1947–2010. Baltica 2012, 25, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Lone, B.A.; Qayoom, S.; Nazir, A.; Ahanger, S.A.; Basu, U.; Bhat, T.A.; Dar, Z.A.; Mushtaq, M.; El Sabagh, A.; Soufan, W.; et al. Climatic Trends of Variable Temperate Environment: A Complete Time Series Analysis during 1980–2020. Atmosphere 2022, 13, 749. [Google Scholar] [CrossRef]
- Guillot, B.; Musereau, J.; Dalaine, B.; Morel, J. Coastal Dunes Mobility Integration and Characterization: Developing of a Flexible Volume Computing Method. J. Geogr. Inf. Syst. 2018, 10, 503–520. [Google Scholar] [CrossRef] [Green Version]
- Blott, S.J.; Pye, K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Udden, J.A. Bulletin of the Geological Society of America: Mechanical Composition Composition of Clastic Sediments. Geol. Soc. Am. Bull. 1914, 25, 655–744. [Google Scholar] [CrossRef]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- International Hydrographic Organization. International Hydrographic Organization Standards for Hydrographic Surveys; DiVA: Hongkong, China, 2020. [Google Scholar]
- Marbel, B. GLobal Mapper Getting Started Guide; Blue Marble Geographics: Hallowell, ME, USA, 2019. [Google Scholar]
- Hell, B. Mapping Bathymetry: From Measurement to Applications; DiVA: Hongkong, China, 2011; Volume 29, ISBN 978917447309. [Google Scholar]
- James, L.A.; Hodgson, M.E.; Ghoshal, S.; Latiolais, M.M. Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. Geomorphology 2012, 137, 181–198. [Google Scholar] [CrossRef]
- Ouillon, S. Why and how do we study sediment transport? Focus on coastal zones and ongoing methods. Water 2018, 10, 390. [Google Scholar] [CrossRef]
- Keevallik, S.; Soomere, T. Regime shifts in the surface-level average air flow over the gulf of Finland during 1981–2010. Proc. Est. Acad. Sci. 2014, 63, 428–437. [Google Scholar] [CrossRef]
- Prodger, S.; Russell, P.; Davidson, M. Grain-size distributions on high-energy sandy beaches and their relation to wave dissipation. Sedimentology 2017, 64, 1289–1302. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, J.P.; Rojas, E.M. Sediment transport patterns determined from grain size parameters: Overview and state of the art. Sediment. Geol. 2007, 202, 473–488. [Google Scholar] [CrossRef]
- Jarmalavičius, D.; Žilinskas, G.; Pupienis, D. Impact of Klaipda port jetties reconstruction on adjacent sea coast dynamics. J. Environ. Eng. Landsc. Manag. 2012, 20, 240–247. [Google Scholar] [CrossRef]
- Hapke, C.J.; Kratzmann, M.G.; Himmelstoss, E.A. Geomorphic and human influence on large-scale coastal change. Geomorphology 2013, 199, 160–170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šakurova, I.; Kondrat, V.; Baltranaitė, E.; Vasiliauskienė, E.; Kelpšaitė-Rimkienė, L. Assessment of Coastal Morphology on the South-Eastern Baltic Sea Coast: The Case of Lithuania. Water 2023, 15, 79. https://doi.org/10.3390/w15010079
Šakurova I, Kondrat V, Baltranaitė E, Vasiliauskienė E, Kelpšaitė-Rimkienė L. Assessment of Coastal Morphology on the South-Eastern Baltic Sea Coast: The Case of Lithuania. Water. 2023; 15(1):79. https://doi.org/10.3390/w15010079
Chicago/Turabian StyleŠakurova, Ilona, Vitalijus Kondrat, Eglė Baltranaitė, Erika Vasiliauskienė, and Loreta Kelpšaitė-Rimkienė. 2023. "Assessment of Coastal Morphology on the South-Eastern Baltic Sea Coast: The Case of Lithuania" Water 15, no. 1: 79. https://doi.org/10.3390/w15010079
APA StyleŠakurova, I., Kondrat, V., Baltranaitė, E., Vasiliauskienė, E., & Kelpšaitė-Rimkienė, L. (2023). Assessment of Coastal Morphology on the South-Eastern Baltic Sea Coast: The Case of Lithuania. Water, 15(1), 79. https://doi.org/10.3390/w15010079